Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sci Total Environ ; 851(Pt 1): 158042, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35973543

RESUMEN

Natural waterways near urban areas are heavily impacted by anthropogenic activities, including their microbial communities. A contaminant of growing public health concern in rivers is antibiotic resistant genes (ARGs), which can spread between neighboring bacteria and increase the potential for transmission of AR bacteria to animals and humans. To identify the matrices of most concern for AR, we compared ARG burdens and microbial community structures between sample types from the Scioto River Watershed, Ohio, the United States, from 2017 to 2018. Five environmental matrices (water, sediment, periphyton, detritus, and fish gut) were collected from 26 river sites. Due to our focus on clinically relevant ARGs, three carbapenem resistance genes (blaKPC, blaNDM, and blaOXA-48) were quantified via DropletDigital™ PCR. At a subset of nine urbanized sites, we conducted16S rRNA gene sequencing and functional gene predictions. Carbapenem resistance genes were quantified from all matrices, with blaKPC being the most detected (88 % of samples), followed by blaNDM (64 %) and blaOXA-48 (23 %). Fish gut samples showed higher concentrations of blaKPC and blaNDM than any other matrix, indicating potential ARG bioaccumulation, and risk of broader dissemination through aquatic and nearshore food webs. Periphyton had higher concentrations of blaNDM than water, sediment, or detritus. Microbial community analysis identified differences by sample type in community diversity and structure. Sediment samples had the most diverse microbial communities, and detritus, the least. Spearman correlations did not reveal significant relationships between the concentrations of the monitored ARGs and microbial community diversity. However, several differentially abundant taxa and microbial functions were identified by sample type that is definitive of these matrices' roles in the river ecosystem and habitat type. In summary, the fish gut and periphyton are a concern as AR reservoirs due to their relatively high concentration of carbapenem resistance genes, diverse microbial communities, and natural functions that promote AR.


Asunto(s)
Microbiota , Perifiton , Animales , Antibacterianos/farmacología , Carbapenémicos , Farmacorresistencia Microbiana/genética , Peces/genética , Genes Bacterianos , Humanos , Agua
2.
Sci Total Environ ; 783: 146902, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-33872907

RESUMEN

The presence of pharmaceuticals and personal care products (PPCPs) in aquatic environments is of increasing concern due to the presence of residues in fish and aquatic organisms, and emerging antibiotic resistance. Wastewater release is an important contributor to the presence of these compounds in aquatic ecosystems, where they may accumulate in food webs. The traditional environmental surveillance approach relies on the targeted analysis of specific compounds, but more suspect screening methods have been developed recently to allow for the identification of a variety of contaminants. In this study, a method based on QuEChERS extraction - using acetonitrile/water mixture as solvent and PSA/C18 for sample clean-up - was applied to identify pharmaceuticals and their metabolites in fish livers. Both target and suspect screening workflows were used and fish were sampled upstream and downstream of wastewater treatment plants from the Scioto River, Ohio (USA). The method performed well in terms of extraction of some target PPCPs, with recoveries generally above 90%, good repeatability (<20%), and linearity. Based on target analysis, lincomycin and sulfamethoxazole were two antibiotics identified in fish livers at average concentrations of 30.3 and 25.6 ng g-1 fresh weight, respectively. Using suspect screening, another antibiotic, azithromycin and an antidepressant metabolite, erythrohydrobupropion were identified (average concentrations: 27.8 and 13.8 ng g-1, respectively). The latter, reported, to the best of our knowledge, for the first time in fish livers, was also found at higher concentrations in fish livers sampled downstream vs. upstream. The higher frequency of detection for azithromycin in benthic feeding fish species (63%) as well as clusters identified between different foraging groups suggest that foraging behavior may be an important mechanism in the bioaccumulation of PPCPs. This study shows how suspect screening is effective in identifying new contaminants in fish livers, notably using differential analysis among different spatially distributed samples.


Asunto(s)
Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Animales , Ecosistema , Monitoreo del Ambiente , Hígado/química , Ohio , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis
3.
Sci Total Environ ; 754: 141970, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32920387

RESUMEN

Integrating a network perspective into multiple-stressor research can reveal indirect stressor effects and simultaneously estimate both taxonomic and functional community characteristics, thus representing a novel approach to stressor paradigms in rivers. Using six years of data from twelve streams of Columbus, Ohio, USA, the effects of nutrients (N:P), impervious surface (%IS), and sedimentation on network properties were quantified. Variability in the strength and distribution of trophic interactions was assessed by incorporating biomass into networks. All stressors impacted some properties of network topology - linkage density (average number of links per species), connectance (fraction of all possible links realized in a network), and compartmentalization (degree to which networks contain discrete sub-webs), including synergistic interactive effects between sedimentation and stream size. We also found support for antagonistic effects between (1) sedimentation and %IS and between %IS and N:P on the weighted index mean link weight, which represents the magnitude of trophic interactions among species in a network, and (2) %IS and stream size on strength standard deviation, a measure of the distribution of total magnitude of all trophic interactions per species in a network. Overall, our results point to the potential for urban stressors such as impervious surfaces and sedimentation - alone and as interactions - to decrease network complexity, compartmentalization, and stability, likely through homogenizing habitat and limiting food resources. The observation that larger streams often buffered the negative effects of these stressors suggests that restoration and other management approaches might be most beneficial in smaller headwater streams of urban catchments.


Asunto(s)
Peces , Ríos , Animales , Ecosistema , Ohio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA