Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Nanosci Nanotechnol ; 18(5): 3466-3477, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442853

RESUMEN

As a promising candidate for the improved performance, silver nanoparticles (Ag NPs) have been successfully adapted in various applications such as photovoltaics, light emitting diodes (LEDs), sensors and catalysis by taking the advantage of their controllable plasmonic properties. In this paper, the control on the morphologies and optical properties of Ag NPs on c-plane sapphire (0001) is demonstrated by the systematic control of annealing temperature (between 200 and 950 °C) with 20 and 6 nm thick Ag films through the solid state dewetting. With the relatively thicker film of 20 nm, various configuration and size of Ag NPs are fabricated such as irregular, round dome-shaped and tiny Ag NPs depending on the annealing temperature. In a shrill contrast, the 6 nm Ag set exhibits a sharp distinction with the formation of densely packed small NPs and ultra-highly dense tiny Ag NPs due to the higher dewetting rate. While, the surface diffusion assumes the main driving force in the evolution process of Ag NP morphologies up to 550 °C, the sublimation of Ag atoms has played a significant role on top on the surface diffusion between 600 and 950 °C. The reflectance spectra of Ag NPs exhibit the quadrupolar resonance and dipolar resonance peaks, and the evolution of peaks, shift and average reflectance were discussed based on the Ag NPs size and surface coverage. In particular, the dipolar resonance peak in the reflectance spectra red shifts from ~475 to ~570 nm due to the size increment of Ag NPs (38.31 to 74.68 nm). The wide surface coverage of Ag NPs exhibits the highest average reflectance (~27%) and the lowest Raman intensity.

2.
Sci Technol Adv Mater ; 19(1): 160-173, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29511394

RESUMEN

Alloy nanoparticles (NPs) can offer a wide range of opportunities for various applications due to their composition and structure dependent properties such as multifunctionality, electronic heterogeneity, site-specific response, and multiple plasmon resonance bands. In this work, the fabrication of self-assembled PdxAg1-x NPs alloy nanostructures with distinct size, density, shape, and composition is demonstrated via the solid-state dewetting of sputtered Pd/Ag thin films on c-plane sapphire. The initial stage of bilayer dewetting exhibits the nucleation of voids, followed by the expansion of voids and cluster breakdown and finally shape transformation along with the temperature control. Bilayer composition shows a substantial influence on the dewetting such that the overall dewetting is enhanced along with the increased Ag composition, i.e. Pd0.25Ag0.75 > Pd0.5Ag0.5 > Pd0.75Ag0.25. On the other hand, the size and density of NPs can be efficiently controlled by varying the initial thickness of bilayers. Reflectance peaks in UV and near-infrared (NIR) regions and a wide absorption band in the visible region arisen from the surface plasmon resonance are observed in reflectance spectra. The peak intensity depends on the composition of PdxAg1-x NPs and the NIR peaks gradually blue-shift with the size decrement.

3.
Phys Chem Chem Phys ; 19(23): 15084-15097, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28561078

RESUMEN

Metallic nanoparticles (NPs) with tunable physical, optical and catalytic properties have a wide range of applications including various optoelectronics, sensors and fuel cells. In this paper, we demonstrate the evolution of various physical properties, configurations, size and density of palladium (Pd) nanostructures on sapphire(Al2O3) (0001) by the systematic control of deposition amount (DA) at distinct annealing temperatures. The transformation of the deposited thin films into various Pd NPs is achieved by the dewetting of the thin film by means of surface diffusion, nucleation, Volmer-Weber growth and surface energy minimization mechanism. Depending on the evolution of size, density and configuration, five distinctive regimes of Pd nanostructures are demonstrated: (i) nucleation and evolution of small NPs between 1 and 3 nm, (ii) medium NPs with the dominating vertical growth between 5 and 20 nm, (iii) laterally expanded large NPs between 30 and 40 nm, (iv) irregular coalesced Pd NPs between 50 and 80 nm and (v) voids evolution between 100 and 200 nm. Initial film thickness and annealing temperature play major roles on the dewetting process and the resulting Pd nanostructures are notably distinguished. The fabricated Pd nanostructures influence the lattice vibration modes of sapphire(0001) such as gradual decrement in the intensity and left-shift of the peak position with increased surface coverage. In addition, the optical properties are studied by UV-VIS-NIR (300-1100 nm) reflectance spectra, which shows the reflectance, absorption and scattering over the wavelength and are closely related to the morphology evolution of Pd nanostructures.

4.
Sci Rep ; 9(1): 16582, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31719664

RESUMEN

Multi-metallic alloy nanoparticles (NPs) can enable the advanced applications in the energy, biology, electronics, optics and catalysis due to their multi-functionality, wide tunable range and electronic heterogeneity. In this work, various mono-, bi- and tri-metallic nanostructures composed of Ag, Au and Pt are demonstrated on transparent c-plane sapphire (0001) substrates and the corresponding morphological and optical characteristics are thoroughly investigated. The resulting Pt and AuPt NPs in this study demonstrate much enhanced LSPR responses as compared to the pure Pt NPs from the previous studies, which was contributed by the synergistic effect of Au and Pt and improved surface morphology. These results are sharply distinct in terms of surface morphology and elemental variability from those obtained by the dewetting of monometallic Ag, Au and Pt films under the similar growth conditions, which is due to the distinct dewetting kinetics of the bi-layer and tri-layer films. These NPs exhibit strongly enhanced localized surface plasmon resonance (LSPR) bands in the UV-VIS wavelengths such as dipolar, quadrupolar, multipolar and higher order resonance modes depending upon the size and elemental composition of NPs. The LSPR bands are much stronger with the high Ag content and gradually attenuated with the Ag sublimation. Furthermore, the VIS region LSPR bands are readily blue shifted along with the reduction of NP size. The Ag/Pt bi-layers and Ag/Au/Pt tri-layers are systematically dewetted and transformed into various AgPt and AgAuPt nanostructures such as networked, elongated and semispherical configurations by means of enhanced surface diffusion, intermixing and energy minimization along with the temperature control. The sublimation of Ag atoms plays a significant role in the structural and elemental composition of NPs such that more isolated and semispherical Pt and AuPt NPs are evolved from the AgPt and AgAuPt NPs respectively.

5.
Nanoscale Res Lett ; 14(1): 332, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31650295

RESUMEN

Multi-metallic alloy nanoparticles (NPs) can offer a promising route for the integration of multi-functional elements by the adaptation of advantageous individual NP properties and thus can exhibit the multi-functional dynamic properties arisen from the electronic heterogeneity as well as configurational diversity. The integration of Pt-based metallic alloy NPs are imperative in the catalytic, sensing, and energy applications; however, it usually suffers from the difficulty in the fabrication of morphologically well-structured and elementally well-alloyed NPs, which yields poor plasmonic responses. In this work, the improved morphological and localized surface plasmon resonance (LSPR) properties of fully alloyed bimetallic AgPt and monometallic Pt NPs are demonstrated on sapphire (0001) via the one-step solid-state dewetting (SSD) of the Ag/Pt bilayers. In a sharp contrast to the previous studies of pure Pt NPs, the surface morphology of the resulting AgPt and Pt NPs in this work are significantly improved such that they possess larger size, increased interparticle gaps, and improved uniformity. The intermixing of Ag and Pt atoms, AgPt alloy formation, and concurrent sublimation of Ag atoms plays the major roles in the fabrication of bimetallic AgPt and monometallic Pt NPs along with the enhanced global diffusion and energy minimization of NP system. The fabricated AgPt and Pt NPs show much-enhanced LSPR responses as compared to the pure Pt NPs in the previous studies, and the excitation of dipolar, quadrupolar, multipolar and higher-order resonance modes is realized depending upon the size, configuration, and elemental compositions. The LSPR peaks demonstrate drastic alteration along with the evolution of AgPt and Pt NPs, i.e., the resonance peaks are shifted and enhanced by the variation of size and Ag content.

6.
PLoS One ; 14(10): e0224208, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31634370

RESUMEN

Multi-metallic alloy nanoparticles (MNPs) can offer valuable opportunities to meet the various demands of applications. MNPs consist of various noble metallic elements can combine diverse electronic, optical and catalytic properties in a single NP configuration, thus taking the advantage of each element. In this paper, the fabrication of tri- and quad- metallic alloy NPs with noble elements (Ag, Au, Pd and Pt) and the corresponding localized surface plasmon resonance (LPSR) properties are systematically demonstrated. Tri- and quad-metallic alloy NPs come in various size and configurations by the solid-state dewetting of Ag/Au/Pd/Pt quad-layers on sapphire (0001). Tri-metallic AuPdPt NPs are demonstrated by the systematic control of growth temperature along with the significant Ag atom sublimation. Strongly enhanced and tunable LPSR is exerted in the UV-VIS regions depending upon the size, configuration, spacing and elemental composition of the MNPs. The size dependent LSPR response of MNPs is discussed based on the absorption and scattering along with the excitation of dipolar, quadrupolar, high order and multipolar resonance modes. The MNPs exhibit much stronger and dynamic LSPR bands as compared with the monometallic Pt and Pd NPs with the comparable size and configurations.


Asunto(s)
Óxido de Aluminio/química , Oro/química , Nanopartículas del Metal/química , Paladio/química , Platino (Metal)/química , Plata/química , Catálisis , Propiedades de Superficie
7.
RSC Adv ; 9(4): 2231-2243, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35516139

RESUMEN

Platinum (Pt) nanoparticles (NPs) are important nano-material components in various catalytic, photonic and electronic applications, yet face challenges in the fabrication of desired morphology and uniformity with the conventional solid-state dewetting approach. Specifically, the necessity of high annealing temperatures, typically above 800 °C due to the low diffusivity of Pt atoms, limits the morphological and functional tunability of Pt NPs. In this work, the fabrication of Pt NPs with an improved configuration, spacing and uniformity is demonstrated through the enhancement of solid state dewetting by using a sacrificial indium (In) layer on sapphire (0001). The well-defined Pt NPs demonstrate the dynamic localized surface plasmon (LSPR) bands in the visible range between ∼400 and 700 nm depending on the size and spacing of NPs. The LSPR peak intensity and width are also varied depending on the uniformity of Pt NPs. The overall dewetting magnitude is significantly enhanced through the inter-mixing of In and Pt atoms at the In/Pt interface that eventually results in the formation of an In-Pt alloy. During the dewetting process the In atoms desorb from the NP matrix by atomic sublimation, which gives rise to pure Pt NP fabrication. In sharp contrast to the pure Pt film dewetting, the Pt NPs in this approach demonstrate significantly improved spatial arrangement with well-defined configuration and uniformity. In addition, the ratio of In can be readily controlled along with the thickness of the Pt layer to alter the dewetting kinetics and thereby the surface morphology of Pt NPs. Specifically, large hexagonal, semi-spherical and small hexagonal Pt NPs are obtained through the dewetting of In75 nm/Pt25 nm, In20 nm/Pt20 nm and In2.5 nm/Pt7.5 nm bilayers respectively.

8.
Sci Rep ; 9(1): 1329, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718657

RESUMEN

Noble metallic nanoparticles (NPs) can exhibit valuable properties such as localized surface plasmon resonance (LSPR) and large surface to volume ratio, which can find various optoelectronic and catalytic applications. In this work, the improved configuration and uniformity of platinum (Pt) NPs are demonstrated by using a sacrificial indium (In) layer via the enhanced solid state dewetting of In-Pt bilayers on sapphire (0001). In a sharp contrast to the conventional dewetting of intrinsic Pt film, the introduction of In component can significantly enhance the global dewetting process and thus can result in the fabrication of well-defined Pt NPs with the improved uniformity. This can be due to the fact that In possess high diffusivity, low surface energy and low sublimation temperature. Upon annealing, the intermixing of In and Pt atoms can occur at the interface due to the inter-diffusion, which forms In-Pt alloy system. As a result, the overall diffusivity and dewetting degree of system can be significantly improved and this can produce more isolated, uniform and semispherical Pt NPs at much lower temperatures as compared to the pure Pt film dewetting. Conveniently, the In atoms preferentially can be removed from the NP matrix by the sublimation even at relatively low temperatures. These Pt NPs exhibit dynamic LSPR band in the UV-visible wavelength based on the excitation of dipolar, quadrupolar and higher order resonance modes. Specifically, the LSPR wavelength can be tuned between ~480 and 580 nm by the fabrication of small to large size Pt NPs with the distinct configuration and interparticle spacing. Furthermore, at a constant Pt thickness, the size, spacing and density of Pt NPs can be readily tuned by the control of In layer thickness. The introduction of sacrificial In component can enable an additional flexibility for the control of surface morphologies of metallic NPs with the low diffusivity materials.

9.
Nanomaterials (Basel) ; 9(6)2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31159339

RESUMEN

In this paper, the modified solid-state dewetting (MSSD) of well-defined and various uniform Pt nanostructures is demonstrated by the auxiliary diffusion enhancement. The MSSD utilizes the introduction of metallic indium (In) layers with high diffusivity in between sapphire and platinum (Pt) layer, through which the global diffusion and dewetting of metallic atoms can be significantly enhanced. Subsequently, the In atoms can be sublimated from the NP matrix, resulting in the formation of pure Pt NPs. By the systematic control of In and Pt bi-layer thickness, various areal density, size and configuration of Pt NPs are demonstrated. The In2 nm / Pt2 nm bilayers establish very small and highly dense NPs throughout the temperature range due to the early maturation of growth. Intermediate size of NPs is demonstrated with the In45 nm / Pt15 nm bilayers with the much improved interparticle spacings by annealing between 650 and 900 oC for 450 s. Finally, the In30 nm / Pt30 nm bilayers demonstrate the widely connected network-like nanostructures. In addition, the finite difference time domain (FDTD) simulation is employed to exploit the local electric field distributions at resonance wavelengths. The dewetting characteristics of In/Pt bilayers is systematically controlled by the modifications of layer thickness and annealing temperature and is systematically described based on the diffusion of atoms, Rayleigh instability and surface energy minimization mechanism. The optical properties demonstrate dynamic and widely tunable localized surface plasmon resonance (LSPR) responses depending upon the various surface morphologies of Pt nanostructures.

10.
PLoS One ; 13(12): e0209803, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30596722

RESUMEN

Metal nanoparticles (NPs) fabricated by means of the solid state dewetting (SSD) approach are applicable in many optoelectronic, biomedical and catalytical applications. However, the fabrication of metallic NPs with the low diffusivity elements such as platinum (Pt) has been challenging for the well-defined configuration and uniformity due to the low diffusivity of Pt atoms and thus the optical properties suffer. In this paper, the evolution of well-defined configuration and improved uniformity of Pt NPs are demonstrated by the altered solid state dewetting (ASSD) approach using a sacrificial indium (In) layer. Upon annealing, the high diffusivity In atoms can lead to the formation of In-Pt alloy due to the inter-mixing at the interface and the dewetting process advances along with the enhanced diffusion of In-Pt alloy atoms. Eventually, well-defined Pt NPs are formed by means of complete desorption of In atoms by sublimation. By the control of In and Pt ratio in the bilayers with the fixed total thickness such as In4.5 nm/Pt1.5 nm, In3 nm/Pt3 nm, In1.5 nm/Pt4.5 nm, the isolated dome shaped Pt NPs of various size are demonstrated, which reflects the significant impact of In component in the dewetting process. The optical characterization of Pt NPs exhibits the formation of quadrupolar resonance and strong dipolar resonance bands in the UV and VIS regions respectively, which are tunable based on the morphology of Pt NPs. In specific, the dipolar resonance peaks demonstrate a red shifting behavior with the increment of size of Pt NPs and gradually become narrower along with the improvement of uniformity of Pt NPs.


Asunto(s)
Indio/química , Nanopartículas del Metal/química , Platino (Metal)/química , Nanoestructuras/química
11.
Nanoscale Res Lett ; 13(1): 151, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29767305

RESUMEN

In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd150 nm/Ag80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks (~ 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from ~ 510 to ~ 475 nm along with the decreased average size of alloy nanostructures.

13.
PLoS One ; 12(12): e0189823, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29253017

RESUMEN

Multi-metallic alloy nanoparticles (NPs) can offer additional opportunities for modifying the electronic, optical and catalytic properties by the control of composition, configuration and size of individual nanostructures that are consisted of more than single element. In this paper, the fabrication of bimetallic Pd-Ag NPs is systematically demonstrated via the solid state dewetting of bilayer thin films on c-plane sapphire by governing the temperature, time as well as composition. The composition of Pd-Ag bilayer remarkably affects the morphology of alloy nanostructures, in which the higher Ag composition, i.e. Pd0.25Ag0.75, leads to the enhanced dewetting of bilayers whereas the higher Pd composition (Pd0.75Ag0.25) hinders the dewetting. Depending on the annealing temperature, Pd-Ag alloy nanostructures evolve with a series of configurations, i.e. nucleation of voids, porous network, elongated nanoclusters and round alloy NPs. In addition, with the annealing time set, the gradual configuration transformation from the elongated to round alloy NPs as well as size reduction is demonstrated due to the enhanced diffusion and sublimation of Ag atoms. The evolution of various morphology of Pd-Ag nanostructures is described based on the surface diffusion and inter-diffusion of Pd and Ag adatoms along with the Ag sublimation, Rayleigh instability and energy minimization mechanism. The reflectance spectra of bimetallic Pd-Ag nanostructures exhibit various quadrupolar and dipolar resonance peaks, peak shifts and absorption dips owing to the surface plasmon resonance of nanostructures depending on the surface morphology. The intensity of reflectance spectra is gradually decreased along with the surface coverage and NP size evolution. The absorption dips are red-shifted towards the longer wavelength for the larger alloy NPs and vice-versa.


Asunto(s)
Nanopartículas del Metal/química , Paladio/química , Plata/química , Aleaciones , Óxido de Aluminio/química , Catálisis , Difusión , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Porosidad , Resonancia por Plasmón de Superficie , Propiedades de Superficie , Temperatura
14.
PLoS One ; 12(5): e0177048, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28472142

RESUMEN

Metallic nanostructures (NSs) have been widely adapted in various applications and their physical, chemical, optical and catalytic properties are strongly dependent on their surface morphologies. In this work, the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire (0001) is demonstrated by the control of annealing temperature and dwelling duration with the distinct thickness of Pt films. The formation of Pt NSs is led by the surface diffusion, agglomeration and surface and interface energy minimization of Pt thin films, which relies on the growth parameters such as system temperature, film thickness and annealing duration. The Pt layer of 10 nm shows the formation of overlaying NPs below 650°C and isolated Pt nanoparticles above 700°C based on the enhanced surface diffusion and Volmer-Weber growth model whereas larger wiggly nanostructures are formed with 20 nm thick Pt layers based on the coalescence growth model. The morphologies of Pt nanostructures demonstrate a sharp distinction depending on the growth parameters applied. By the control of dwelling duration, the gradual transition from dense Pt nanoparticles to networks-like and large clusters is observed as correlated to the Rayleigh instability and Ostwald ripening. The various Pt NSs show a significant distinction in the reflectance spectra depending on the morphology evolution: i.e. the enhancement in UV-visible and NIR regions and the related optical properties are discussed in conjunction with the Pt NSs morphology and the surface coverage.


Asunto(s)
Óxido de Aluminio , Calor , Nanoestructuras , Óptica y Fotónica , Platino (Metal)/química , Microscopía de Fuerza Atómica , Espectrometría Raman , Propiedades de Superficie
15.
Nanoscale Res Lett ; 12(1): 364, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28532130

RESUMEN

Si-based optoelectronic devices embedded with metallic nanoparticles (NPs) have demonstrated the NP shape, size, spacing, and crystallinity dependent on light absorption and emission induced by the localized surface plasmon resonance. In this work, we demonstrate various sizes and configurations of palladium (Pd) nanostructures on Si (111) by the systematic thermal annealing with the variation of Pd thickness and annealing temperature. The evolution of Pd nanostructures are systematically controlled by the dewetting of thin film by means of the surface diffusion in conjunction with the surface and interface energy minimization and Volmer-Weber growth model. Depending on the control of deposition amount ranging between 0.5 and 100 nm at various annealing temperatures, four distinctive regimes of Pd nanostructures are demonstrated: (i) small pits and grain formation, (ii) nucleation and growth of NPs, (iii) lateral evolution of NPs, and (iv) merged nanostructures. In addition, by the control of annealing between 300 and 800 °C, the Pd nanostructures show the evolution of small pits and grains, isolated NPs, and finally, Pd NP-assisted nanohole formation along with the Si decomposition and Pd-Si inter-diffusion. The Raman analysis showed the discrepancies on phonon modes of Si (111) such that the decreased peak intensity with left shift after the fabrication of Pd nanostructures. Furthermore, the UV-VIS-NIR reflectance spectra revealed the existence of surface morphology dependent on absorption, scattering, and reflectance properties.

16.
Nanomicro Lett ; 9(2): 17, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30474035

RESUMEN

Silver (Ag) nanostructures demonstrate outstanding optical, electrical, magnetic, and catalytic properties and are utilized in photonic, energy, sensors, and biomedical devices. The target application and the performance can be inherently tuned by control of configuration, shape, and size of Ag nanostructures. In this work, we demonstrate the systematical fabrication of various configurations of Ag nanostructures on sapphire (0001) by controlling the Ag deposition thickness at different annealing environments in a plasma ion coater. In particular, the evolution of Ag particles (between 2 and 20 nm), irregular nanoclusters (between 30 and 60 nm), and nanocluster networks (between 80 and 200 nm) are found be depended on the thickness of Ag thin film. The results were systematically analyzed and explained based on the solid-state dewetting, surface diffusion, Volmer-Weber growth model, coalescence, and surface energy minimization mechanism. The growth behavior of Ag nanostructures is remarkably differentiated at higher annealing temperature (750 °C) due to the sublimation and temperature-dependent characteristic of dewetting process. In addition, Raman and reflectance spectra analyses reveal that optical properties of Ag nanostructures depend on their morphology.

18.
Nanoscale Res Lett ; 10(1): 494, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26704710

RESUMEN

Au nanoparticles (NPs) have been utilized in a wide range of device applications as well as catalysts for the fabrication of nanopores and nanowires, in which the performance of the associated devices and morphology of nanopores and nanowires are strongly dependent on the size, density, and configuration of the Au NPs. In this paper, the evolution of the self-assembled Au nanostructures and NPs on sapphire (0001) is systematically investigated with the variation of annealing temperature (AT) and dwelling time (DT). At the low-temperature range between 300 and 600 °C, three distinct regimes of the Au nanostructure configuration are observed, i.e., the vermiform-like Au piles, irregular Au nano-mounds, and Au islands. Subsequently, being provided with relatively high thermal energy between 700 and 900 °C, the round dome-shaped Au NPs are fabricated based on the Volmer-Weber growth model. With the increased AT, the size of the Au NPs is gradually increased due to a more favorable surface diffusion while the density is gradually decreased as a compensation. On the other hand, with the increased DT, the size and density of Au NPs decrease due to the evaporation of Au at relatively high annealing temperature at 950 °C.

19.
Nanoscale Res Lett ; 10(1): 380, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26428015

RESUMEN

The size, density, and configurations of Au nanoparticles (NPs) can play important roles in controlling the electron mobility, light absorption, and localized surface plasmon resonance, and further in the Au NP-assisted nanostructure fabrications. In this study, we present a systematical investigation on the evolution of Au NPs and nanostructures on Si (111) by controlling the deposition amount (DA), annealing temperature (AT), and dwelling time (DT). Under an identical growth condition, the morphologies of Au NPs and nanostructures drastically evolve when the DA is only slightly varied, based on the Volmer-Weber and coalescence models: i.e. I: mini NPs, II: mid-sized round dome-shaped Au NPs, III: large Au NPs, and IV: coalesced nanostructures. With the AT control, three distinctive ranges are observed: i.e., NP nucleation, Au NPs maturation and melting. The gradual dimensional expansion of Au NPs is always compensated with the density reduction, which is explained with the thermodynamic theory. The DT effect is relatively minor on Au NPs, a sharp contrast to other metallic NPs, which is discussed based on the Ostwald-ripening.

20.
Sci Rep ; 5: 13954, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26354098

RESUMEN

The control over the configuration, size, and density of Au nanoparticles (NPs) has offered a promising route to control the spatial confinement of electrons and photons, as a result, Au NPs with a various configuration, size and density are witnessed in numerous applications. In this work, we investigate the evolution of self-assembled Au nanostructures on 4H-SiC (0001) by the systematic variation of annealing temperature (AT) with several deposition amount (DA). With the relatively high DAs (8 and 15 nm), depending on the AT variation, the surface morphology drastically evolve in two distinctive phases, i.e. (I) irregular nano-mounds and (II) hexagonal nano-crystals. The thermal energy activates adatoms to aggregate resulting in the formation of self-assembled irregular Au nano-mounds based on diffusion limited agglomeration at comparatively low annealing temperature, which is also accompanied with the formations of hillocks and granules due to the dewetting of Au films and surface reordering. At high temperature, hexagonal Au nano-crystals form with facets along {111} and {100} likely due to anisotropic distribution of surface energy induced by the increased volume of NPs. With the small DA (3 nm), only dome shaped Au NPs are fabricated along with the variation of AT from low to elevated temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA