Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682326

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is high blood pressure in the lungs that originates from structural changes in small resistance arteries. A defining feature of PAH is the inappropriate remodeling of pulmonary arteries (PA) leading to right ventricle failure and death. Although treatment of PAH has improved, the long-term prognosis for patients remains poor, and more effective targets are needed. METHODS: Gene expression was analyzed by microarray, RNA sequencing, quantitative polymerase chain reaction, Western blotting, and immunostaining of lung and isolated PA in multiple mouse and rat models of pulmonary hypertension (PH) and human PAH. PH was assessed by digital ultrasound, hemodynamic measurements, and morphometry. RESULTS: Microarray analysis of the transcriptome of hypertensive rat PA identified a novel candidate, PBK (PDZ-binding kinase), that was upregulated in multiple models and species including humans. PBK is a serine/threonine kinase with important roles in cell proliferation that is minimally expressed in normal tissues but significantly increased in highly proliferative tissues. PBK was robustly upregulated in the medial layer of PA, where it overlaps with markers of smooth muscle cells. Gain-of-function approaches show that active forms of PBK increase PA smooth muscle cell proliferation, whereas silencing PBK, dominant negative PBK, and pharmacological inhibitors of PBK all reduce proliferation. Pharmacological inhibitors of PBK were effective in PH reversal strategies in both mouse and rat models, providing translational significance. In a complementary genetic approach, PBK was knocked out in rats using CRISPR/Cas9 editing, and loss of PBK prevented the development of PH. We found that PBK bound to PRC1 (protein regulator of cytokinesis 1) in PA smooth muscle cells and that multiple genes involved in cytokinesis were upregulated in experimental models of PH and human PAH. Active PBK increased PRC1 phosphorylation and supported cytokinesis in PA smooth muscle cells, whereas silencing or dominant negative PBK reduced cytokinesis and the number of cells in the G2/M phase of the cell cycle. CONCLUSIONS: PBK is a newly described target for PAH that is upregulated in proliferating PA smooth muscle cells, where it contributes to proliferation through changes in cytokinesis and cell cycle dynamics to promote medial thickening, fibrosis, increased PA resistance, elevated right ventricular systolic pressure, right ventricular remodeling, and PH.

2.
Am J Pathol ; 193(3): 275-285, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36586478

RESUMEN

Planar cell polarity (PCP), a process of coordinated alignment of cell polarity across the tissue plane, may contribute to the repair of renal tubules after kidney injury. Intu is a key effector protein of PCP. Herein, conditional knockout (KO) mouse models that ablate Intu specifically from kidney tubules (Intu KO) were established. Intu KO mice and wild-type littermates were subjected to unilateral renal ischemia/reperfusion injury (IRI) or unilateral ureteral obstruction. Kidney repair was evaluated by histologic, biochemical, and immunohistochemical analyses. In vitro, scratch wound healing was examined in Intu-knockdown and control renal tubular cells. Ablation of Intu in renal tubules delayed kidney repair and ameliorated renal fibrosis after renal IRI. Intu KO mice had less renal fibrosis during unilateral ureteral obstruction. Mechanistically, Intu KO kidneys had less senescence but higher levels of cell proliferation and apoptosis during kidney repair after renal IRI. In vitro, Intu knockdown suppressed scratch wound healing in renal tubular cells, accompanied by the abnormality of centrosome orientation. Together, the results provide the first evidence for the involvement of PCP in tubular repair after kidney injury, shedding light on new strategies for improving kidney repair and recovery.


Asunto(s)
Lesión Renal Aguda , Polaridad Celular , Riñón , Daño por Reperfusión , Obstrucción Ureteral , Animales , Ratones , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Polaridad Celular/genética , Polaridad Celular/fisiología , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Riñón/metabolismo , Riñón/patología , Túbulos Renales/metabolismo , Túbulos Renales/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
3.
Eur Heart J ; 44(14): 1265-1279, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36721994

RESUMEN

AIMS: Proliferation of vascular smooth muscle cells (VSMCs) is a hallmark of pulmonary hypertension (PH). Proliferative cells utilize purine bases from the de novo purine synthesis (DNPS) pathways for nucleotide synthesis; however, it is unclear whether DNPS plays a critical role in VSMC proliferation during development of PH. The last two steps of DNPS are catalysed by the enzyme 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC). This study investigated whether ATIC-driven DNPS affects the proliferation of pulmonary artery smooth muscle cells (PASMCs) and the development of PH. METHODS AND RESULTS: Metabolites of DNPS in proliferative PASMCs were measured by liquid chromatography-tandem mass spectrometry. ATIC expression was assessed in platelet-derived growth factor-treated PASMCs and in the lungs of PH rodents and patients with pulmonary arterial hypertension. Mice with global and VSMC-specific knockout of Atic were utilized to investigate the role of ATIC in both hypoxia- and lung interleukin-6/hypoxia-induced murine PH. ATIC-mediated DNPS at the mRNA, protein, and enzymatic activity levels were increased in platelet-derived growth factor-treated PASMCs or PASMCs from PH rodents and patients with pulmonary arterial hypertension. In cultured PASMCs, ATIC knockdown decreased DNPS and nucleic acid DNA/RNA synthesis, and reduced cell proliferation. Global or VSMC-specific knockout of Atic attenuated vascular remodelling and inhibited the development and progression of both hypoxia- and lung IL-6/hypoxia-induced PH in mice. CONCLUSION: Targeting ATIC-mediated DNPS compromises the availability of purine nucleotides for incorporation into DNA/RNA, reducing PASMC proliferation and pulmonary vascular remodelling and ameliorating the development and progression of PH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Ratones , Animales , Roedores/metabolismo , Remodelación Vascular/fisiología , Arteria Pulmonar , Purinas/metabolismo , Células Cultivadas , Hipoxia/metabolismo , ARN Mensajero/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proliferación Celular , Miocitos del Músculo Liso/metabolismo
4.
Am J Respir Cell Mol Biol ; 69(6): 678-688, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37639326

RESUMEN

Acute lung injury (ALI) is characterized by lung vascular endothelial cell (EC) barrier compromise resulting in increased endothelial permeability and pulmonary edema. The infection of gram-negative bacteria that produce toxins like LPS is one of the major causes of ALI. LPS activates Toll-like receptor 4, leading to cytoskeleton reorganization, resulting in lung endothelial barrier disruption and pulmonary edema in ALI. However, the signaling pathways that lead to the cytoskeleton reorganization and lung microvascular EC barrier disruption remain largely unexplored. Here we show that LPS induces calpain activation and talin cleavage into head and rod domains and that inhibition of calpain attenuates talin cleavage, RhoA activation, and pulmonary EC barrier disruption in LPS-treated human lung microvascular ECs in vitro and lung EC barrier disruption and pulmonary edema induced by LPS in ALI in vivo. Moreover, overexpression of calpain causes talin cleavage and RhoA activation, myosin light chain (MLC) phosphorylation, and increases in actin stress fiber formation. Furthermore, knockdown of talin attenuates LPS-induced RhoA activation and MLC phosphorylation and increased stress fiber formation and mitigates LPS-induced lung microvascular endothelial barrier disruption. Additionally, overexpression of talin head and rod domains increases RhoA activation, MLC phosphorylation, and stress fiber formation and enhances lung endothelial barrier disruption. Finally, overexpression of cleavage-resistant talin mutant reduces LPS-induced increases in MLC phosphorylation in human lung microvascular ECs and attenuates LPS-induced lung microvascular endothelial barrier disruption. These results provide the first evidence that calpain mediates LPS-induced lung microvascular endothelial barrier disruption in ALI via cleavage of talin.


Asunto(s)
Lesión Pulmonar Aguda , Edema Pulmonar , Humanos , Lipopolisacáridos/farmacología , Calpaína/metabolismo , Talina/metabolismo , Pulmón/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Permeabilidad Capilar
5.
J Cell Physiol ; 237(1): 566-579, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34231213

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia. It is unknown why fibrosis in IPF distributes in the peripheral or named sub-pleural area. Migration of pleural mesothelial cells (PMC) should contribute to sub-pleural fibrosis. Calpain is known to be involved in cell migration, but the role of calpain in PMC migration has not been investigated. In this study, we found that PMCs migrated into lung parenchyma in patients with IPF. Then using Wt1tm1(EGFP/Cre)Wtp /J knock-in mice, we observed PMC migration into lung parenchyma in bleomycin-induced pleural fibrosis models, and calpain inhibitor attenuated pulmonary fibrosis with prevention of PMC migration. In vitro studies revealed that bleomycin and transforming growth factor-ß1 increased calpain activity in PMCs, and activated calpain-mediated focal adhesion (FA) turnover as well as cell migration, cell proliferation, and collagen-I synthesis. Furthermore, we determined that calpain cleaved FA kinase in both C-terminal and N-terminal regions, which mediated FA turnover. Lastly, the data revealed that activated calpain was also involved in phosphorylation of cofilin-1, and p-cofilin-1 induced PMC migration. Taken together, this study provides evidence that calpain mediates PMC migration into lung parenchyma to promote sub-pleural fibrosis in IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Factores Despolimerizantes de la Actina/metabolismo , Animales , Bleomicina/farmacología , Calpaína/metabolismo , Movimiento Celular , Fibrosis , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Ratones , Factor de Crecimiento Transformador beta1/metabolismo
6.
Circ Res ; 127(10): 1323-1336, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32912104

RESUMEN

RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by progressive pulmonary vascular remodeling, accompanied by varying degrees of perivascular inflammation. Niacin, a commonly used lipid-lowering drug, possesses vasodilating and proresolution effects by promoting the release of prostaglandin D2 (PGD2). However, whether or not niacin confers protection against PAH pathogenesis is still unknown. OBJECTIVE: This study aimed to determine whether or not niacin attenuates the development of PAH and, if so, to elucidate the molecular mechanisms underlying its effects. METHODS AND RESULTS: Vascular endothelial growth factor receptor inhibitor SU5416 and hypoxic exposure were used to induce pulmonary hypertension (PH) in rodents. We found that niacin attenuated the development of this hypoxia/SU5416-induced PH in mice and suppressed progression of monocrotaline-induced and hypoxia/SU5416-induced PH in rats through the reduction of pulmonary artery remodeling. Niacin boosted PGD2 generation in lung tissue, mainly through H-PGDS (hematopoietic PGD2 synthases). Deletion of H-PGDS, but not lipocalin-type PGDS, exacerbated the hypoxia/SU5416-induced PH in mice and abolished the protective effects of niacin against PAH. Moreover, H-PGDS was expressed dominantly in infiltrated macrophages in lungs of PH mice and patients with idiopathic PAH. Macrophage-specific deletion of H-PGDS markedly decreased PGD2 generation in lungs, aggravated hypoxia/SU5416-induced PH in mice, and attenuated the therapeutic effect of niacin on PAH. CONCLUSIONS: Niacin treatment ameliorates the progression of PAH through the suppression of vascular remodeling by stimulating H-PGDS-derived PGD2 release from macrophages.


Asunto(s)
Antihipertensivos/farmacología , Hipertensión Pulmonar/tratamiento farmacológico , Hipolipemiantes/farmacología , Macrófagos/efectos de los fármacos , Niacina/farmacología , Animales , Antihipertensivos/uso terapéutico , Células Cultivadas , Humanos , Hipertensión Pulmonar/metabolismo , Hipolipemiantes/uso terapéutico , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Macrófagos/metabolismo , Ratones , Niacina/uso terapéutico , Prostaglandina D2/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Ratas
7.
Eur J Pediatr ; 181(9): 3429-3438, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35831682

RESUMEN

The purpose of this study is to explore risk factors of acute placental inflammatory lesions and the potential postnatal serum biomarkers for predicting the severity of intrauterine infection in preterm infants. We performed a retrospective analysis of premature infants with or without acute placental inflammatory lesions and their mothers by chart review for clinical data and placental histopathology. The preterm infants with acute placental inflammatory lesions had a higher rate of premature rupture of membranes (PROM), a longer duration of PROM, and a higher level of serum sialic acid (SIA) than those of the non-inflammation group (all p < 0.001). According to the different inflammatory histological structures, preterm infants with funisitis had a dominant longer duration of PROM than others (p < 0.05), and their gestational age was youngest among all the infants (p < 0.05). Furthermore, they had the highest content of serum SIA above other groups. The preterm infants in the acute histological chorioamnionitis group showed a similar trend of clinical manifestation and laboratory parameters with the funisitis group. Moreover, the closer the placental lesions were to the fetus, the lower the gestational age of preterm infants was, and the higher the serum SIA content was. CONCLUSION: We utilized a simple and precise anatomically category method of placental inflammatory histopathology for pediatricians to distinguish the extent of fetal inflammatory response for representing early-onset infectious diseases of preterm infants. SIA might be one of the potential early-stage serum biomarkers to reflect the severe intrauterine infections and could guide the postnatal anti-infection treatment. WHAT IS KNOWN: • Acute placental inflammatory lesion contributes to preterm birth and a series of complications in preterm infants. • C-reactive protein and interleukin-6 in neonatal blood can be used as biomarkers for potential early-onset sepsis, but they are influenced by the postnatal physiological changes of preterm infants. WHAT IS NEW: • The value of serum sialic acids of preterm infants within 1-hour afterbirth may be one of the rapid postnatal biomarkers for evaluating the severity of intra-amniotic infection. • The closer the placental lesions are to the fetus, the higher the content of serum sialic acid is.


Asunto(s)
Corioamnionitis , Enfermedades Transmisibles , Rotura Prematura de Membranas Fetales , Nacimiento Prematuro , Biomarcadores , Corioamnionitis/diagnóstico , Corioamnionitis/patología , Femenino , Rotura Prematura de Membranas Fetales/diagnóstico , Rotura Prematura de Membranas Fetales/patología , Humanos , Recién Nacido , Recien Nacido Prematuro , Ácido N-Acetilneuramínico , Placenta/patología , Embarazo , Estudios Retrospectivos , Factores de Riesgo
8.
Proc Natl Acad Sci U S A ; 116(27): 13394-13403, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31213542

RESUMEN

Increased glycolysis in the lung vasculature has been connected to the development of pulmonary hypertension (PH). We therefore investigated whether glycolytic regulator 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (PFKFB3)-mediated endothelial glycolysis plays a critical role in the development of PH. Heterozygous global deficiency of Pfkfb3 protected mice from developing hypoxia-induced PH, and administration of the PFKFB3 inhibitor 3PO almost completely prevented PH in rats treated with Sugen 5416/hypoxia, indicating a causative role of PFKFB3 in the development of PH. Immunostaining of lung sections and Western blot with isolated lung endothelial cells showed a dramatic increase in PFKFB3 expression and activity in pulmonary endothelial cells of rodents and humans with PH. We generated mice that were constitutively or inducibly deficient in endothelial Pfkfb3 and found that these mice were incapable of developing PH or showed slowed PH progression. Compared with control mice, endothelial Pfkfb3-knockout mice exhibited less severity of vascular smooth muscle cell proliferation, endothelial inflammation, and leukocyte recruitment in the lungs. In the absence of PFKFB3, lung endothelial cells from rodents and humans with PH produced lower levels of growth factors (such as PDGFB and FGF2) and proinflammatory factors (such as CXCL12 and IL1ß). This is mechanistically linked to decreased levels of HIF2A in lung ECs following PFKFB3 knockdown. Taken together, these results suggest that targeting PFKFB3 is a promising strategy for the treatment of PH.


Asunto(s)
Glucólisis , Hipertensión Pulmonar/etiología , Pulmón/metabolismo , Fosfofructoquinasa-2/fisiología , Animales , Modelos Animales de Enfermedad , Endotelio/metabolismo , Técnicas de Silenciamiento del Gen , Glucólisis/fisiología , Humanos , Hipertensión Pulmonar/metabolismo , Hipoxia/complicaciones , Pulmón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfofructoquinasa-2/deficiencia , Fosfofructoquinasa-2/metabolismo , Ratas , Ratas Sprague-Dawley
9.
Am J Respir Cell Mol Biol ; 65(6): 603-614, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34280336

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a multisystemic respiratory disease that is associated with progressive airway and pulmonary vascular remodeling due to the increased proliferation of bronchial smooth muscles cells (BSMCs) and pulmonary arterial smooth muscle cells (PASMCs) and the overproduction of extracellular matrix (e.g., collagen). Cigarette smoke (CS) and several mediators, such as PDGF (platelet-derived growth factor) and IL-6, play critical roles in COPD pathogenesis. HDAC6 has been shown to be implicated in vascular remodeling. However, the role of airway HDAC6 signaling in pulmonary vascular remodeling in COPD and the underlying mechanisms remain undetermined. Here, we show that HDAC6 expression is upregulated in the lungs of patients with COPD and a COPD animal model. We also found that CS extract (CSE), PDGF, and IL-6 increase the protein levels and activation of HDAC6 in BSMCs and PASMCs. Furthermore, CSE and these stimulants induced deacetylation and phosphorylation of ERK1/2 and increased collagen synthesis and BSMC and PASMC proliferation, which were outcomes that were prevented by HDAC6 inhibition. Inhibition of ERK1/2 also diminished the CSE-, PDGF-, and IL-6-caused elevation in collagen levels and cell proliferation. Pharmacologic HDAC6 inhibition with tubastatin A prevented the CS-stimulated increases in the thickness of the bronchial and pulmonary arterial wall, airway resistance, emphysema, and right ventricular systolic pressure and right ventricular hypertrophy in a rat model of COPD. These data demonstrate that the upregulated HDAC6 governs the collagen synthesis and BSMC and PASMC proliferation that lead to airway and vascular remodeling in COPD.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Histona Desacetilasa 6/metabolismo , Sistema de Señalización de MAP Quinasas , Enfermedad Pulmonar Obstructiva Crónica/enzimología , Remodelación Vascular , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Histona Desacetilasa 6/antagonistas & inhibidores , Humanos , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/enzimología , Miocitos del Músculo Liso/patología , Arteria Pulmonar/enzimología , Arteria Pulmonar/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Ratas , Ratas Sprague-Dawley
10.
J Cell Physiol ; 236(4): 2893-2905, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32959895

RESUMEN

Acute lung injury (ALI) is an acute inflammatory process arises from a wide range of lung insults. A major cause of ALI is dysfunction of the pulmonary vascular endothelial barrier but the mechanisms involved are incompletely understood. The therapeutic potential of histone deacetylase (HDAC) inhibitors for the treatment of cardiovascular and inflammatory diseases is increasingly apparent, but the mechanisms by which HDACs regulate pulmonary vascular barrier function remain to be resolved. We found that specific Class IIa HDACs inhibitor, TMP269, significantly attenuated the lipopolysaccharide (LPS)-induced human lung microvascular endothelial cells (HLMVEC) barrier compromise in vitro and improved vascular barrier integrity and lung function in murine model of ALI in vivo. TMP269 decreased LPS-induced myosin light chain phosphorylation suggesting the role for Class IIa HDACs in LPS-induced cytoskeleton reorganization. TMP269 did not affect microtubule structure and tubulin acetylation in contrast to the HDAC6-specific inhibitor, Tubastatin A suggesting that Class IIa HDACs and HDAC6 (Class IIb) regulate endothelial cytoskeleton and permeability via different mechanisms. Furthermore, LPS increased the expression of ArgBP2 which has recently been attributed to HDAC-mediated activation of Rho. Depletion of ArgBP2 abolished the ability of LPS to disrupt barrier function in HLMVEC and both TMP269 and Tubastatin A decreased the level of ArgBP2 expression after LPS stimulation suggesting that both Class IIa and IIb HDACs regulate endothelial permeability via ArgBP2-dependent mechanism. Collectively, our data strongly suggest that Class IIa HDACs are involved in LPS-induced ALI in vitro and in vivo via specific mechanism which involved contractile responses, but not microtubule reorganization.


Asunto(s)
Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/enzimología , Histona Desacetilasas/metabolismo , Lesión Pulmonar Aguda/fisiopatología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Permeabilidad de la Membrana Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Endotoxinas , Frecuencia Cardíaca/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Lipopolisacáridos , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiopatología , Ratones Endogámicos C57BL , Microvasos/patología , Modelos Biológicos , Oxígeno/metabolismo , Neumonía/complicaciones , Neumonía/patología , Transducción de Señal/efectos de los fármacos , Proteínas de Unión al GTP rho/metabolismo
11.
Am J Respir Crit Care Med ; 201(10): 1263-1276, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31917615

RESUMEN

Rationale: Vascular remodeling, including smooth muscle cell hypertrophy and proliferation, is the key pathological feature of pulmonary arterial hypertension (PAH). Prostaglandin I2 analogs (beraprost, iloprost, and treprostinil) are effective in the treatment of PAH. Of note, the clinically favorable effects of treprostinil in severe PAH may be attributable to concomitant activation of DP1 (D prostanoid receptor subtype 1).Objectives: To study the role of DP1 in the progression of PAH and its underlying mechanism.Methods: DP1 levels were examined in pulmonary arteries of patients and animals with PAH. Multiple genetic and pharmacologic approaches were used to investigate DP1-mediated signaling in PAH.Measurements and Main Results: DP1 expression was downregulated in hypoxia-treated pulmonary artery smooth muscle cells and in pulmonary arteries from rodent PAH models and patients with idiopathic PAH. DP1 deletion exacerbated pulmonary artery remodeling in hypoxia-induced PAH, whereas pharmacological activation or forced expression of the DP1 receptor had the opposite effect in different rodent models. DP1 deficiency promoted pulmonary artery smooth muscle cell hypertrophy and proliferation in response to hypoxia via induction of mTORC1 (mammalian target of rapamycin complex 1) activity. Rapamycin, an inhibitor of mTORC1, alleviated the hypoxia-induced exacerbation of PAH in DP1-knockout mice. DP1 activation facilitated raptor dissociation from mTORC1 and suppressed mTORC1 activity through PKA (protein kinase A)-dependent phosphorylation of raptor at Ser791. Moreover, treprostinil treatment blocked the progression of hypoxia-induced PAH in mice in part by targeting the DP1 receptor.Conclusions: DP1 activation attenuates hypoxia-induced pulmonary artery remodeling and PAH through PKA-mediated dissociation of raptor from mTORC1. These results suggest that the DP1 receptor may serve as a therapeutic target for the management of PAH.


Asunto(s)
Hipoxia/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Hipertensión Arterial Pulmonar/genética , Receptores Inmunológicos/genética , Receptores de Prostaglandina/genética , Remodelación Vascular/genética , Animales , Antihipertensivos/farmacología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación hacia Abajo , Epoprostenol/análogos & derivados , Epoprostenol/farmacología , Humanos , Hipertrofia , Inmunosupresores/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar , ARN Mensajero/metabolismo , Ratas , Sirolimus/farmacología
12.
Cytotherapy ; 22(12): 755-761, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32861622

RESUMEN

BACKGROUND AIMS: The efficacy of CD19-targeted chimeric antigen receptor T (CAR T) cells for treatment of relapsed B-cell malignancies after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and the long-term outcomes of these patients remain inconclusive. METHODS: The authors focused on the survival of 35 patients with B-cell acute lymphoblastic leukemia who relapsed after allo-HSCT and received CAR T cells. RESULTS: Of the 34 eligible patients, 30 achieved minimal residual disease-negative complete remission (CR), with a total CR rate of 85.7% (79.8-91.6%). There were 14 patients who received various forms of additional therapy after achieving CR. After a median follow-up of 20.7 months, it was noted that 17 patients had relapsed at a median of 4.5 months (2-34 months). The cumulative recurrence rate (RR) at 18 months was 68.3% (57.6-79.0%). Additional treatment did not reduce the RR but seemed to delay the time to relapse (mean: 5.9 months vs 13.1 months; P = 0.046). Patients with a lower tumor burden (≤10%) had a lower RR (25.0% vs 78.6% at 12 months; P = 0.006). The overall survival (OS) rate for the CR patients was 30.0% (20.3-29.7%) at 18 months, with a median OS of 12.7 months. CONCLUSIONS: The authors' study indicated that for patients who relapsed after HSCT, although a high CR rate was achieved after CAR T therapy, the long-term efficacy was unsatisfactory. It is necessary to optimize additional treatment, including a second HSCT, to further improve long-term efficacy after CAR T infusion.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Inmunoterapia Adoptiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfocitos T/metabolismo , Adulto , Linfocitos B/inmunología , Línea Celular Tumoral , Proliferación Celular , Femenino , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Interleucina-2/metabolismo , Interleucinas/metabolismo , Masculino , Persona de Mediana Edad , Antígeno Prostático Específico/metabolismo , Recurrencia , Inducción de Remisión , Linfocitos T/inmunología
13.
Am J Respir Crit Care Med ; 200(5): 617-627, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30817168

RESUMEN

Rationale: Glycolytic shift is implicated in the pathogenesis of pulmonary arterial hypertension (PAH). It remains unknown how glycolysis is increased and how increased glycolysis contributes to pulmonary vascular remodeling in PAH.Objectives: To determine whether increased glycolysis is caused by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) and how PFKFB3-driven glycolysis induces vascular remodeling in PAH.Methods: PFKFB3 levels were measured in pulmonary arteries of patients and animals with PAH. Lactate levels were assessed in lungs of animals with PAH and in pulmonary artery smooth muscle cells (PASMCs). Genetic and pharmacologic approaches were used to investigate the role of PFKFB3 in PAH.Measurements and Main Results: Lactate production was elevated in lungs of PAH rodents and in platelet-derived growth factor-treated PASMCs. PFKFB3 protein was higher in pulmonary arteries of patients and rodents with PAH, in PASMCs of patients with PAH, and in platelet-derived growth factor-treated PASMCs. PFKFB3 inhibition by genetic disruption and chemical inhibitor attenuated phosphorylation/activation of extracellular signal-regulated kinase (ERK1/2) and calpain-2, and vascular remodeling in PAH rodent models, and reduced platelet-derived growth factor-induced phosphorylation/activation of ERK1/2 and calpain-2, collagen synthesis and proliferation of PASMCs. ERK1/2 inhibition attenuated phosphorylation/activation of calpain-2, and vascular remodeling in Sugen/hypoxia PAH rats, and reduced lactate-induced phosphorylation/activation of calpain-2, collagen synthesis, and proliferation of PASMCs. Calpain-2 inhibition reduced lactate-induced collagen synthesis and proliferation of PASMCs.Conclusions: Upregulated PFKFB3 mediates collagen synthesis and proliferation of PASMCs, contributing to vascular remodeling in PAH. The mechanism is through the elevation of glycolysis and lactate that results in the activation of calpain by ERK1/2-dependent phosphorylation of calpain-2.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Músculo Liso Vascular/crecimiento & desarrollo , Fosfofructoquinasa-2/sangre , Fosfofructoquinasa-2/metabolismo , Hipertensión Arterial Pulmonar/sangre , Hipertensión Arterial Pulmonar/fisiopatología , Remodelación Vascular/fisiología , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratas
14.
Am J Physiol Renal Physiol ; 317(1): F116-F123, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31091124

RESUMEN

Stress granules (SGs) are a type of cytoplasmic structures formed in eukaryotic cells upon cell stress, which mainly contain RNA-binding proteins and RNAs. The formation of SGs is generally regarded as a mechanism for cells to survive a harsh insult. However, little is known about SG formation and function in kidneys. To address this, we applied different kinds of stressors to cultured proximal tubular cells as well as a short period of ischemia-reperfusion to mouse kidneys. It was found that glycolytic inhibitors such as 2-deoxy-d-glucose and 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one induced SG formation within 30 min in these cells. Similarly, SGs were induced by inhibitors of mitochondrial respiration such as sodium azide and CCCP. Renal ischemia-reperfusion induced SG formation in the cells of proximal tubules. To test the role of SGs, we stably knocked down G3bp1, a SG core protein, in renal tubular cells by shRNA viral transduction. As expected, knockdown of G3bp1 largely disrupted the assembly of SGs. After azide or cisplatin treatment, more dead cells were found in knockdown cells compared with controls, accompanied by increases in cleaved/active caspase-3. Reintroduction of exogenous G3bp1 into knockdown cells could rescue the cell death phenotype. Taken together, our data provide the first evidence of SG formation in renal tubular cells during metabolic stress and acute kidney injury. SGs are formed to protect proximal tubular cells under these conditions. Modulation of SG biogenesis may provide a novel approach to lessen the severity of renal diseases.


Asunto(s)
Lesión Renal Aguda/etiología , Carbonil Cianuro m-Clorofenil Hidrazona/toxicidad , Cisplatino/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Túbulos Renales Proximales/efectos de los fármacos , Daño por Reperfusión/etiología , Azida Sódica/toxicidad , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , ADN Helicasas/genética , ADN Helicasas/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Factor 2 Eucariótico de Iniciación/metabolismo , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Ratones , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Ratas , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Transducción de Señal
15.
Am J Physiol Lung Cell Mol Physiol ; 316(5): L784-L797, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30724100

RESUMEN

A defining characteristic of pulmonary hypertension (PH) is the extensive remodeling of pulmonary arteries (PAs), which results in progressive increases in vascular resistance and stiffness and eventual failure of the right ventricle. There is no cure for PH and identification of novel molecular mechanisms that underlie increased proliferation, reduced apoptosis, and excessive extracellular matrix production in pulmonary artery smooth muscle cells (PASMCs) is a vital objective. Galectin-3 (Gal-3) is a chimeric lectin and potent driver of many aspects of fibrosis, but its role in regulating PASMC behavior in PH remains poorly understood. Herein, we evaluated the importance of increased Gal-3 expression and signaling on PA vascular remodeling and cardiopulmonary function in experimental models of PH. Gal-3 expression was quantified by qRT-PCR, immunoblotting, and immunofluorescence imaging, and its functional role was assessed by specific Gal-3 inhibitors and CRISPR/Cas9-mediated knockout of Gal-3 in the rat. In rat models of PH, we observed increased Gal-3 expression in PASMCs, which stimulated migration and resistance to apoptosis, whereas silencing or genetic deletion reduced cellular migration and PA fibrosis and increased apoptosis. Gal-3 inhibitors attenuated and reversed PA remodeling and fibrosis, as well as hemodynamic indices in monocrotaline (MCT)-treated rats in vivo. These results were supported by genetic deletion of Gal-3 in both MCT and Sugen Hypoxia rat models. In conclusion, our results suggest that elevated Gal-3 levels contribute to inappropriate PA remodeling in PH by enhancing multiple profibrotic mechanisms. Therapeutic strategies targeting Gal-3 may be of benefit in the treatment of PH.


Asunto(s)
Apoptosis , Proliferación Celular , Galectina 3/biosíntesis , Regulación de la Expresión Génica , Hipertensión Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Fibrosis Pulmonar/metabolismo , Animales , Proteínas Sanguíneas , Modelos Animales de Enfermedad , Galectina 3/genética , Galectinas , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Masculino , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Ratas , Ratas Sprague-Dawley
16.
Pharmacol Res ; 146: 104292, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31167111

RESUMEN

Acute lung injury (ALI) is one of the leading causes of death in sepsis. Endothelial inflammation and dysfunction play a prominent role in development of ALI. Glycolysis is the predominant bioenergetic pathway for endothelial cells (ECs). However, the role of EC glycolysis in ALI of sepsis remains unclear. Here we show that both the expression and activity of PFKFB3, a key glycolytic activator, were markedly increased in lipopolysaccharide (LPS)-treated human pulmonary arterial ECs (HPAECs) in vitro and in lung ECs of mice challenged with LPS in vivo. PFKFB3 knockdown significantly reduced LPS-enhanced glycolysis in HPAECs. Compared with LPS-challenged wild-type mice, endothelial-specific Pfkfb3 knockout (Pfkfb3ΔVEC) mice exhibited reduced endothelium permeability, lower pulmonary edema, and higher survival rate. This was accompanied by decreased expression of intracellular adhesion molecule-1 (Icam-1) and vascular cell adhesion molecule 1 (Vcam-1), as well as decreased neutrophil and macrophage infiltration to the lung. Consistently, PFKFB3 silencing or PFKFB3 inhibition in HPAECs and human pulmonary microvascular ECs (HPMVECs) significantly downregulated LPS-induced expression of ICAM-1 and VCAM-1, and monocyte adhesion to human pulmonary ECs. In contrast, adenovirus-mediated PFKFB3 overexpression upregulated ICAM-1 and VCAM-1 expression in HPAECs. Mechanistically, PFKFB3 silencing suppressed LPS-induced nuclear translocation of nuclear factor κB (NF-κB)-p65, and NF-κB inhibitors abrogated PFKFB3-induced expression of ICAM-1 and VCAM-1. Finally, administration of the PFKFB3 inhibitor 3PO also reduced the inflammatory response of vascular endothelium and protected mice from LPS-induced ALI. Overall, these findings suggest that targeting PFKFB3-mediated EC glycolysis is an efficient therapeutic strategy for ALI in sepsis.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Células Endoteliales/metabolismo , Endotoxemia/inducido químicamente , Endotoxemia/metabolismo , Lipopolisacáridos/farmacología , Fosfofructoquinasa-2/metabolismo , Animales , Modelos Animales de Enfermedad , Endotelio Vascular/metabolismo , Glucólisis/fisiología , Humanos , Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Pulmón/metabolismo , Ratones , Monocitos/metabolismo , FN-kappa B/metabolismo , Oxitocina/metabolismo , Edema Pulmonar/metabolismo , Sepsis/metabolismo , Transducción de Señal/fisiología , Molécula 1 de Adhesión Celular Vascular/metabolismo
17.
Pulm Pharmacol Ther ; 48: 46-52, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29107090

RESUMEN

Pleural fibrosis is associated with various inflammatory processes such as tuberculous pleurisy and bacterial empyema. There is currently no ideal therapeutic to attenuate pleural fibrosis. Some pro-fibrogenic mediators induce fibrosis through inflammatory processes, suggesting that blockage of these mediators might prevent pleural fibrosis. The MeT-5A human pleural mesothelial cell line (PMC) was used in this study as an in vitro model of fibrosis; and intra-pleural injection of bleomycin with carbon particles was used as an in vivo mouse model of pleural fibrosis. Calpain knockout mice, calpain inhibitor (calpeptin), and angiotensin (Ang) II type 1 receptor (AT1R) antagonist (losartan) were evaluated in prevention of experimental pleural fibrosis. We found that bleomycin and carbon particles induced calpain activation in cultured PMCs. This in vitro response was associated with increased collagen-I synthesis, and was blocked by calpain inhibitor or AT1R antagonist. Calpain genetic or treatment with calpeptin or losartan prevented pleural fibrosis in a mouse model induced by bleomycin and carbon particles. Our findings indicate that Ang II signaling and calpain activation induce collagen-I synthesis and contribute to fibrotic alterations in pleural fibrosis. Inhibition of Ang II and calpain might therefore be a novel strategy in treatment of pleural fibrosis.


Asunto(s)
Calpaína/genética , Dipéptidos/farmacología , Losartán/farmacología , Enfermedades Pleurales/tratamiento farmacológico , Angiotensina II/efectos de los fármacos , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Bleomicina/toxicidad , Calpaína/antagonistas & inhibidores , Carbono/toxicidad , Línea Celular , Colágeno Tipo I/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Pleurales/fisiopatología
18.
Mol Ther ; 25(3): 728-738, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28131417

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease that typically leads to respiratory failure and death within 3-5 years of diagnosis. Sub-pleural pulmonary fibrosis is a pathological hallmark of IPF. Bleomycin treatment of mice is a an established pulmonary fibrosis model. We recently showed that bleomycin-induced epithelial-mesenchymal transition (EMT) contributes to pleural mesothelial cell (PMC) migration and sub-pleural pulmonary fibrosis. MicroRNA (miRNA) expression has recently been implicated in the pathogenesis of IPF. However, changes in miRNA expression in PMCs and sub-pleural fibrosis have not been reported. Using cultured PMCs and a pulmonary fibrosis animal model, we found that miR-18a-5p was reduced in PMCs treated with bleomycin and that downregulation of miR-18a-5p contributed to EMT of PMCs. Furthermore, we determined that miR-18a-5p binds to the 3' UTR region of transforming growth factor ß receptor II (TGF-ßRII) mRNA, and this is associated with reduced TGF-ßRII expression and suppression of TGF-ß-Smad2/3 signaling. Overexpression of miR-18a-5p prevented bleomycin-induced EMT of PMC and inhibited bleomycin-induced sub-pleural fibrosis in mice. Taken together, our data indicate that downregulated miR-18a-5p mediates sub-pleural pulmonary fibrosis through upregulation of its target, TGF-ßRII, and that overexpression of miR-18a-5p might therefore provide a novel approach to the treatment of IPF.


Asunto(s)
Regulación de la Expresión Génica , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , MicroARNs/genética , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Receptores de Factores de Crecimiento Transformadores beta/genética , Animales , Bleomicina/farmacología , Gatos , Movimiento Celular/genética , Análisis por Conglomerados , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Ratones , Pleura/metabolismo , Pleura/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo
19.
J Allergy Clin Immunol ; 140(6): 1550-1561.e8, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28238747

RESUMEN

BACKGROUND: C/EBP homologous protein (Chop), a marker of endoplasmic reticulum (ER) stress, exhibits aberrant expression patterns during asthma development. However, its exact role in asthma pathogenesis is not fully understood. OBJECTIVES: We aimed to determine the function and mechanism of Chop in the pathogenesis of allergic asthma in patients and animals. METHODS: Studies were conducted in asthmatic patients and Chop-/- mice to dissect the role of Chop and ER stress in asthma pathogenesis. An ovalbumin (OVA)-induced allergic airway inflammation model was used to address the effect of Chop deficiency on asthma development. Next, the effect of Chop deficiency on macrophage polarization and related signaling pathways was investigated to demonstrate the underlying mechanisms. RESULTS: Asthmatic patients and mice after OVA induction exhibited aberrant Chop expression along with ER stress. Specifically, Chop was noted to be specifically overexpressed in macrophages, and mice deficient in Chop were protected from OVA-induced allergic airway inflammation, as manifested by attenuated airway inflammation, remodeling, and hyperresponsiveness. Chop was found to exacerbate allergic airway inflammation by enhancing M2 programming in macrophages. Mechanistic studies characterized an IL-4/signal transducer and activator of transcription 6/transcription factor EC (Tfec)/IL-4 receptor α positive feedback regulatory loop, in which IL-4 induces Chop expression, which then promotes signal transducer and activator of transcription 6 signaling to transcribe Tfec expression. Finally, Tfec transcribes IL-4 receptor α expression to promote M2 programming in macrophages. CONCLUSIONS: Chop and ER stress are implicated in asthma pathogenesis, which involves regulation of M2 programming in macrophages.


Asunto(s)
Asma/inmunología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Estrés del Retículo Endoplásmico/inmunología , Macrófagos/inmunología , Factor de Transcripción CHOP/metabolismo , Adulto , Animales , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Diferenciación Celular , Células Cultivadas , Progresión de la Enfermedad , Retroalimentación Fisiológica , Femenino , Humanos , Interleucina-4/metabolismo , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Receptores de Superficie Celular/metabolismo , Factor de Transcripción STAT6/metabolismo , Factor de Transcripción CHOP/genética
20.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L638-L648, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28235949

RESUMEN

In the present study, we investigated the effect of bone morphogenetic protein 4 (BMP4) on PDGF-induced cell proliferation and collagen synthesis in pulmonary artery smooth muscle cells (PASMCs). Normal human PASMCs were incubated with and without PDGF-BB in the absence and presence of BMP4 for 0.5 to 24 h. The protein levels of collagen-I, p-Smad2/3, p-Smad1/5, and intracellular active TGF-ß1, calpain activity, and cell proliferation were then measured. The results showed that BMP4 induced an increase in p-Smad1/5 but had no effect on the protein levels of collagen-I, p-Smad2/3, and intracellular active TGF-ß1 and calpain activity in control PASMCs. Nevertheless, BMP4 attenuated increases in cell proliferation and protein levels of collagen-I, p-Smad2/3, and intracellular active TGF-ß1 and calpain activity in PASMCs exposed to PDGF-BB. Moreover, BMP4 increased PKA activity and inhibition of PKA prevented the inhibitory effects of BMP4 on PDGF-BB-induced calpain activation in normal PASMCs. The PKA activator forskolin recapitulated the suppressive effect of BMP4 on PDGF-induced calpain activation. Furthermore, BMP4 prevented a PDGF-induced decrease in calpain-2 phosphorylation at serine-369 in normal PASMCs. Finally, BMP4 did not attenuate PDGF-induced increases in cell proliferation, collagen-I protein levels, and calpain activation and did not induce PKA activation and did not prevent a PDGF-induced decrease in calpain-2 phosphorylation at serine-369 in PASMCs from idiopathic pulmonary arterial hypertension (PAH) patients. These data demonstrate that BMP4 inhibits PDGF-induced cell proliferation and collagen synthesis via PKA-mediated inhibition of calpain-2 in normal PASMCs. The inhibitory effects of BMP4 on PDGF-induced cell proliferation, collagen synthesis, and calpain-2 activation are impaired in PASMCs from PAH patients, which may contribute to pulmonary vascular remodeling in PAH.


Asunto(s)
Proteína Morfogenética Ósea 4/farmacología , Calpaína/antagonistas & inhibidores , Colágeno/biosíntesis , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Miocitos del Músculo Liso/citología , Factor de Crecimiento Derivado de Plaquetas/farmacología , Arteria Pulmonar/citología , Adulto , Calpaína/metabolismo , Proliferación Celular/efectos de los fármacos , Colforsina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hipertensión Pulmonar Primaria Familiar/enzimología , Hipertensión Pulmonar Primaria Familiar/patología , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/enzimología , Ácido Mirístico/metabolismo , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Adulto Joven , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA