Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Malar J ; 20(1): 120, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33639924

RESUMEN

BACKGROUND: Copy number variations (CNVs) of the Plasmodium falciparum multidrug resistance 1 (pfmdr1), P. falciparum plasmepsin2 (pfplasmepsin2) and P. falciparum GTP cyclohydrolase 1 (pfgch1) genes are associated with anti-malarial drug resistance in P. falciparum malaria. Droplet digital PCR (ddPCR) assays have been developed for accurate assessment of CNVs in several human genes. The aim of the present study was to develop and validate ddPCR assays for detection of the CNVs of P. falciparum genes associated with resistance to anti-malarial drugs. METHODS: A multiplex ddPCR assay was developed to detect the CNVs in the pfmdr1 and pfplasmepsin2 genes, while a duplex ddPCR assay was developed to detect CNV in the pfgch1 gene. The gene copy number (GCN) quantification limit, as well as the accuracy and precision of the ddPCR assays were determined and compared to conventional quantitative PCR (qPCR). In order to reduce the cost of testing, a multiplex ddPCR assay of two target genes, pfmdr1 and pfplasmepsin2, was validated. In addition, the CNVs of genes of field samples collected from Thailand from 2015 to 2019 (n = 84) were assessed by ddPCR and results were compared to qPCR as the reference assay. RESULTS: There were no significant differences between the GCN results obtained from uniplex and multiplex ddPCR assays for detection of CNVs in the pfmdr1 and pfplasmepsin2 genes (p = 0.363 and 0.330, respectively). Based on the obtained gene copy number quantification limit, the accuracy and percent relative standard deviation (%RSD) value of the multiplex ddPCR assay were 95% and 5%, respectively, for detection of the CNV of the pfmdr1 gene, and 91% and 5% for detection of the CNV of the pfplasmepsin2 gene. There was no significant difference in gene copy numbers assessed by uniplex or duplex ddPCR assays regarding CNV in the pfgch1 gene (p = 0.276). The accuracy and %RSD value of the duplex ddPCR assay were 95% and 4%, respectively, regarding pfgch1 GCN. In the P. falciparum field samples, pfmdr1 and pfplasmepsin2 GCNs were amplified in 15% and 27% of samples from Ubon Ratchathani, Thailand, while pfgch1 GCN was amplified in 50% of samples from Yala, Thailand. There was 100% agreement between the GCN results obtained from the ddPCR and qPCR assays (κ = 1.00). The results suggested that multiplex ddPCR assay is the optional assay for the accurate detection of gene copy number without requiring calibration standards, while the cost and required time are reduced. Based on the results of this study, criteria for GCN detection by ddPCR analysis were generated. CONCLUSIONS: The developed ddPCR assays are simple, accurate, precise and cost-effective tools for detection of the CNVs in the pfmdr1, pfplasmepsin2 and pfgch1 genes of P. falciparum. The ddPCR assay is a useful additional tool for the surveillance of anti-malarial drug resistance.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Amplificación de Genes , Plasmodium falciparum/genética , Reacción en Cadena de la Polimerasa/instrumentación , Reacción en Cadena de la Polimerasa Multiplex/métodos , Plasmodium falciparum/efectos de los fármacos , Tailandia
2.
Malar J ; 20(1): 454, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34861860

RESUMEN

BACKGROUND: Thailand is committed to eliminating malaria by 2024. From 2013 to 2020, the total number of malaria cases have decreased, from 37,741 to 4474 (an 88.1% reduction). However, infections with Plasmodium knowlesi, a monkey malarial pathogen that can also infect humans, have been increasingly observed. This study focused on the molecular analysis of P. knowlesi parasites causing malaria in Thailand. METHODS: Under Thailand's integrated Drug Efficacy Surveillance (iDES), which includes drug-resistance monitoring as part of routine case-based surveillance and responses, specimens were collected from malaria patients (n = 966) between 2018 and 2020. Thirty-one mono P. knowlesi infections (3.1%), most of which were from eastern and southern Thailand, were observed and confirmed by nested PCR assay and DNA sequencing. To evaluate whether these pathogens were from different lineages, cluster analysis based on seven microsatellite genotyping markers and the merozoite surface protein 1 (pkmsp1) gene was carried out. The P. knowlesi pyrimethamine resistance gene dihydrofolate reductase (pkdhfr) was sequenced and homology modelling was constructed. RESULTS: The results of analysing the seven microsatellite markers and pkmsp1 sequence demonstrated that P. knowlesi parasites from eastern Thailand were of the same lineage as those isolated in Cambodia, while the parasites causing malaria in southern Thailand were the same lineage as those isolated from Malaysia. The sequencing results for the pkdhfr genes indicated the presence of two mutations, Arg34Leu and a deletion at position 105. On analysis with homology modelling, the two mutations were not associated with anti-malarial drug resistance. CONCLUSIONS: This report compared the genetic populations of P. knowlesi parasites in Thailand from 2018 to 2020 and have shown similar lineages as those isolated in Cambodia and Malaysia of P. knowlesi infection in Thailand and demonstrated that the P. knowlesi parasites were of the same lineages as those isolated in Cambodia and Malaysia. The parasites were also shown to be sensitive to pyrimethamine.


Asunto(s)
Malaria/epidemiología , Plasmodium knowlesi/genética , Erradicación de la Enfermedad , Genes Protozoarios , Marcadores Genéticos , Humanos , Incidencia , Malaria/parasitología , Plasmodium knowlesi/clasificación , Proteínas Protozoarias/análisis , Tailandia/epidemiología
3.
Malar J ; 20(1): 261, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34107955

RESUMEN

BACKGROUND: Integrated drug efficacy surveillance (iDES) was formally introduced nationally across Thailand in fiscal year 2018 (FY2018), building on a history of drug efficacy monitoring and interventions. According to the National Malaria Elimination Strategy for Thailand 2017-2026, diagnosis is microscopically confirmed, treatment is prescribed, and patients are followed up four times to ensure cure. METHODS: Routine patient data were extracted from the malaria information system for FY2018-FY2020. Treatment failure of first-line therapy was defined as confirmed parasite reappearance within 42 days for Plasmodium falciparum and 28 days for Plasmodium vivax. The primary outcome was the crude drug efficacy rate, estimated using Kaplan-Meier methods, at day 42 for P. falciparum treated with dihydroartemisinin-piperaquine plus primaquine, and day 28 for P. vivax treated with chloroquine plus primaquine; day 60 and day 90 efficacy were secondary outcomes for P. vivax. RESULTS: The proportion of patients with outcomes recorded at day 42 for P. falciparum malaria and at day 28 for P. vivax malaria has been increasing, with FY2020 follow-up rates of 61.5% and 57.2%, respectively. For P. falciparum malaria, day 42 efficacy in FY2018 was 92.4% (n = 249), in FY2019 93.3% (n = 379), and in FY2020 98.0% (n = 167). Plasmodium falciparum recurrences occurred disproportionally in Sisaket Province, with day 42 efficacy rates of 75.9% in FY2018 (n = 59) and 49.4% in FY2019 (n = 49), leading to an update in first-line therapy to pyronaridine-artesunate at the provincial level, rolled out in FY2020. For P. vivax malaria, day 28 efficacy (chloroquine efficacy) was 98.5% in FY2018 (n = 2048), 99.1% in FY2019 (n = 2206), and 99.9% in FY2020 (n = 2448), and day 90 efficacy (primaquine efficacy) was 94.8%, 96.3%, and 97.1%, respectively. CONCLUSIONS: In Thailand, iDES provided operationally relevant data on drug efficacy, enabling the rapid amendment of treatment guidelines to improve patient outcomes and reduce the potential for the spread of drug-resistant parasites. A strong case-based surveillance system, integration with other health system processes, supporting biomarker collection and molecular analyses, and cross-border collaboration may maximize the potential of iDES in countries moving towards elimination.


Asunto(s)
Antimaláricos/uso terapéutico , Malaria Falciparum/prevención & control , Malaria Vivax/prevención & control , Tailandia , Resultado del Tratamiento
4.
Malar J ; 19(1): 107, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32127009

RESUMEN

BACKGROUND: Resistance to anti-malarials is a major threat to the control and elimination of malaria. Sulfadoxine-pyrimethamine (SP) anti-malarial treatment was used as a national policy for treatment of uncomplicated falciparum malaria in Thailand from 1973 to 1990. In order to determine whether withdrawal of this antifolate drug has led to restoration of SP sensitivity, the prevalence of genetic markers of SP resistance was assessed in historical Thai samples. METHODS: Plasmodium falciparum DNA was collected from the Thailand-Myanmar, Thailand-Malaysia and Thailand-Cambodia borders during 2008-2016 (N = 233). Semi-nested PCR and nucleotide sequencing were used to assess mutations in Plasmodium falciparum dihydrofolate reductase (pfdhfr), P. falciparum dihydropteroate synthase (pfdhps). Gene amplification of Plasmodium falcipaurm GTP cyclohydrolase-1 (pfgch1) was assessed by quantitative real-time PCR. The association between pfdhfr/pfdhps mutations and pfgch1 copy numbers were evaluated. RESULTS: Mutations in pfdhfr/pfdhsp and pfgch1 copy number fluctuated overtime through the study period. Altogether, 14 unique pfdhfr-pdfhps haplotypes collectively containing quadruple to octuple mutations were identified. High variation in pfdhfr-pfdhps haplotypes and a high proportion of pfgch1 multiple copy number (51% (73/146)) were observed on the Thailand-Myanmar border compared to other parts of Thailand. Overall, the prevalence of septuple mutations was observed for pfdhfr-pfdhps haplotypes. In particular, the prevalence of pfdhfr-pfdhps, septuple mutation was observed in the Thailand-Myanmar (50%, 73/146) and Thailand-Cambodia (65%, 26/40) border. In Thailand-Malaysia border, majority of the pfdhfr-pfdhps haplotypes transaction from quadruple (90%, 9/10) to quintuple (65%, 24/37) during 2008-2016. Within the pfdhfr-pfdhps haplotypes, during 2008-2013 the pfdhps A/S436F mutation was observed only in Thailand-Myanmar border (9%, 10/107), while it was not identified later. In general, significant correlation was observed between the prevalence of pfdhfr I164L (ϕ = 0.213, p-value = 0.001) or pfdhps K540E/N (ϕ = 0.399, p-value ≤ 0.001) mutations and pfgch1 gene amplification. CONCLUSIONS: Despite withdrawal of SP as anti-malarial treatment for 17 years, the border regions of Thailand continue to display high prevalence of antifolate and anti-sulfonamide resistance markers in falciparum malaria. Significant association between pfgch1 amplification and pfdhfr (I164L) or pfdhps (K540E) resistance markers were observed, suggesting a compensatory mutation.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Antagonistas del Ácido Fólico/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Pirimetamina/farmacología , Sulfadoxina/farmacología , Cambodia/epidemiología , ADN Protozoario/genética , Pruebas con Sangre Seca , Combinación de Medicamentos , Genotipo , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Mutación , Prevalencia , Tailandia/epidemiología
5.
Acta Trop ; 248: 107020, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37739253

RESUMEN

BACKGROUND: The diagnosis of malaria infection in humans remains challenging, further complicated by mixed Plasmodium species infections, potentially altering disease severity and morbidity. To facilitate appropriate control measures and treatment, rapid, sensitive, and specific detection assays, including those for the second minor species, would be required. This study aimed to develop a multiplex high-resolution melting (hexaplex PCR-HRM) assay with seven distinct peaks corresponding to five Plasmodium species of the Plasmodium genus, and an internal control to limit false negatives providing quality assurance testing results. METHODS: Five species-specific primers for human malaria species were designed targeting on the Plasmodium 18 small subunit ribosomal RNA (18S rRNA) and mitochondrial genes. The hexaplex PCR-HRM was developed for the simultaneous and rapid detection and differentiation of five human Plasmodium spp. The limit of detection (LoD), sensitivity, and specificity of the assay were evaluated. Artificial mixing was used to assess the ability to determine the second minor species. Furthermore, a hexaplex PCR-HRM assay was used to identify 120 Plasmodium-infected clinical isolates from Kanchanaburi, Western Thailand, where malaria is endemic. RESULTS: The hexaplex PCR-HRM assay detected the targeted genome of five Plasmodium species at levels as low as 2.354-3.316 copies/uL with 91.76 % sensitivity and 98.04 % specificity. In artificial mixing, the assay could detect minority parasite species at 0.001 % of the predominant parasite population. Plasmodium vivax infections (99 %) accounted for the majority of malaria cases in Kanchanaburi, Thailand. CONCLUSIONS: The developed hexaplex PCR-HRM assay we present in this study is a novel approach for multiplexing the Plasmodium genus and detecting five Plasmodium species with the advantage of detecting second minority parasite species. The developed one-step assay without any nesting protocols would reduce the risks of cross-contamination. Moreover, it also provides a simple, sensitive, specific, and low-cost approach for optional molecular detection of malaria.


Asunto(s)
Malaria , Plasmodium , Humanos , Sensibilidad y Especificidad , ADN Protozoario/genética , Tailandia , Malaria/diagnóstico , Malaria/parasitología , ARN Ribosómico 18S/genética , Plasmodium vivax/genética , Plasmodium falciparum/genética
6.
Acta Trop ; 248: 107016, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37683820

RESUMEN

BACKGROUND: The 2022 malaria WHO reported around 4000 P. knowlesi infections in the South-East Asia region. In the same period, 72 positive cases were reported by the Department of Disease Control in Thailand, suggesting a persistent infection. Little is known about dihydrofolate reductase (pkdhfr) and dihydropteroate synthase (pkdhps), putative antimalarial resistance markers for P. knowlesi. The relevant amplification and sequencing protocol are presently unavailable. In this study, we developed a protocol for amplifying and evaluating pkdhps mutations. The haplotype pattern of pkdhfr-pkdhps in Thai isolates was analyzed, and the effects of these pkdhps mutations were predicted by using a computer program. METHODS: Pkdhps were amplified and sequenced from 28 P. knowlesi samples collected in 2008 and 2020 from nine provinces across Thailand. Combining pkdhfr sequencing data from previous work with pkdhps data to analyze polymorphisms of pkdhfr and pkdhps haplotype. Protein modeling and molecular docking were constructed using two inhibitors, sulfadoxine and sulfamethoxazole, and further details were obtained through analyses of protein-ligand interactions by using the Genetic Optimisation for Ligand Docking program. A phylogenetic tree cluster analysis was reconstructed to compare the P. knowlesi Malaysia isolates. RESULTS: Five nonsynonymous mutations in the pkdhps were detected outside the equivalence of the binding pocket sites to sulfadoxine and sulfamethoxazole, which are at N391S, E421G, I425R, A449S, and N517S. Based on the modeling and molecular docking analyses, the N391S and N517S mutations located close to the enzyme-binding pocket demonstrated a different docking score and protein-ligand interaction in loop 2 of the enzyme. These findings indicated that it was less likely to induce drug resistance. Of the four haplotypes of pkdhfr-pkdhps, the most common one is the R34L pkdhfr mutation and the pkdhps quadruple mutation (GRSS) at E421G, I425R, A449S, and N517S, which were observed in P. knowlesi in southern Thailand (53.57%). Based on the results of neighbor-joining analysis for pkdhfr and pkdhps, the samples isolated from eastern Thailand displayed a close relationship with Cambodia isolates, while southern Thailand isolates showed a long branch separated from the Malaysian isolates. CONCLUSIONS: A new PCR protocol amplification and evaluation of dihydropteroate synthase mutations in Knowlesi (pkdhps) has been developed. The most prevalent pkdhfr-pkdhps haplotypes (53.57%) in southern Thailand are R34L pkdhfr mutation and pkdhps quadruple mutation. Further investigation requires additional phenotypic data from clinical isolates, transgenic lines expressing mutant alleles, or recombinant proteins.


Asunto(s)
Antimaláricos , Plasmodium knowlesi , Sulfadoxina/farmacología , Pirimetamina/farmacología , Tetrahidrofolato Deshidrogenasa/genética , Dihidropteroato Sintasa/genética , Plasmodium knowlesi/genética , Tailandia , Simulación del Acoplamiento Molecular , Ligandos , Filogenia , Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Sulfametoxazol/farmacología , Plasmodium falciparum/genética
7.
Lancet Infect Dis ; 20(12): 1470-1480, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32679084

RESUMEN

BACKGROUND: The Greater Mekong subregion is a recurrent source of antimalarial drug resistance in Plasmodium falciparum malaria. This study aimed to characterise the extent and spread of resistance across this entire region between 2007 and 2018. METHODS: P falciparum isolates from Myanmar, Thailand, Laos, and Cambodia were obtained from clinical trials and epidemiological studies done between Jan 1, 2007, and Dec 31, 2018, and were genotyped for molecular markers (pfkelch, pfcrt, pfplasmepsin2, and pfmdr1) of antimalarial drug resistance. Genetic relatedness was assessed using microsatellite and single nucleotide polymorphism typing of flanking sequences around target genes. FINDINGS: 10 632 isolates were genotyped. A single long pfkelch Cys580Tyr haplotype (from -50 kb to +31·5 kb) conferring artemisinin resistance (PfPailin) now dominates across the eastern Greater Mekong subregion. Piperaquine resistance associated with pfplasmepsin2 gene amplification and mutations in pfcrt downstream of the Lys76Thr chloroquine resistance locus has also developed. On the Thailand-Myanmar border a different pfkelch Cys580Tyr lineage rose to high frequencies before it was eliminated. Elsewhere in Myanmar the Cys580Tyr allele remains widespread at low allele frequencies. Meanwhile a single artemisinin-resistant pfkelch Phe446Ile haplotype has spread across Myanmar. Despite intense use of dihydroartemisinin-piperaquine in Kayin state, eastern Myanmar, both in treatment and mass drug administrations, no selection of piperaquine resistance markers was observed. pfmdr1 amplification, a marker of resistance to mefloquine, remains at low prevalence across the entire region. INTERPRETATION: Artemisinin resistance in P falciparum is now prevalent across the Greater Mekong subregion. In the eastern Greater Mekong subregion a multidrug resistant P falciparum lineage (PfPailin) dominates. In Myanmar a long pfkelch Phe446Ile haplotype has spread widely but, by contrast with the eastern Greater Mekong subregion, there is no indication of artemisinin combination therapy (ACT) partner drug resistance from genotyping known markers, and no evidence of spread of ACT resistant P falciparum from the east to the west. There is still a window of opportunity to prevent global spread of ACT resistance. FUNDING: Thailand Science Research and Innovation, Initiative 5%, Expertise France, Wellcome Trust.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Asia Sudoriental/epidemiología , Marcadores Genéticos , Haplotipos , Humanos , Epidemiología Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA