Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Photochem Photobiol Sci ; 23(5): 931-940, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38592591

RESUMEN

Impedance spectroscopy was employed to assess the electrical properties of yeast following 405 nm laser irradiation, exploring the effects of visible, non-ionizing laser-induced inactivation as a more selective and safer alternative for photoinactivation applications compared to the use of DNA targeting, ionizing UV light. Capacitance and impedance spectra were obtained for yeast suspensions irradiated for 10, 20, 30, and 40 min using 100 and 200 mW laser powers. Noticeable differences in capacitance spectra were observed at lower frequencies (40 Hz to 1 kHz), with a significant increase at 40 min for both laser powers. ß-dispersion was evident in the impedance spectra in the frequency range of 10 kHz to 10 MHz. The characteristic frequency of dielectric relaxation steadily shifted to higher frequencies with increasing irradiation time, with a drastic change observed at 40 min for both laser powers. These changes signify a distinct alteration in the physical state of yeast. A yeast spot assay demonstrated a decrease in cell viability with increasing laser irradiation dose. The results indicate a correlation between changes in electrical properties, cell viability, and the efficacy of 405 nm laser-induced inactivation. Impedance spectroscopy is shown to be an efficient, non-destructive, label-free method for monitoring changes in cell viability in photobiological effect studies. The development of impedance spectroscopy-based real-time studies in photoinactivation holds promise for advancing our understanding of light-cell interactions in medical applications.


Asunto(s)
Espectroscopía Dieléctrica , Rayos Láser , Saccharomyces cerevisiae , Saccharomyces cerevisiae/efectos de la radiación , Viabilidad Microbiana/efectos de la radiación
2.
Lasers Med Sci ; 39(1): 147, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822930

RESUMEN

Photobiomodulation (PBM) holds promise as a therapy modality, but its applicability is hindered by the lack of a quantitative model to predict the optimal dose for all forms of PBM. This study investigated the optimal PBM parameters for 532 nm green laser irradiation on SHSY5Y neuroblastoma cells, a commonly used in vitro model for neurodegenerative disease studies. A two-tailed, two sample t-test with equal variance was used to obtain the p-values and statistical significance. There are 3 sets of parameters showing significant ( p < 0 . 01 ) positive percentage biostimulation. 160 m W , 15 m i n produce a percentage biostimulation of ( 9 ± 10 ) % ; 180 m W , 5 m i n produce a percentage biostimulation of ( 19 ± 7 ) % ; and ( 200 m W , 5 m i n ) produce a percentage biostimulation of ( 9 ± 2 ) % . The highest significant ( p < 0 . 01 ) percentage bioinhibition observed is for 220 m W , 15 m i n (dose: 1008 J / c m 2 ) producing a bioinhibition of ( 54 ± 1 ) % . After identifying several parameters that produce noticeable photobiological effects (biostimulation and bioinhibition), this study compared the reaction of undifferentiated and differentiated SHSY5Y cells to laser irradiation and found that undifferentiated SHSY5Y cells shows greater photobiological effect from 532 nm laser irradiation ( p < 0 . 01 ) . This study demonstrated the differentiation-dependant photobiological effect of SHSY5Y in 532 nm laser PBM. This shows that considerations on the differentiation state of cells is important in PBM studies. The hypothesis of difference in intracellular reactive oxygen species (ROS) accumulation from laser irradiation can serve as a versatile explanation of the observed difference in photobiological effect. Further investigation into the role of ROS as a mediator of various photobiological effects from laser of different wavelengths is warranted.


Asunto(s)
Diferenciación Celular , Terapia por Luz de Baja Intensidad , Neuroblastoma , Humanos , Terapia por Luz de Baja Intensidad/métodos , Diferenciación Celular/efectos de la radiación , Neuroblastoma/radioterapia , Neuroblastoma/patología , Línea Celular Tumoral
3.
Lasers Med Sci ; 38(1): 99, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37059895

RESUMEN

Although positive photobiomodulation response on wound healing, tissue repair, and therapeutic treatment has been widely reported, additional works are still needed to understand its effects on human blood. This research carried out acoustic measurements using A-scan (GAMPT) ultrasonic techniques to elucidate the photobiomodulation effects on in vitro human blood samples as therapeutic treatment measures. The human blood samples were irradiated using a 532-nm laser with different output laser powers (60 and 80 mW) at various exposure times. The ultrasonic velocity measured in the human blood samples after laser irradiation showed significant changes, most of which were within the acceptance limit for soft tissues (1570 [Formula: see text] 30 m/s). Abnormal cells (echinocyte and crenation) were observed due to excessive exposure during laser treatment.


Asunto(s)
Terapia por Luz de Baja Intensidad , Humanos , Terapia por Luz de Baja Intensidad/métodos , Cicatrización de Heridas/efectos de la radiación , Láseres de Semiconductores , Acústica , Luz
4.
Lasers Med Sci ; 37(2): 1265-1271, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34331605

RESUMEN

Breast cancer is responsible for one of the top leading causes of cancer deaths among women. Radiotherapy (RT) uses high energy radiation to kill cancer cells, but this method has been reportedly linked to risks of toxicity. Post-therapeutic relapse from RT believed to be caused by its toxicity is one of the challenges encountered during tumour therapy. Therefore, further attention should be devoted to developing novel anti-tumour therapeutic approaches. The role of low-level laser therapy (LLLT) in breast cancer management is to alleviate the side effects arising from RT, instead of acting against the tumour cells directly. This study investigated the effects of low-level laser (532 nm), as well as single and fractionated irradiation, on breast cancer MCF 7 cell line. Additionally, this study assessed the most effective laser parameter for fractionated irradiation. The MCF 7 cells were irradiated with green laser power at 1.5, 45.0, and 100.0 mW with a spot size diameter of 0.7 mm for 1, 5, 10, and 15 min. The irradiation was carried out in single, double, and triple fractionation separated by 5- and 10-min intervals in between the fractional regimes. The laser output of 100 mW showed a promising potential in killing cells with single fractionation. However, as the irradiation was fractionated into two, power of 1.5 mW appeared to be more effective in cell death, which contributed to the lowest percentage cells viable of 31.4% recorded in the study. It was proven that fractionated regime was more successful in tumour cell death.


Asunto(s)
Neoplasias de la Mama , Terapia por Luz de Baja Intensidad , Neoplasias de la Mama/patología , Neoplasias de la Mama/radioterapia , Femenino , Humanos , Rayos Láser , Terapia por Luz de Baja Intensidad/métodos , Células MCF-7 , Recurrencia Local de Neoplasia
5.
J Med Ultrasound ; 29(3): 157-166, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34729323

RESUMEN

Ultrasound imaging systems need tissue-mimicking phantoms with a good range of acoustic properties. Many studies on carotid artery phantoms have been carried out using ultrasound; hence this study presents a review of the different forms of carotid artery phantoms used to examine blood hemodynamics by Doppler ultrasound (DU) methods and explains the ingredients that constitute every phantom with their advantages and disadvantages. Different research databases were consulted to access relevant information on carotid artery phantoms used for DU measurements after which the information were presented systematically spanning from walled phantoms to wall-less phantoms. This review points out the fact that carotid artery phantoms are made up of tissue mimicking materials, vessel mimicking materials, and blood mimicking fluid whose properties matched those of real human tissues and vessels. These materials are a combination of substances such as water, gelatin, glycerol, scatterers, and other powders in their right proportions.

6.
J Med Ultrasound ; 28(1): 7-16, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32368444

RESUMEN

Liver phantoms have been developed as an alternative to human tissue and have been used for different purposes. In this article, the items used for liver phantoms fabrication are mentioned same as in the previous literature reviews. Summary and characteristics of these materials are presented. The main factors that need to be available in the materials used for fabrication in computed tomography, ultrasound, magnetic resonance imaging, and nuclear medicine were analyzed. Finally, the discussion focuses on some purposes and aims of the liver phantom fabrication for use in several areas such as training, diagnoses of different diseases, and treatment planning for therapeutic strategies - for example, in selective internal radiation therapy, stereotactic body radiation therapy, laser-induced thermotherapy, radiofrequency ablation, and microwave coagulation therapy. It was found that different liver substitutes can be developed to fulfill the different requirements.

7.
J Med Ultrasound ; 26(3): 134-142, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30283199

RESUMEN

BACKGROUND: To examine the blood flow and detection of the issues related to it by medical ultrasound, it is extremely important to have suitable blood mimicking fluid (BMF) to be used in vitro and to have a movable or portable Doppler flow phantom to use it as a standardizing tool. As known, the main drawbacks of the currently commercial BMF used in the research studies are high in cost and the long time needed for preparation, which is at least 5-7 h. Moreover, there are only two common scatter particles using in BMF as suspension materials such as nylon (Orgasol) and polystyrene. Thus, we need to prepare BMF with both a new mixture fluid and new scatter particle to be as a reflecting factor of ultrasonic waves, for evaluating the speed of sound of the blood flow in the same method like in the research study of ultrasound with relatively low-cost and less consuming time of preparation. However, both the acoustical and physical features of the Doppler flow phantom components (BMF and tissue mimicking material) must correspond the features of the human tissues to make the examination significance. In addition, the BMF must also represent the hemodynamic features of real human blood. METHODS: In this experiment, a new adequate ternary mixture liquid for preparation of BMF applied and suspended with a new scatter particle material, this scatter particle material called poly (4-methylstyrene), it used to be adequate with the mixture density and for saving neutrally buoyant. This BMF was prepared for use in the test objects or Doppler flow phantom. The poly (4-methylstyrene) particles were applied for suspension in a mixture liquid or fluid based on three items, which were distilled water, propylene glycol (PG), and polyethylene glycol (PEG) (200 Mw). The diameter of poly (4-methylstyrene) particles is 3-8 µm, which determined by specific sieve in a unit of µm, and the density is 1.040 g/ml. RESULTS: Speed of sound, viscosity, density, Backscatter power and attenuation features of mixture fluid or liquid which used for preparing a BMF were measured, discussed, and agreed with draft International Electrotechnical Commission values. CONCLUSIONS: There are three various types of ternary items of mixture fluid (water, PG, and PEG [200 Mw]), and a new type of scatter particle material poly (4-methylstyrene) was utilized for preparing the BMF. The scatter particles and mixture fluid prepared and measured at a temperature that simulates the body temperature 37°C. Moreover, one of the advantages of this new blood that is being cheaper than the commercially available BMF products because the PG and the polyethylene glycol (200 Mw) are much cheaper and more available than glycerol and the Dextran that used usually. In addition, new BMF needs less time for preparation compared to the commercial one.

8.
J Med Ultrasound ; 26(1): 3-13, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30065507

RESUMEN

Medical Doppler ultrasound is usually utilized in the clinical adjusting to evaluate and estimate blood flow in both the major (large) and the minor (tiny) vessels of the body. The normal and abnormal sign waveforms can be shown by spectral Doppler technique. The sign waveform is individual to each vessel. Thus, it is significant for the operator and the clinicians to understand the normal and abnormal diagnostic in a spectral Doppler show. The aim of this review is to explain the physical principles behind the medical Doppler ultrasound, also, to use some of the mathematical formulas utilized in the medical Doppler ultrasound examination. Furthermore, we discussed the color and spectral flow model of Doppler ultrasound. Finally, we explained spectral Doppler sign waveforms to show both the normal and abnormal signs waveforms that are individual to the common carotid artery, because these signs are important for both the radiologist and sonographer to perceive both the normal and abnormal in a spectral Doppler show.

9.
J Med Ultrasound ; 26(2): 68-76, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30065522

RESUMEN

Doppler ultrasound imaging system description and calibration need blood-mimicking fluids (BMFs) for the test target of medical ultrasound diagnostic tools, with known interior features and acoustic and physical properties of this fluid (BMF). Physical and acoustical properties determined in the International Electrotechnical Commission (IEC) standard are specified as constant values, the materials used in the BMF preparation should have values similar to the IEC standard values. However, BMF is ready-made commercially from a field of medical usage, which may not be appropriate in the layout of ultrasound system or for an estimate of novel imaging mechanism. It is often eligible to have the capability to make sound properties and mimic blood arrangement for specific applications. In this review, sufficient BMF materials, liquids, and measures are described which have been generated by utilizing diverse operation mechanism and materials that have sculptured a range of biological systems.

10.
J Med Ultrasound ; 26(3): 123-127, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30283197

RESUMEN

The wall-less flow phantoms with recognized acoustic features (attenuation and speed of sound), interior properties, and dimensions of tissue were prepared, calibrated, and characterized of Doppler ultrasound scanning demands tissue-mimicking materials (TMMs). TMM phantoms are commercially available and ready-made for medical ultrasound applications. Furthermore, the commercial TMM phantoms are proper for ultrasound purpose or estimation of diagnostic imaging techniques according to the chemical materials used for its preparation. However, preparing a desirable TMM for wall-less flow phantom using a specific chemical material according to the specific applications is required for different flow. In this review, TMM and wall-less flow phantoms prepared using different chemical materials and methods were described. The chemical materials used in Doppler ultrasound TMM and wall-less flow phantoms fabricated over the previous decades were of high interest in this review.

11.
Lasers Med Sci ; 32(2): 405-411, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28044209

RESUMEN

Low-level laser irradiation (LLLI) has various effects on cultured human lymphocytes in vitro, but little is known about such effects in whole blood. This study investigated whether LLLI affected lymphocyte count in human whole blood in vitro. A total number of 130 blood samples were collected from apparently healthy adult patients through venipuncture into tubes containing EDTA. Each sample was divided into two equal aliquots to be used as a non-irradiated control sample and an irradiated sample. The irradiated aliquot was subjected to laser wavelengths of 405, 589, and 780 nm with different fluences of 36, 54, 72, and 90 J/cm2, at a fixed irradiance of 30 mW/cm2. A paired student t test was used to compare between non-irradiated and irradiated samples. The lymphocyte counts were measured using a computerized hematology analyzer and showed a significant (P < 0.02) maximum increase (1.6%) at a fluence of 72 J/cm2 when compared with non-irradiated samples. This increase in lymphocyte count upon irradiation was confirmed by flow cytometry. At a wavelength of 589 nm and fluence of 72 J/cm2, irradiation of whole blood samples showed a significant increase in CD45 lymphocytes and natural killer (NK) (CD16, CD56) cells, but no significant changes in CD3 T lymphocytes, T-suppressor (CD3, CD8) cells, T-helper (CD3, CD4) cells, and CD19 B lymphocytes when compared with their non-irradiated counterparts. Our results clearly demonstrate that NK cell count is altered by irradiation, which ultimately affects the whole lymphocyte count significantly.


Asunto(s)
Terapia por Luz de Baja Intensidad , Linfocitos/efectos de la radiación , Adulto , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Recuento de Linfocitos , Subgrupos Linfocitarios/efectos de la radiación , Masculino
12.
Brain Sci ; 14(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38671960

RESUMEN

Light is an electromagnetic radiation that has visible and invisible wavelength spectrums. Visible light can only be detected by the eyes through the optic pathways. With the presence of the scalp, cranium, and meninges, the brain is seen as being protected from direct exposure to light. For that reason, the brain can be viewed as a black body lying inside a black box. In physics, a black body tends to be in thermal equilibrium with its environment and can tightly regulate its temperature via thermodynamic principles. Therefore, a healthy brain inside a black box should not be exposed to light. On the contrary, photobiomodulation, a form of light therapy for the brain, has been shown to have beneficial effects on some neurological conditions. The proposed underlying mechanisms are multiple. Herein, we present our intraoperative findings of rapid electrocorticographic brainwave changes when the brain was shone directly with different wavelengths of light during awake brain surgery. Our findings provide literature evidence for light's ability to influence human brain energy and function. Our proposed mechanism for these rapid changes is the presence of plasma-like energy inside the brain, which causes fast brain activities that are akin to lightning strikes.

13.
J Lasers Med Sci ; 14: e28, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744010

RESUMEN

Introduction: The depth of laser light penetration into tissue is a critical factor in determining the effectiveness of photodynamic therapy (PDT). However, the optimal laser light penetration depth necessary for achieving maximum therapeutic outcomes in PDT remains unclear. This study aimed to assess the effectiveness of laser light penetration depth at two specific wavelengths, 532 nm and 660 mm. Methods: Chicken and beef of different thicknesses (1, 3, 5, 10, and 20 mm±0.2 mm) were used as in vitro tissue models. The samples were subjected to irradiation by a low-level laser diode of 532 and 660 nm in continuous mode for 10 minutes. with power densities of 167 and 142 J/cm2, respectively. Laser light transmission through the tissue was measured using a power meter. Results: For beef samples, the 660 nm wavelength achieved a maximum transmission intensity of 30.7% at 1 cm thickness, while the 532 nm laser had a transmission intensity of 6.5%. Similarly, in chicken breast samples, the maximum transmission occurred at 1 cm thickness with 68.1% for the 660 nm wavelength and 18.2% for the 532 nm laser. Conclusion: Results consistently demonstrated a significant correlation (P<0.05) between tissue thickness and laser light penetration. Thicker tissues exhibited faster declines in light transmission intensity compared to thinner tissues within 10 minutes. These findings highlight the importance of further research to enhance light delivery in thicker tissues and improve the efficacy of PDT in various medical conditions.

14.
J Ultrason ; 21(86): e219-e224, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34540276

RESUMEN

Aim of the study: At present, there are few scatter particles used in preparing blood-mimicking fluids, such as nylon, sephadex, polystyrene microsphere, and poly(4-methystyrene). In this study, we present cholesterol as a new scatter particle for blood-mimicking fluid preparation. Materials and methods: The procedure for the preparation of the proposed blood-mimicking fluid involved the use of propylene glycol, D(+)-Glucose and distilled water to form a ternary mixture fluid, with cholesterol used as scatter particles. Polyethylene glycol was first used as part of the mixture fluid but the acoustic and physical properties were not suitable, leading to its replacement with D(+)-Glucose, which is soluble in water and has a higher density. A common carotid artery wall-less phantom was also produced to assess the flow properties. Results: The prepared blood-mimicking fluid with new scatter particles has a density of 1.067 g/cm3, viscosity of 4.1 mPa.s, speed of sound 1600 m/s, and attenuation of 0.192 dB/cm at 5 MHz frequency. Peak systolic velocity, end diastolic velocity and mean velocity measurements were gotten to be 40.2 ± 2.4 cm/s, 9.9 ± 1.4 cm/s, and 24.0 ± 1.8 cm/s, respectively. Conclusion: Based on the results obtained, the blood-mimicking fluid was found suitable for ultrasound applications in carotid artery wall-less phantoms because of its good acoustic and physical properties.

15.
Eur J Radiol Open ; 7: 100257, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32944594

RESUMEN

INTRODUCTION: Hepatocellular carcinoma (HCC) is one of the most common cancer in the world, and the effectiveness of its treatment lies in its detection in its early stages. The aim of this study is to mimic HCC dynamically through a liver phantom and apply it in multimodality medical imaging techniques including magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound. METHODS AND MATERIALS: The phantom is fabricated with two main parts, liver parenchyma and HCC inserts. The liver parenchyma was fabricated by adding 2.5 wt% of agarose powder combined with 2.6 wt% of wax powder while the basic material for the HCC samples was made from polyurethane solution combined with 5 wt% glycerol. Three HCC samples were inserted into the parenchyma by using three cylinders implanted inside the liver parenchyma. An automatic injector is attached to the input side of the cylinders and a suction device connected to the output side of the cylinders. After the phantom was prepared, the contrast materials were injected into the phantom and imaged using MRI, CT, and ultrasound. RESULTS: Both HCC samples and liver parenchyma were clearly distinguished using the three imaging modalities: MRI, CT, and ultrasound. Doppler ultrasound was also applied through the HCC samples and the flow pattern was observed through the samples. CONCLUSION: A multimodal dynamic liver phantom, with HCC tumor models have been fabricated. This phantom helps to improve and develop different methods for detecting HCC in its early stages.

16.
J Photochem Photobiol B ; 162: 703-706, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27508880

RESUMEN

In this work we present influence of visible laser light on ATP level and viability of anaemic red blood cell (RBC). The visible laser lights used in this work are 460nm and 532nm. The responses of ATP level in anaemic and normal RBC before and after laser irradiation at different exposure time (30, 40, 50 and 60s) were observed. Three aliquots were prepared from the ethylenediaminetetraacetic acid (EDTA) blood sample. One served as a control (untreated) and another two were irradiated with 460nm and 560nm lasers. Packed RBC was prepared to study ATP level in the RBC using CellTiter-GloLuminescent cell Viability Assay kit. The assay generates a glow type signal produced by luciferase reaction, which is proportional to the amount of ATP present in RBCs. Paired t-test were done to analyse ATP level before and after laser irradiation. The results revealed laser irradiation improve level of ATP in anaemic RBC. Effect of laser light on anaemic RBCs were significant over different exposure time for both 460nm (p=0.000) and 532nm (p=0.003). The result of ATP level is further used as marker for RBC viability. The influence of ATP level and viability were studied. Optical densities obtained from the data were used to determine cell viability of the samples. Results showed that laser irradiation increased viability of anaemic RBC compared to normal RBC.


Asunto(s)
Adenosina Trifosfato/metabolismo , Eritrocitos/efectos de la radiación , Rayos Láser , Adolescente , Adulto , Supervivencia Celular/efectos de la radiación , Eritrocitos/citología , Eritrocitos/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven
17.
Photomed Laser Surg ; 34(5): 211-4, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26966989

RESUMEN

OBJECTIVE: This study was conducted to investigate the effects of low-level laser (LLL) doses on human red blood cell volume. The effects of exposure to a diode pump solid state (DPSS) (λ = 405 nm) laser were observed. BACKGROUND DATA: The response of human blood to LLL irradiation gives important information about the mechanism of interaction of laser light with living organisms. Materials and methods Blood samples were collected into ethylenediaminetetraacetic acid (EDTA)-containing tubes, and each sample was divided into two equal aliquots, one to serve as control and the other for irradiation. The aliquot was subjected to laser irradiation for 20, 30, 40, or 50 min at a fixed power density of 0.03 W/cm(2). Mean cell volume (MCV) and red blood cell (RBC) counts were measured immediately after irradiation using a computerized hemtoanalyzer. RESULTS: Significant decrease in RBC volume (p < 0.05, p < 0.0001, p < 0.0001, and p < 0.05, respectively) was induced with variation in laser doses.The highest response was observed with an exposure time of 40 min. This result was reproduced in RBCs suspended in a buffered NaCl solution. In contrast to this finding, laser-induced RBC volume change was completely abolished by suspending RBCs in a solution containing a higher concentration of EDTA. CONCLUSIONS: It was suggested that LLL can reduce RBC volume possibly because of the increased free intracellular Ca(+2) concentrations, which activate Ca(+2)-dependent K(+) channels with consequent K(+) ion efflux and cell shrinkage.


Asunto(s)
Eritrocitos/efectos de la radiación , Terapia por Luz de Baja Intensidad , Recuento de Células Sanguíneas , Relación Dosis-Respuesta en la Radiación , Humanos , Láseres de Semiconductores , Láseres de Estado Sólido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA