Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(12): 7679-7686, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35584102

RESUMEN

This study quantified emission factors of black carbon (BC) and nitrogen oxides (NOx) from 21 engines on in-use excursion vessels and ferries operating in California's San Francisco Bay, including EPA uncertified and Tier 1-4 engines and across engine operating modes. On average, ∼60 fuel-based emission factors per engine were measured using a novel combination of exhaust plume capture combined with GPS location and speed data that can be more readily deployed than common portable emissions measurement systems. BC and NOx emission factors (g kg-1) were lowest and least variable during fast cruising and highest during maneuvering and docked operation. Selective catalytic reduction (SCR) reduced NOx emissions by ∼80% when functional. However, elevated NOx emissions that exceeded corresponding exhaust standards were measured on most Tier 3 and Tier 4 engines sampled, which can be attributed to inactive SCR during frequent low engine load operation. In contrast, BC emissions exceeded the PM emission standard for only one engine, and SCR systems employed as a NOx reduction technology also reduced emitted BC. Using these measured emission factors to compare commuting options, we show that the CO2-equivalent emissions per passenger-kilometer are comparable when commuting by car and ferry, but BC and NOx emissions can be several to more than ten times larger when commuting by ferry.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Contaminantes Atmosféricos/análisis , Carbono , Gasolina , Óxidos de Nitrógeno/análisis , Material Particulado/análisis , Hollín , Emisiones de Vehículos/análisis
2.
Sensors (Basel) ; 20(23)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255331

RESUMEN

The exhaust plume capture method is a commonly used approach to measure pollutants emitted by in-use heavy-duty diesel trucks. Lower cost sensors, if used in place of traditional research-grade analyzers, could enable wider application of this method, including use as a monitoring tool to identify high-emitting trucks that may warrant inspection and maintenance. However, low-cost sensors have for the most part only been evaluated under ambient conditions as opposed to source-influenced environments with rapidly changing pollutant concentrations. This study compared black carbon (BC) emission factors determined using different BC and carbon dioxide (CO2) sensors that range in cost from $200 to $20,000. Controlled laboratory experiments show that traditional zero and span steady-state calibration checks are not robust indicators of sensor performance when sampling short duration concentration peaks. Fleet BC emission factor distributions measured at two locations at the Port of Oakland in California with 16 BC/CO2 sensor pairs were similar, but unique sensor pairs identified different high-emitting trucks. At one location, the low-cost PP Systems SBA-5 agreed on the classification of 90% of the high emitters identified by the LI-COR LI-7000 when both were paired with the Magee Scientific AE33. Conversely, lower cost BC sensors when paired with the LI-7000 misclassified more than 50% of high emitters when compared to the AE33/LI-7000. Confidence in emission factor quantification and high-emitter identification improves with larger integrated peak areas of CO2 and especially BC. This work highlights that sensor evaluation should be conducted under application-specific conditions, whether that be for ambient air monitoring or source characterization.

3.
Environ Sci Technol ; 52(22): 13314-13324, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30359522

RESUMEN

Coastal ecosystems host high levels of primary productivity leading to exceptionally dynamic elemental cycling in both water and sediments. In such environments, carbon is rapidly cycled leading to high rates of burial as organic matter and/or high rates of loss to the atmosphere and laterally to the coastal ocean in simpler forms, such as carbon dioxide (CO2) and methane (CH4). To better understand carbon cycling across these heterogeneous environments, new technologies beyond discrete sample collection and analysis are needed to characterize spatial and temporal variability. Here, we describe the ChemYak, an autonomous surface vehicle outfitted with a suite of in situ sensors, developed to achieve large spatial scale chemical mapping of these environments. Dissolved methane and carbon dioxide are measured by a laser spectrometer coupled to a gas extraction unit for continuous quantification during operation. The gas-powered vehicle is capable of rapidly surveying the coastal system with an endurance of up to 10 h at operating speeds in excess of 10 km h-1. Here, we demonstrate its ability to spatially characterize distributions of CO2, CH4, oxygen, and nitrate throughout a New England saltmarsh estuary.


Asunto(s)
Dióxido de Carbono , Metano , Atmósfera , Ecosistema , New England
4.
J Phys Chem A ; 120(9): 1386-94, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26505270

RESUMEN

In this study we investigate the hypothesis that oxidants present within atmospheric particles can promote the formation of highly oxidized organic aerosol (OA) via oxidation reactions in the condensed phase. Secondary organic aerosol (SOA) was generated from the ozonolysis of α-pinene and isoprene in an environmental chamber, with seed particles systematically varied in order to assess the effects of condensed-phase oxidant levels on SOA loading and composition. The effects of particle phase (aqueous vs dry), condensed-phase oxidant source (none vs H2O2 vs Fenton chemistry), and irradiation (none vs UV) were all examined. For experiments conducted with aqueous particles but without any added oxidants, UV irradiation resulted in a small but measurable enhancement in the oxygen-to-carbon ratio (O/C). OA formed in the presence of aqueous oxidants was substantially more oxidized, with the highest oxidant concentrations leading to OA with an O/C as high as 1.4 for α-pinene and 2.0 for isoprene, strongly suggesting the formation of oxalate. High aqueous oxidant levels also resulted in increased loss of carbon from the condensed phase. This OA was more oxidized than in any other ozonolysis experiment reported to date, indicating that, when present, aqueous oxidants can have a dramatic effect on SOA formation. However, oxidant concentrations within atmospheric aqueous particles remain poorly constrained, making it difficult to assess the impacts of aqueous-phase oxidation on the loadings and oxidation state of atmospheric OA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA