Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Can J Physiol Pharmacol ; 102(5): 305-317, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38334084

RESUMEN

Mostly, cardiovascular diseases are blamed for casualties in rheumatoid arthritis (RA) patients. Customarily, dyslipidemia is probably the most prevalent underlying cause of untimely demise in people suffering from RA as it hastens the expansion of atherosclerosis. The engagement of inflammatory cytokines like tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), etc., is crucial in the progression and proliferation of both RA and abnormal lipid parameters. Thus, lipid abnormalities should be monitored frequently in patients with both primary and advanced RA stages. An advanced lipid profile examination, i.e., direct role of apolipoproteins associated with various lipid molecules is a more dependable approach for better understanding of the disease and selecting suitable therapeutic targets. Therefore, studying their apolipoproteins is more relevant than assessing RA patients' altered lipid profile levels. Among the various apolipoprotein classes, Apo A1 and Apo B are primarily being focused. In addition, it also addresses how calculating Apo B:Apo A1 ratio can aid in analyzing the disease's risk. The marketed therapies available to control lipid abnormalities are associated with many other risk factors. Hence, directly targeting Apo A1 and Apo B would provide a better and safer option.


Asunto(s)
Apolipoproteínas , Artritis Reumatoide , Enfermedades Cardiovasculares , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Artritis Reumatoide/metabolismo , Artritis Reumatoide/sangre , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/etiología , Apolipoproteínas/sangre , Animales , Apolipoproteína A-I , Apolipoproteínas B/sangre , Apolipoproteínas B/metabolismo , Dislipidemias/tratamiento farmacológico , Dislipidemias/sangre , Dislipidemias/metabolismo
2.
Chem Biodivers ; : e202401430, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031897

RESUMEN

A series of resveratrol surrogate molecules were designed, synthesized and biologically evaluated for inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) along with anti-oxidant activity as potential novel multifunctional agents against Alzheimer's disease (AD). Six novel compounds were synthesized by reacting (E)-4-(3,5-Dimethoxystyryl) aniline with benzaldehyde and some selected derivatives of benzaldehyde in the presence of ethanol and a few drops of glacial acetic acid which followed the general scheme involved in the formation of Schiff bases. The spectral analysis data including FT-IR, 1H-NMR, 13C-NMR, and Mass spectroscopy results were found to be in good agreement with the newly synthesized compounds (Resveratrol Surrogate Molecules 1-6). The synthesized compounds were evaluated for their dual cholinesterase inhibitory activities, cytotoxic effect, and anti-oxidant potential. The results showed that compound RSM-5 showed potent inhibitory activity against AChE and BChE. In, addition the cytotoxicity of the compound RSM5 is less and found to be within the desirable limit indicating the potential safety of RSM5. Also, it possesses substantial anti-oxidant activity which qualifies RSM5 as an anti-AD agent. Taken together, these findings demonstrate that the molecule RSM5 had the most multifunctional properties and could be a promising lead molecule for the future development of drugs for Alzheimer's treatments.

3.
Molecules ; 29(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38999160

RESUMEN

Chemically modified mandua starch was successfully synthesized and applied to coat mesalamine-loaded matrix tablets. The coating material was an aqueous dispersion of mandua starch modified by sodium trimetaphosphate and sodium tripolyphosphate. To investigate the colon-targeting release competence, chemically modified mandua starch film-coated mesalamine tablets were produced using the wet granulation method followed by dip coating. The effect of the coating on the colon-targeted release of the resultant delivery system was inspected in healthy human volunteers and rabbits using roentgenography. The results show that drug release was controlled when the coating level was 10% w/w. The release percentage in the upper gastric phase (pH 1.2, simulated gastric fluid) was less than 6% and reached up to 59.51% w/w after 14 h in simulated colonic fluid. In addition to in vivo roentgenographic studies in healthy rabbits, human volunteer studies proved the colon targeting efficiency of the formulation. These results clearly demonstrated that chemically modified mandua starch has high effectiveness as a novel aqueous coating material for controlled release or colon targeting.


Asunto(s)
Liberación de Fármacos , Mesalamina , Almidón , Comprimidos , Mesalamina/química , Mesalamina/farmacocinética , Conejos , Almidón/química , Animales , Humanos , Concentración de Iones de Hidrógeno , Fosforilación , Preparaciones de Acción Retardada/química , Colon/metabolismo
4.
Drug Dev Res ; 84(6): 1031-1036, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37391892

RESUMEN

Exosome-based targeted delivery of Proteolysis-Targeting Chimeras (PROTACs) is an innovative approach that provides a promising solution for addressing the complex issues of viral diseases. This strategy significantly mitigates the off-target effects associated with traditional therapeutics by facilitating targeted delivery of PROTACs, which in turn enhances the overall therapeutic outcomes. Challenges like poor pharmacokinetics and unintended side effects, commonly observed with conventional PROTACs usage, are effectively managed with this approach. Emerging evidence affirms the potential of this delivery mechanism in curbing viral replication. However, it is crucial to undertake more comprehensive investigations for optimizing exosome-based delivery systems and conducting stringent safety and efficacy assessments within preclinical and clinical settings. The advancements in this field could potentially redefine the therapeutic landscape for viral diseases, opening new vistas for their management and treatment.


Asunto(s)
Exosomas , Virosis , Humanos , Proteolisis , Virosis/tratamiento farmacológico
5.
Br J Clin Pharmacol ; 88(8): 3562-3565, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35352842

RESUMEN

COVID-19 has spread globally, affecting almost 160 million individuals. Elderly and pre-existing patients (such as diabetes, heart disease and asthma) seem more susceptible to severe illness with COVID-19. Roflumilast was licensed for usage in the European Union in July 2010 as a phosphodiesterase-4 (PDE4) inhibitor. Under preclinical studies, roflumilast has been shown to decrease bleomycin-induced lung fibrosis, lung hydroxyproline and right heart thickening. The current study reviewed existing data that the PDE-4 inhibitor, a roflumilast, protects renal tissues and other major organ systems after COVID-19 infection by decreasing immune cell infiltration. These immune-balancing effects of roflumilast were related to a decrease in oxidative and inflammatory burden, caspase-3 suppression and increased protein kinase A (PKA)/cyclic A.M.P. (cAMP) levels in renal and other organ tissue.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Inhibidores de Fosfodiesterasa 4 , Anciano , Aminopiridinas/efectos adversos , Benzamidas , Ciclopropanos/efectos adversos , Humanos , Inflamación/tratamiento farmacológico , Inhibidores de Fosfodiesterasa 4/efectos adversos , SARS-CoV-2
6.
Mol Biol Rep ; 49(10): 9473-9480, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35925485

RESUMEN

BACKGROUND: The current study aimed to investigate the stimulatory effect of beta-adrenergic receptors (ß-ARs) on brain derived neurotropic factor (BDNF) and cAMP response element binding protein (CREB). METHODS: Human Müller cells were cultured in low and high glucose conditions. Cells were treated with xamoterol (selective agonist for ß1-AR), salmeterol (selective agonist for ß2-AR), isoproterenol (ß-ARs agonist) and propranolol (ß-ARs antagonist), at 20 µM concentration for 24 h. Western Blotting assay was performed for the gene expression analysis. DNA damage was evaluated by TUNEL assay. DCFH-DA assay was used to check the level of reactive oxygen species (ROS). Cytochrome C release was measured by ELISA. RESULTS: Xamoterol, salmeterol and isoproterenol showed no effect on Caspase-8 but it reduced the apoptosis and increased the expression of BDNF in Müller cells. A significant change in the expression of caspase-3 was observed in cells treated with xamoterol and salmeterol as compared to isoproterenol. Xamoterol, salmeterol and isoproterenol significantly decreased the reactive oxygen species (ROS) when treated for 24 hours. Glucose-induced cytochrome c release was disrupted in Müller cells. CONCLUSION: ß-ARs, stimulated by agonist play a protective role in hyperglycemic Müller cells, with the suppression of glucose-induced caspase-3 and cytochrome c release. B-Ars may directly mediate the gene expression of BDNF.


Asunto(s)
Células Ependimogliales , Propranolol , Agonistas Adrenérgicos beta/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citocromos c/metabolismo , Células Ependimogliales/metabolismo , Glucosa/farmacología , Humanos , Isoproterenol/farmacología , Propranolol/farmacología , Especies Reactivas de Oxígeno/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 2/genética , Xinafoato de Salmeterol/farmacología , Xamoterol/farmacología
7.
J Biochem Mol Toxicol ; 36(6): e23030, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35253303

RESUMEN

Aging is accompanied by major changes in body composition that can negatively affect functional status in older adults, including a progressive decrease in muscle mass, strength, and quality. The prevalence of sarcopenia has varied considerably, depending on the definition used and the population surveyed-a 2014 meta-analysis across several countries found estimates ranging from 1% to 29% for people aged 60 years or older, who live independently. The potentially relevant studies were retrieved from the ScienceDirect/Medline/PubMed/Public library of science/Mendeley/Springer link and Google Scholar. Multiple keywords were used for the literature search both alone and in combination. Some of the important keywords used for literature search were as follows: "Epidemiology of muscle weakness/muscle disorders," "Pathogenesis of RAAS in muscle weakness," "Role of Angiotensin 1-7/ACE-2/Mas R axis in muscle weakness," and "Correction pathophysiology of muscle weakness via ACE2." The renin-angiotensin system (RAAS), a major blood pressure regulatory system, is a candidate mediator that may promote aging-associated muscle weakness. Previously, studies explored the proof concept for RAAS inhibition as a therapeutic target. Furthermore, in RAAS, angiotensin II, and angiotensin-converting enzyme 2 (ACE2) have been reported to induce endoplasmic reticulum (ER) stress via glucose-regulated protein 78/eukaryotic translation initiation factor 2α (eIF2α)/activating transcription factor 4 (ATF4)/CHOP axis in the liver. In addition, other mitochondria and ER physical interactions contribute to skeletal muscle dysfunction. However, very few studies have investigated the relationship between RAAS and ER stress-associated pathophysiological events and ACE2-mediated biological consequences in muscle weakness. Thus, the study has been designed to investigate the RAAS-independent beneficial role of ACE2 in muscle weakness.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Sistema Renina-Angiotensina , Anciano , Angiotensina II , Humanos , Debilidad Muscular , Peptidil-Dipeptidasa A/metabolismo
8.
Molecules ; 27(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35566187

RESUMEN

Parkinson's disease (PD) and Alzheimer's disease (AD) are neurodegenerative disorders that have emerged as among the serious health problems of the 21st century. The medications currently available to treat AD and PD have limited efficacy and are associated with side effects. Natural products are one of the most vital and conservative sources of medicines for treating neurological problems. Karanjin is a furanoflavonoid, isolated mainly from Pongamia pinnata with several medicinal plants, and has been reported for numerous health benefits. However, the effect of karanjin on AD and PD has not yet been systematically investigated. To evaluate the neuroprotective effect of karanjin, extensive in silico studies starting with molecular docking against five putative targets for AD and four targets for PD were conducted. The findings were compared with three standard drugs using Auto Dock 4.1 and Molegro Virtual Docker software. Additionally, the physiochemical properties (Lipinski rule of five), drug-likeness and parameters including absorption, distribution, metabolism, elimination and toxicity (ADMET) profiles of karanjin were also studied. The molecular dynamics (MD) simulations were performed with two selective karanjin docking complexes to analyze the dynamic behaviors and binding free energy at 100 ns time scale. In addition, frontier molecular orbitals (FMOs) and density-functional theory (DFT) were also investigated from computational quantum mechanism perspectives using the Avogadro-ORCA 1.2.0 platform. Karanjin complies with all five of Lipinski's drug-likeness rules with suitable ADMET profiles for therapeutic use. The docking scores (kcal/mol) showed comparatively higher potency against AD and PD associated targets than currently used standard drugs. Overall, the potential binding affinity from molecular docking, static thermodynamics feature from MD-simulation and other multiparametric drug-ability profiles suggest that karanjin could be considered as a suitable therapeutic lead for AD and PD treatment. Furthermore, the present results were strongly correlated with the earlier study on karanjin in an Alzheimer's animal model. However, necessary in vivo studies, clinical trials, bioavailability, permeability and safe dose administration, etc. must be required to use karanjin as a potential drug against AD and PD treatment, where the in silico results are more helpful to accelerate the drug development.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Benzopiranos , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Enfermedad de Parkinson/tratamiento farmacológico
9.
Molecules ; 27(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35458770

RESUMEN

Bisphenol A (BPA), a well-known xenoestrogen, is commonly utilised in the production of polycarbonate plastics. Based on the existing evidence, BPA is known to induce neurotoxicity and behavioural issues. Flavonoids such as silibinin and naringenin have been shown to have biological activity against a variety of illnesses. The current research evaluates the neuropharmacological effects of silibinin and naringenin in a zebrafish model against neurotoxicity and oxidative stress caused by Bisphenol A. In this study, a novel tank diving test (NTDT) and light−dark preference test (LDPT) were used in neurobehavioural investigations. The experimental protocol was planned to last 21 days. The neuroprotective effects of silibinin (10 µM) and naringenin (10 µM) in zebrafish (Danio rerio) induced by BPA (17.52 µM) were investigated. In the brine shrimp lethality assay, the 50% fatal concentrations (LC50) were 34.10 µg/mL (silibinin) and 91.33 µg/mL (naringenin) compared to the standard potassium dichromate (13.15 µg/mL). The acute toxicity investigation found no mortality or visible abnormalities in the silibinin- and naringenin-treated groups (LC50 > 100 mg/L). The altered scototaxis behaviour in LDPT caused by BPA was reversed by co-supplementation with silibinin and naringenin, as shown by decreases in the number of transitions to the light zone and the duration spent in the light zone. Our findings point to BPA's neurotoxic potential in causing altered scototaxis and bottom-dwelling behaviour in zebrafish, as well as the usage of silibinin and naringenin as potential neuroprotectants.


Asunto(s)
Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , Animales , Compuestos de Bencidrilo/toxicidad , Diseño de Fármacos , Flavanonas , Flavonoides , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Fenoles , Silibina/farmacología , Pez Cebra
10.
Molecules ; 27(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35011497

RESUMEN

Genistein is a naturally occurring polyphenolic molecule in the isoflavones group which is well known for its neuroprotection. In this review, we summarize the efficacy of genistein in attenuating the effects of memory impairment (MI) in animals. Scopus, PubMed, and Web of Science databases were used to find the relevant articles and discuss the effects of genistein in the brain, including its pharmacokinetics, bioavailability, behavioral effects, and some of the potential mechanisms of action on memory in several animal models. The results of the preclinical studies highly suggested that genistein is highly effective in enhancing the cognitive performance of the MI animal models, specifically in the memory domain, including spatial, recognition, retention, and reference memories, through its ability to reduce oxidative stress and attenuate neuroinflammation. This review also highlighted challenges and opportunities to improve the drug delivery of genistein for treating MI. Along with that, the possible structural modifications and derivatives of genistein to improve its physicochemical and drug-likeness properties are also discussed. The outcomes of the review proved that genistein can enhance the cognitive performance and ameliorate MI in different preclinical studies, thus indicating its potential as a natural lead for the design and development of a novel neuroprotective drug.


Asunto(s)
Encéfalo/metabolismo , Genisteína/uso terapéutico , Trastornos de la Memoria/tratamiento farmacológico , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Animales , Diseño de Fármacos , Humanos , Trastornos de la Memoria/metabolismo , Enfermedades Neuroinflamatorias/metabolismo
11.
Molecules ; 27(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35163934

RESUMEN

Cardiovascular disorders (CVDs) are the leading risk factor for death worldwide, and research into the processes and treatment regimens has received a lot of attention. Tilianin is a flavonoid glycoside that can be found in a wide range of medicinal plants and is most commonly obtained from Dracocephalum moldavica. Due to its extensive range of biological actions, it has become a well-known molecule in recent years. In particular, numerous studies have shown that tilianin has cardioprotective properties against CVDs. Hence, this review summarises tilianin's preclinical research in CVDs, as well as its mechanism of action and opportunities in future drug development. The physicochemical and drug-likeness properties, as well as the toxicity profile, were also highlighted. Tilianin can be a natural lead molecule in the therapy of CVDs such as coronary heart disease, angina pectoris, hypertension, and myocardial ischemia, according to scientific evidence. Free radical scavenging, inflammation control, mitochondrial function regulation, and related signalling pathways are all thought to play a role in tilianin's cardioprotective actions. Finally, we discuss tilianin-derived compounds, as well as the limitations and opportunities of using tilianin as a lead molecule in drug development for CVDs. Overall, the scientific evidence presented in this review supports that tilianin and its derivatives could be used as a lead molecule in CVD drug development initiatives.


Asunto(s)
Productos Biológicos/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Diseño de Fármacos , Desarrollo de Medicamentos , Flavonoides/farmacología , Glicósidos/farmacología , Animales , Humanos
12.
Molecules ; 27(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35163999

RESUMEN

Kirenol, a potential natural diterpenoid molecule, is mainly found in Sigesbeckia species. Kirenol has received a lot of interest in recent years due to its wide range of pharmacological actions. In particular, it has a significant ability to interact with a wide range of molecular targets associated with inflammation. In this review, we summarise the efficacy and safety of kirenol in reducing inflammation, as well as its potential mechanisms of action and opportunities in future drug development. Based on the preclinical studies reported earlier, kirenol has a good therapeutic potential against inflammation involved in multiple sclerosis, inflammatory bowel disorders, diabetic wounds, arthritis, cardiovascular disease, bone damage, and joint disorders. We also address the physicochemical and drug-like features of kirenol, as well as the structurally modified kirenol-derived molecules. The inhibition of pro-inflammatory cytokines, reduction in the nuclear factor kappa-B (NF-κB), attenuation of antioxidant enzymes, stimulation of heme-oxygenase-1 (HO-1) expression, and nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation are among the molecular mechanisms contributing to kirenol's anti-inflammatory actions. Furthermore, this review also highlights the challenges and opportunities to improve the drug delivery of kirenol for treating inflammation. According to the findings of this review, kirenol is an active molecule against inflammation in numerous preclinical models, indicating a path to using it for new drug discovery and development in the treatment of a wide range of inflammations.


Asunto(s)
Antiinflamatorios/farmacología , Productos Biológicos/farmacología , Diterpenos/farmacología , Diseño de Fármacos , Desarrollo de Medicamentos , Inflamación/tratamiento farmacológico , Animales , Citocinas/metabolismo , Humanos
13.
Molecules ; 27(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35335393

RESUMEN

Sarsasapogenin is a natural steroidal sapogenin molecule obtained mainly from Anemarrhena asphodeloides Bunge. Among the various phytosteroids present, sarsasapogenin has emerged as a promising molecule due to the fact of its diverse pharmacological activities. In this review, the chemistry, biosynthesis and pharmacological potentials of sarsasapogenin are summarised. Between 1996 and the present, the relevant literature regarding sarsasapogenin was obtained from scientific databases including PubMed, ScienceDirect, Scopus, and Google Scholar. Overall, sarsasapogenin is a potent molecule with anti-inflammatory, anticancer, antidiabetic, anti-osteoclastogenic and neuroprotective activities. It is also a potential molecule in the treatment for precocious puberty. This review also discusses the metabolism, pharmacokinetics and possible structural modifications as well as obstacles and opportunities for sarsasapogenin to become a drug molecule in the near future. More comprehensive preclinical studies, clinical trials, drug delivery, formulations of effective doses in pharmacokinetics studies, evaluation of adverse effects and potential synergistic effects with other drugs need to be thoroughly investigated to make sarsasapogenin a potential molecule for future drug development.


Asunto(s)
Anemarrhena , Espirostanos , Anemarrhena/química , Diseño de Fármacos , Espirostanos/química , Espirostanos/farmacología
14.
Molecules ; 27(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35956923

RESUMEN

Urinary tract infections (UTIs) are becoming more common, requiring extensive protection from antimicrobials. The global expansion of multi-drug resistance uropathogens in the past decade emphasizes the necessity of newer antibiotic treatments and prevention strategies for UTIs. Medicinal plants have wide therapeutic applications in both the prevention and management of many ailments. Bacopa monnieri is a medicinal plant that is found in the warmer and wetlands regions of the world. It has been used in Ayurvedic systems for centuries. The present study aimed to investigate the antibacterial potential of the extract of B. monnieri leaves and its bioactive molecules against UTIs that are caused by Klebsiella pneumoniae and Proteus mirabilis. This in vitro experimental study was conducted by an agar well diffusion method to evaluate the antimicrobial effect of 80% methanol, 96% ethanol, and aqueous extracts of B. monnieri leaves on uropathogens. Then, further screening of their phytochemicals was carried out using standard methods. To validate the bioactive molecules and the microbe interactions, AutoDock Vina software was used for molecular docking with the Klebsiella pneumoniae fosfomycin resistance protein (5WEW) and the Zn-dependent receptor-binding domain of Proteus mirabilis MR/P fimbrial adhesin MrpH (6Y4F). Toxicity prediction and drug likeness were predicted using ProTox-II and Molinspiration, respectively. A molecular dynamics (MD) simulation was carried out to study the protein ligand complexes. The methanolic leaves extract of B. monnieri revealed a 22.3 mm ± 0.6 mm to 25.0 mm ± 0.5 mm inhibition zone, while ethanolic extract seemed to produce 19.3 mm ± 0.8 mm to 23.0 mm ± 0.4 mm inhibition zones against K. pneumoniae with the use of increasing concentrations. In the case of P. mirabilis activity, the methanolic extracts showed a 21.0 mm ± 0.8 mm to 24.0 mm ± 0.6 mm zone of inhibition and the ethanol extract produced a 17.0 mm ± 0.9 mm to 23.0 mm ± 0.7 mm inhibition zone with increasing concentrations. Carbohydrates, flavonoids, saponin, phenolic, and terpenoid were common phytoconstituents identified in B. monnieri extracts. Oroxindin showed the best interactions with the binding energies with 5WEW and 6Y4F, -7.5 kcal/mol and -7.4 kcal/mol, respectively. Oroxindin, a bioactive molecule, followed Lipinski's rule of five and exhibited stability in the MD simulation. The overall results suggest that Oroxindin from B. monnieri can be a potent inhibitor for the effective killing of K. pneumoniae and P. mirabilis. Additionally, its safety has been established, indicating its potential for future drug discovery and development in the treatment for UTIs.


Asunto(s)
Bacopa , Infecciones Urinarias , Antibacterianos/farmacología , Bacopa/química , Etanol , Klebsiella pneumoniae , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Proteus mirabilis , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología
15.
Molecules ; 27(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36014304

RESUMEN

Viniferin is a resveratrol derivative. Resveratrol is the most prominent stilbenoid synthesized by plants as a defense mechanism in response to microbial attack, toxins, infections or UV radiation. Different forms of viniferin exist, including alpha-viniferin (α-viniferin), beta-viniferin (ß-viniferin), delta-viniferin (δ-viniferin), epsilon-viniferin (ε-viniferin), gamma-viniferin (γ-viniferin), R-viniferin (vitisin A), and R2-viniferin (vitisin B). All of these forms exhibit a range of important biological activities and, therefore, have several possible applications in clinical research and future drug development. In this review, we present a comprehensive literature search on the chemistry and biosynthesis of and the diverse studies conducted on viniferin, especially with regards to its anti-inflammatory, antipsoriasis, antidiabetic, antiplasmodic, anticancer, anti-angiogenic, antioxidant, anti-melanogenic, neurodegenerative effects, antiviral, antimicrobial, antifungal, antidiarrhea, anti-obesity and anthelminthic activities. In addition to highlighting its important chemical and biological activities, coherent and environmentally acceptable methods for establishing vinferin on a large scale are highlighted to allow the development of further research that can help to exploit its properties and develop new phyto-pharmaceuticals. Overall, viniferin and its derivatives have the potential to be the most effective nutritional supplement and supplementary medication, especially as a therapeutic approach. More researchers will be aware of viniferin as a pharmaceutical drug as a consequence of this review, and they will be encouraged to investigate viniferin and its derivatives as pharmaceutical drugs to prevent future health catastrophes caused by a variety of serious illnesses.


Asunto(s)
Estilbenos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antivirales , Descubrimiento de Drogas , Preparaciones Farmacéuticas , Resveratrol/farmacología , Estilbenos/química , Estilbenos/farmacología , Estilbenos/uso terapéutico
16.
Drug Dev Res ; 82(8): 1075-1078, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34469011

RESUMEN

One of the most remarkable results in 2019 is the reduced prevalence and death of children from coronavirus infection (COVID-19). In 2019, a worldwide pandemic impacted around 0.1 billion individuals, with over 3.5 million mortality reported in the literature. There is minimal knowledge on SARS-CoV-2 infection immunological responses in kids. Studies have been focused mostly on adults and children since the course of pediatric sickness is often short. In adults, severe COVID-19 is related to an excessive inflammatory reaction. Macrophages and monocytes are well known to contribute to this systemic response, although numerous lines are indicative of the importance of neutrophils. An increased number of neutrophils and neutrophil to lymphocyte ratios are early signs of SARS-CoV-2 and a worse prognosis. In this study that it is crucial to monitor PAR2 and PAR4 expression and function (since nursing children have elevated levels) and the inhibiting the normal physiology through the use of anticoagulants may exacerbate the problem in adults. Thus, in COVID-19 infection, we propose the use of antiplatelet (thromboxane A2 inhibitors), if required rather than anticoagulants (FXa and thrombin Inhibitors).


Asunto(s)
COVID-19/metabolismo , Receptor PAR-2/metabolismo , Receptores de Trombina/metabolismo , Adulto , Factores de Edad , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , COVID-19/inmunología , Niño , Humanos , Recuento de Linfocitos , Neutrófilos/inmunología , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Tratamiento Farmacológico de COVID-19
17.
Pak J Pharm Sci ; 34(4): 1397-1401, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34799313

RESUMEN

The current research was aimed to isolate newer phyto-metabolites from rhizomes of Alpinia galanga plant. Study involved preparation of Alpinia galanga rhizome methanolic extract, followed by normal phase column chromatography assisted isolation of new phytometabolites (using different combinations of chloroform and methanol), and characterization (by UV, FTIR, 13C-NMR, 1H-NMR, COSY, DEPT and Mass spectrometry). The isolation and characterization experiment offered two phytometabolites: an ester (Ag-1) and tetrahydronapthalene type lactone (Ag-2). Present study concludes and reports the two phytometabolites, benzyl myristate (Ag-1) and 3-Methyl-6α, 8ß-diol-7-carboxylic acid tetralin-11, 9ß-olide (Ag-2) for the first time in Alpinia galanga rhizome. The study recommends that these phytometabolites Ag-1 and Ag-2 can be utilized as effective analytical biomarkers for identification, purity and quality control of this plant in future.


Asunto(s)
Alpinia/química , Extractos Vegetales/aislamiento & purificación , Rizoma/química , Compuestos de Bencilo/química , Compuestos de Bencilo/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Estructura Molecular , Miristatos/química , Miristatos/aislamiento & purificación , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/química
18.
Pak J Pharm Sci ; 33(4): 1739-1745, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33583811

RESUMEN

The outbreak of CoVID-19 infection rapidly increases worldwide. Most of the continents affecting from CoVID-19 and still widening its burden disease (Jones DS, 2020; Lai et al., 2020). Along with its fatality rates, CoVID-19 has caused physiological disturbances in the society and termed as "coronophobia". CoVID-19 with renal failure, severe pneumonia and respiratory syndrome patients have been reported to increase the severity of disease conditions (Sevim et al., 2020). Also, CoVID-19 with cancer patients increase the higher risk of infections. Currently, there is no vaccine or specific treatment against CoVID-19 and drug research centres continuously investigating the potential drug against CoVID-19 (Osama and Amer, 2020). For the past 20 years two major coronavirus epidemics have occurred in public includes SARS-CoV approximately 8000 cases and 800 deaths and MERS-CoV 2,500 cases and 800 deaths and these continuing sporadically (Cascella et al., 2020).


Asunto(s)
COVID-19/epidemiología , Control de Enfermedades Transmisibles , Factores de Edad , COVID-19/mortalidad , COVID-19/prevención & control , COVID-19/transmisión , Comorbilidad , Humanos , Periodo de Incubación de Enfermedades Infecciosas , Prevalencia , Salud Pública , SARS-CoV-2 , Factores Sexuales
19.
Pak J Pharm Sci ; 31(2): 509-516, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29618442

RESUMEN

To determine the ameliorative potential of the active fraction from different extracts of Rumex vesicarius against potassium dichromate and gentamicin induced nephrotoxicity in experimental rats and its possible mechanism of action. Both sex wistar rats were divided into 6 groups (n=6/group) were fed with a control, potassium dichromate and gentamicin supplemented with different extracts at the doses of 200 and 400mg/kg respectively. Oral administration of EERV offered a significant (p<0.01 and p<0.001) dose dependent protection against PD and GN induced nephrotoxicity. Potassium dichromate and gentamicin nephrotoxicity assessed in terms of body weight, kidney weight, creatinine, urea, uric acid, BUN, albumin and total protein. Thus the present study revealed that EERV phytochemical constituents play an important role in protection against kidney damage.


Asunto(s)
Gentamicinas/efectos adversos , Enfermedades Renales/prevención & control , Extractos Vegetales/farmacología , Dicromato de Potasio/efectos adversos , Rumex/química , Animales , Peso Corporal/efectos de los fármacos , Creatinina/sangre , Femenino , Riñón/efectos de los fármacos , Enfermedades Renales/inducido químicamente , Masculino , Tamaño de los Órganos/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/farmacología , Ratas Wistar , Pruebas de Toxicidad Aguda/métodos , Urea/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA