RESUMEN
Fleas in the genus Ctenocephalides serve as biological vectors or intermediate hosts of microorganisms such as bacteria, rickettsia, protozoa and helminths. Ctenocephalides felis has a worldwide distribution, while C. orientis has long been considered as a subspecies of C. felis in Asia. To help the morphological recognition of these two species and further explore their differences, we used the geometric morphometric approach applied to the head. Both sexes were examined. Five anatomical landmarks of the head were used, and to capture the curvature of the front head, 10 semilandmarks were added. There was a consistent difference in species classification accuracy when considering landmarks only versus their combination with semilandmarks, suggesting the importance of the curve of the head as a taxonomic signal. Using or not the labels in the reclassification analyses, the head shape allowed by itself almost perfect recognition of the two species, in both sexes, even after adjustment for prior probabilities. The same approach disclosed a high level of sexual size and shape dimorphism in both species. The contribution of size variation to the discrimination by shape was much more important between sexes (from 27% to 45%) than between species (from 0.7% to 7.1%). Nevertheless, in our data, size never could represent a way to reliably recognise the sex of an individual, even less its species. Geographical variation in head shape could only be explored for the C. orientis sample. No significant correlation of morphometric variation with geography could be detected, which would be consistent with gene flow between Thai provinces. The geometric morphometric approach of the flea head, when it incorporates head curves, is a promising tool for rapid, economical, and accurate species and sex identification. It is, therefore, a useful tool for future epidemiological and demographic studies.
Asunto(s)
Ctenocephalides , Cabeza , Animales , Femenino , Tailandia , Masculino , Ctenocephalides/anatomía & histología , Ctenocephalides/clasificación , Cabeza/anatomía & histología , Especificidad de la Especie , Caracteres Sexuales , GeografíaRESUMEN
Adult flies of the genus Stomoxys Geoffroy, 1762 (Diptera: Muscidae), especially S. pullus Austen, 1909, S. uruma Shinonaga et Kano, 1966 and S. indicus Picard, 1908, are morphologically similar and sometimes difficult to distinguish when using external morphological characteristics. These species may act as vectors and/or potential vectors of many pathogens (virus, bacteria and protozoa). Their correct identification is important to target the vectors involved in the transmission of the pathogens and also helps in the fly control program.The aim of the present study was to distinguish three species which are difficult to separate using traditional diagnostic characters for species of Stomoxys such as colour patterns and body proportions. Modern morphometrics, both landmark and outline-based, was used to access wing geometry of S. pullus, S. uruma and S. indicus. A total of 198 and 190 wing pictures were analysed for landmark- and outline-based approaches, respectively. Wing shape was able to separate species and sexes of the three Stomoxys flies with highly significant difference of Mahalanobis distances. The cross-validated classification scores ranged from 76% to 100% for landmark and 77% to 96% for outline-based morphometrics. The geometry of wing features appears to be a very useful, low-cost tool to distinguish among the vectors S. pullus, S. uruma and S. indicus.
Asunto(s)
Entomología/métodos , Muscidae/clasificación , Animales , Entomología/normas , Muscidae/anatomía & histología , Nigeria , Reproducibilidad de los Resultados , Especificidad de la EspecieRESUMEN
Recent studies have revealed taxonomic signals within the wing cells of certain mosquito species. In our study, wing cell differentiation among mosquito vectors from the Tanaosri mountain range in Thailand was evaluated using the outline-based geometric morphometric (GM) approach. Our focus was on four specific wing cells for GM analysis: the wing contour (external cell), the second submarginal cell (internal cell 1), the first posterior cell (internal cell 2), and the third posterior cell (internal cell 3). Before proceeding with the GM approach, the identity of seven mosquito genera and 21 species was confirmed using molecular techniques. Our validated classification tests demonstrated that the performance of mosquito species classification varies according to genus. Notably, three Aedes species exhibited the highest accuracy for both internal cell 2 and internal cell 3, each registering a score of 93.20 %. In the case of two Mansonia species, the wing contour displayed a remarkable accuracy of 98.57 %. Consequently, we suggest the use of the outline-based GM approach, particularly focusing on the wing contour, for differentiating Mansonia annulifera and Mansonia uniformis. In contrast, the highest accuracy for classifying Culex species was found in internal cell 1, at 75.51 %, highlighting the challenges due to similarities in wing cells within this genus. These findings provide a guideline for future applications of the outline-based GM approach, focusing on wing cells, as an alternative method to classify mosquito vector species.
Asunto(s)
Aedes , Culex , Animales , Mosquitos Vectores , Tailandia , Alas de AnimalesRESUMEN
Armigeres subalbatus, a mosquito species widely found in Thailand and other Asian countries, serves as a vector for filarial parasites, affecting both humans and animals. However, the surveillance of this vector is complicated because of its morphological similarity to two other species, Armigeres dohami and Armigeres kesseli. To differentiate these morphologically similar species, our study employed both wing geometric morphometrics (GM) and DNA barcoding, offering a comprehensive approach to accurately identify these closely related Armigeres species in Thailand. Our GM analyses based on shape demonstrated significant accuracy in differentiating Armigeres species. Specifically, the outline-based GM method focusing on the 3rd posterior cell exhibited an accuracy rate of 82.61%, closely followed by the landmark-based GM method with 81.54%. Both these GM techniques effectively distinguished Ar. subalbatus from Ar. dohami and Ar. kesseli. Regarding DNA barcoding, our investigation of pairwise intra- and interspecific divergences revealed a "barcoding gap". Furthermore, the results of species confirmation using both species delimitation methods including the automatic barcode gap discovery method (ABGD) and the Multi-rate Poisson tree process (mPTP) were consistent with those of morphological identification, sequence comparisons with the GenBank and Barcode of Life Data System (BOLD) databases, and the neighbor-joining tree construction. These consistent results emphasize the efficacy of DNA barcoding in the precise identification of Armigeres species.
Asunto(s)
Culicidae , Humanos , Animales , Culicidae/genética , Culicidae/parasitología , Código de Barras del ADN Taxonómico/métodos , Código de Barras del ADN Taxonómico/veterinaria , Tailandia , Mosquitos VectoresRESUMEN
Mosquito-borne diseases pose a significant public health challenge globally. Our study focused on the seasonal diversity of mosquito species in the connecting areas of the Tenasserim (also known as Tanaosri) range forests in Thailand. Additionally, we employed the geometric morphometric technique to assess variations in wing size and shape among five predominant mosquito species. Throughout the study period, we collected a total of 9,522 mosquitoes, encompassing 42 species across eight genera. In these connecting areas of forests, the Simpson index and Shannon species diversity index were recorded at 0.86 and 2.36, respectively, indicating a high level of mosquito diversity. Our analysis using the Analysis of Similarities (ANOSIM) test showed significant seasonal differences in mosquito communities, with an R-value of 0.30 (p < 0.05) in the lower connecting areas and 0.37 (p < 0.05) in the upper connecting areas. Additionally, canonical correspondence analyses showed that the abundance of each mosquito species is influenced by various climate factors. Phenotypic analyses of wing size and shape have deepened our understanding of local adaptation and the seasonal pressures impacting these vectors. Notably, most species exhibited larger wing sizes in the dry season compared to other seasons. Additionally, seasonal assessments of wing shape in five predominant mosquito species revealed significant differences across seasonal populations (p < 0.05). Ongoing monitoring of these populations is crucial to enhancing our understanding of the seasonal effects on mosquito abundance and physiological adaptations. These insights are essential for developing more effective strategies to manage mosquito-borne diseases.
Asunto(s)
Clima , Culicidae , Bosques , Mosquitos Vectores , Estaciones del Año , Animales , Tailandia , Mosquitos Vectores/anatomía & histología , Mosquitos Vectores/fisiología , Mosquitos Vectores/crecimiento & desarrollo , Mosquitos Vectores/clasificación , Culicidae/anatomía & histología , Culicidae/fisiología , Culicidae/crecimiento & desarrollo , Culicidae/clasificación , Alas de Animales/anatomía & histología , BiodiversidadRESUMEN
Ascoschoengastia indica is one of the dominant chigger species in Southeast Asia and a potential carrier of scrub typhus, due in part to its cosmopolitan nature. This study explored the possible biological significance of the observed dimorphism in the shape of its scutum sensilla. Sensilla are specialized structures that are generally adapted to perform specific functions related to sensory capabilities, so their shape and sizes are expected to vary between taxa. We describe morphological variation of the sensilla of A. indica in Thailand. The sensilla had either a round or an ovoid, club-shaped form, which was not dependent on the particularly locality or host. Ignoring the precise function of the sensilla and their morphological variation, our study attempted to answer the following single question: Do the distinct forms of the sensilla indicate possible heterogeneity of the A. indica species? The two forms, named S1 and S2, were compared by genetic and morphometric techniques. The genetic analysis was based on the COI sequences, while the morphometric comparison used the scutum, an organ shown to be of taxonomic value for chigger mites. Neither morphometric nor genetic data revealed any evidence of a speciation process underlying the morphological variation in sensillum types.
RESUMEN
Japanese encephalitis (JE) is a viral infection of the brain caused by the Japanese encephalitis virus, which spreads globally, particularly in 24 countries of Southeast Asia and the Western Pacific region. In Thailand, the primary vectors of JE are Cx. pseudovishnui, Cx. tritaeniorhynchus, and Cx. vishnui of the Cx. vishnui subgroup. The morphologies of three mosquito species are extremely similar, making identification challenging. Thus, geometric morphometrics (GM) and DNA barcoding were applied for species identification. The results of cross-validation reclassification revealed that the GM technique based on wing shape analysis had relatively high potential for distinguishing Cx. pseudovishnui, Cx. tritaeniorhynchus, and Cx. vishnui (total performance = 88.34% of correctly assigned individuals). While the DNA barcoding yielded excellent results in identifying these Culex species based on the DNA barcode gap (average intraspecific genetic distance = 0.78% ± 0.39% and average interspecific genetic distance = 6.14% ± 0.79%). However, in the absence of the required facilities for DNA barcoding, GM techniques can be employed in conjunction with morphological methods to enhance the reliability of species identification. Based on the results of this study, our approach can help guide efforts to identify members of the Cx. vishnui subgroup, which will be useful for the effective vector control of JE in Thailand.
RESUMEN
Coquillettidia mosquitoes are important nuisance-biting pests and a vector of brugian filariasis in Thailand. However, comprehensive information about these mosquitoes remains unavailable such as molecular and morphometric differences among species. The lack of vector knowledge on Coquillettidia species could affect future disease control. This study aims to investigate differences in molecular variations based on mitochondrial cytochrome oxidase subunit I (COI) gene and wing geometric traits of three Coquillettidia species, namely Cq. crassipes, Cq. nigrosignata, and Cq. ochracea in Thailand. The results of molecular analyses revealed the differences among three Coquillettidia species. The genetic difference measure based on the Kimura two-parameter model among three Coquillettidia species showed low intraspecific distances (0%-3.05%) and large interspecific distances (10.10%-12.41%). The values of intra- and inter-genetic differences of three Coquillettidia species did not overlap which showed the existence of a barcoding gap indicating the efficiency of the identification based on the COI gene. As with molecular analysis, the landmark-based geometric morphometrics approach based on wing shape analysis indicated three distinct species groups which were supported by the high total performance score of cross-validated classification (97.16%). These results provide the first evidence of taxonomic signal based on molecular and wing geometric differences to support species identification and biological variations of Coquillettidia mosquitoes in Thailand for understanding these rare vector mosquitoes in depth and leading to effective further mosquito control.
Asunto(s)
Culicidae , Filariasis , Infecciones por Nematodos , Animales , Tailandia , Mosquitos Vectores/genética , Culicidae/genéticaRESUMEN
Stomoxyini flies (Diptera: Muscidae) include species of parasitic flies of medical and veterinary importance. The adult flies feed on the blood of mammals and may transmit several parasites and pathogens. We conducted an entomological survey of Stomoxyini flies from different sites in Thailand. Stomoxyini flies were collected at four major types of sites: zoos, livestock farms, wildlife conservation areas and a national park using vavoua traps between November 2010 and April 2011. A total of 3,314 Stomoxyini flies belonging to the genera Stomoxys, Haematobosca, Haematostoma and Haematobia were collected. Eight species were identified: S. calcitrans (46.6%), S. uruma (26.8%), S. pulla (4.3%), S. indicus (0.7%), S. sitiens (0.1%), H. sanguinolenta (11.2 %), H. austeni (0.5%) and H. irritans exigua (9.8%). The diversity of Stomoxyini flies in the livestock farms was higher than the other sites. Altitude correlated with the number of flies. This study provides information that may be useful for Stomoxyini flies control.
Asunto(s)
Muscidae/clasificación , Animales , Entomología/métodos , Vigilancia de la Población/métodos , TailandiaRESUMEN
Plasmodium knowlesi, a malaria parasite that occurs naturally in long-tailed macaques, pig-tailed macaques, and banded leaf monkeys, is currently regarded as the fifth of the human malaria parasites. We aimed to investigate genetic diversity based on the cytochrome c oxidase subunit I (COI) gene, detect Plasmodium parasites, and screen for the voltage-gated sodium channel (VGSC)-mutation-mediated knockdown resistance (kdr) of Anopheles mosquitoes in Ranong province, which is the most P. knowlesi-endemic area in Thailand. One hundred and fourteen Anopheles females belonging to eight species, including An. baimaii (21.05%), An. minimus s.s. (20.17%), An. epiroticus (19.30%), An. jamesii (19.30%), An. maculatus s.s. (13.16%), An. barbirostris A3 (5.26%), An. sawadwongporni (0.88%), and An. aconitus (0.88%), were caught in three geographical regions of Ranong province. None of the Anopheles mosquitoes sampled in this study were infected with Plasmodium parasites. Based on the sequence analysis of COI sequences, An. epiroticus had the highest level of nucleotide diversity (0.012), followed by An. minimus (0.011). In contrast, An. maculatus (0.002) had the lowest level of nucleotide diversity. The Fu's Fs and Tajima's D values of the Anopheles species in Ranong were all negative, except the Tajima's D values of An. minimus (0.077). Screening of VGSC sequences showed no presence of the kdr mutation of Anopheles mosquitoes. Our results could be used to further select effective techniques for controlling Anopheles populations in Thailand's most P. knowlesi-endemic area.
RESUMEN
The correct identification of mosquito species is important for effective mosquito vector control. However, the standard morphological identification of mosquito species based on the available keys is not easy with specimens in the field due to missing or damaged morphological features during mosquito collections, often leading to the misidentification of morphologically indistinguishable. To resolve this problem, we collected mosquito species across Thailand to gather genetic information, and evaluated the DNA barcoding efficacy for mosquito species identification in Thailand. A total of 310 mosquito samples, representing 73 mosquito species, were amplified using mitochondrial cytochrome c oxidase subunit I (COI) primers. The average maximum intraspecific genetic variation of the 73 mosquito species was 1% ranged from 0-5.7%. While, average minimum interspecific genetic variation (the distance to the nearest neighbour) of the 73 mosquito species was 7% ranged from 0.3-12.9%. The identification of success rates based on the "Best Match," "Best Close Match," and "All Species Barcodes" methods were 97.7%, 91.6%, and 81%, respectively. Phylogenetic analyses of Anopheles COI sequences demonstrated a clear separation between almost all species (except for those between An. baimaii and An. dirus), with high bootstrap support values (97%-99%). Furthermore, phylogenetic analyses revealed potential sibling species of An. annularis, An. tessellatus, and An. subpictus in Thailand. Our results indicated that DNA barcoding is an effective molecular approach for the accurate identification of mosquitoes in Thailand.
Asunto(s)
Anopheles , Culicidae , Animales , Anopheles/genética , Culicidae/genética , Código de Barras del ADN Taxonómico/métodos , ADN Mitocondrial , Complejo IV de Transporte de Electrones/genética , Mosquitos Vectores/genética , Filogenia , TailandiaRESUMEN
Anopheles members of the Barbirostris complex are important vectors of malaria in Thailand. However, they are morphologically indistinguishable because they are closely related species. In this study, wing geometric morphometrics (GM) and DNA barcoding based on the cytochrome c oxidase subunit 1 (C O I) gene were applied to differentiate cryptic species of the Barbirostris complex in Thailand. Three cryptic species of the Barbirostris complex, Anopheles dissidens (19.44%), Anopheles saeungae (24.54%), and Anopheles wejchoochotei (56.02%) were initially identified using the multiplex polymerase chain reaction assay. DNA barcoding analyses showed low intraspecific distances (range, 0.27%-0.63%) and high interspecific distances (range, 1.92%-3.68%), consistent with the phylogenetic analyses that showed clear species groups. While wing size and shape analyses based on landmark-based GM indicated differences between three species (p < 0.05). The cross-validated reclassification revealed that the overall efficacy of wing size analysis for species identification of the Barbirostris complex was less than the wing shape analysis (56.43% vs. 74.29% total performance). Therefore, this study's results are guidelines for applying modern techniques to identify members within the Barbirostris complex, which are still difficult to distinguish by morphology-based identification and contribute to further appropriate malaria control.
RESUMEN
Anopheles (Cellia) dirus Peyton & Harrison and Anopheles baimaii Sallum & Peyton are sibling species within the Dirus complex belonging to the Leucosphyrus group, and have been incriminated as primary vectors of malaria in Thailand. In the present study, DNA barcoding and geometric morphometrics were used to distinguish between An. dirus and An. baimaii in the international border areas, Trat Province, eastern Thailand. Our results revealed that DNA barcoding based on the cytochrome c oxidase subunit I gene could not be used to distinguish An. dirus from An. baimaii. The overlapping values between intra- and interspecific genetic divergence indicated no barcoding gap present for An. dirus and An. baimaii (ranging from 0 to 0.99%). However, the results of the geometric morphometric analysis based on the wing shape clearly distinguished An. dirus and An. baimaii, with 92.42% of specimens assigned to the correct species. We concluded that geometric morphometrics is an effective tool for the correct species identification of these two malaria vectors. Our findings could be used to make entomological surveillance information more accurate, leading to further effective mosquito control planning in Thailand and other countries in Southeast Asia.
Asunto(s)
Anopheles , Malaria , Animales , Anopheles/genética , Cambodia , ADN , Código de Barras del ADN Taxonómico , Mosquitos Vectores/genética , Tailandia/epidemiologíaRESUMEN
All members of the ant genus Odontomachus Latreille, 1804 are venomous ants. Four species in this genus have been identified from Thailand: Odontomachus latidens Mayr, 1867; O. monticola Emery, 1892; O. rixosus Smith, 1757; and O. simillimus Smith, 1758. The three latter species are available and have been used for an outline morphometric study. They display similar morphology, which makes their distinction very difficult except for highly qualified individuals. A total of 80 worker specimens were studied, exploring the contour shapes of their head and pronotum as possible taxonomic characters. The size of each body part was estimated determining the contour perimeter, the values for which were largely overlapping between O. rixosus and O. simillimus; most O. monticola specimens exhibited a significantly larger size. In contrast to the size, each contour shape of the head or pronotum established O. rixosus as the most distinct species. An exploratory data analysis disclosed the higher taxonomic signal of the head contour relative to the pronotum one. The scores obtained for validated reclassification were much better for the head (99%) than for the pronotum (82%). This study supports outline morphometrics of the head as a promising approach to contribute to the morphological identification of ant species, at least for monomorphic workers.
RESUMEN
Accurate identification of mosquito species is critically important for monitoring and controlling the impact of human diseases they transmit. Here, we investigate four mosquito species: Aedes aegypti, Ae. albopictus, Ae. scutellaris and Verrallina dux that co-occur in tropical and subtropical regions, and whose morphological similarity challenges their accurate identification, a crucial requirement in entomological surveillance programs. Previous publications reveal a clear taxonomic signal embedded in wing cell landmark configuration, as well as in the external contour of the wings. We explored this signal for internal cells of the wings as well, to determine whether internal cells could uniformly provide the same taxonomic information. For each cell to be tentatively assigned to its respective species, i.e., to measure the amount of its taxonomic information, we used the shape of its contour, rather than its size. We show that (i) the taxonomic signal of wing shape is not uniformly spread among internal cells of the wing, and (ii) the amount of taxonomic information of a given cell depends on the species under comparison. This unequal taxonomic signal of internal cells is not related to size, nor to apparent shape complexity. The strong taxonomic signal of some cells ensures that even partly damaged wings can be used to improve species recognition.
RESUMEN
A longitudinal entomological survey was conducted to provide in-depth information on An. epiroticus and determine whether ecological and entomological factors could influence malaria transmission in Rayong Province, Thailand. The mosquitoes were collected monthly from May 2007 to April 2008 by human landing catch technique from 6:00-12:00 PM for 2 consecutive nights, at 3 collection sites. A total of 3,048 mosquitoes within 5 species were captured: An. epiroticus, Culex quinquefasciatus Say, Cx. sitiens Wiedemann, Aedes aegypti (L.) and Ae. albopictus Skuse. PCR was used for molecular identification of An. sundaicus complex, by determination of COI, ITS2, and D3 genes. The target mosquitoes were An. epiroticus, which was the predominant species, accounting for 43.8% of specimens collected. The biting cycle pattern increased during 6:00-8:00 PM and reached a maximum of 6.6 bites/person/hour by 12:00 PM. The mosquitoes varied in population density throughout the year. The highest biting rate was 37.6 bites/person/ half night in September and the lowest (10.2 bites/person/half night) in January. Nested PCR and real-time PCR techniques were used to detect the malaria parasite in An. epiroticus adult females. Nine of 926 (0.97%) mosquitoes tested were malaria parasite positive: 6 P. falciparum and 3 P. vivax. The infective mosquitoes were found in the dry and early rainy seasons. The overall annual entomological inoculation rate (EIR) in the village was 76.6. The overall parity rate was 74%. A total of 38 cement tanks were used to characterize the nature of the breeding places of An. epiroticus. An. epiroticus larvae coexisted with Aedes and Culex larvae; the maximum larval density was more than 140 larvae per dip in May. Breeding places included fresh, brackish and salt water, typically with full sunlight and mats of green algae on the water surface. The salinity of the water ranged from 0.5 to 119.4 g/l, with a narrow pH range of 8.2-8.7. Dissolved oxygen was highest in November (6.27 mg/l) and lowest in March (3.46 mg/l). The water temperature varied between 24.6 and 32.8 degrees C.
Asunto(s)
Anopheles , Insectos Vectores , Malaria/transmisión , Animales , Anopheles/crecimiento & desarrollo , Anopheles/parasitología , Cruzamiento , Humanos , Insectos Vectores/crecimiento & desarrollo , Insectos Vectores/parasitología , Larva/crecimiento & desarrollo , Densidad de Población , Estaciones del Año , TailandiaRESUMEN
BACKGROUND: Fasciola hepatica and F. gigantica cause fascioliasis in both humans and livestock. Some adult specimens of Fasciola sp. referred to as "intermediate forms" based on their genetic traits, are also frequently reported. Simple morphological criteria are unreliable for their specific identification. In previous studies, promising phenotypic identification scores were obtained using morphometrics based on linear measurements (distances, angles, curves) between anatomical features. Such an approach is commonly termed "traditional" morphometrics, as opposed to "modern" morphometrics, which is based on the coordinates of anatomical points. METHODS: Here, we explored the possible improvements that modern methods of morphometrics, including landmark-based and outline-based approaches, could bring to solving the problem of the non-molecular identification of these parasites. F. gigantica and Fasciola intermediate forms suitable for morphometric characterization were selected from Thai strains following their molecular identification. Specimens of F. hepatica were obtained from the Liverpool School of Tropical Medicine (UK). Using these three taxa, we tested the taxonomic signal embedded in traditional linear measurements versus the coordinates of anatomical points (landmark- and outline-based approaches). Various statistical techniques of validated reclassification were used, based on either the shortest Mahalanobis distance, the maximum likelihood, or the artificial neural network method. RESULTS: Our results revealed that both traditional and modern morphometric approaches can help in the morphological identification of Fasciola sp. We showed that the accuracy of the traditional approach could be improved by selecting a subset of characters among the most contributive ones. The influence of size on discrimination by shape was much more important in traditional than in modern analyses. In our study, the modern approach provided different results according to the type of data: satisfactory when using pseudolandmarks (outlines), less satisfactory when using landmarks. The different reclassification methods provided approximately similar scores, with a special mention to the neural network, which allowed improvements in accuracy by combining data from both morphometric approaches. CONCLUSION: We conclude that morphometrics, whether traditional or modern, represent a valuable tool to assist in Fasciola species recognition. The general level of accuracy is comparable among the various methods, but their demands on skills and time differ. Based on the outline method, our study could provide the first description of the shape differences between species, highlighting the more globular contours of the intermediate forms.
RESUMEN
BACKGROUND: Anopheles sawadwongporni Rattanarithikul & Green, Anopheles maculatus Theobald and Anopheles pseudowillmori (Theobald) of the Anopheles maculatus group (Diptera: Culicidae) are recognized as potential malaria vectors in many countries from the Indian subcontinent through Southeast Asia to Taiwan. A number of malaria vectors in malaria hotspot areas along the Thai-Myanmar border belong to this complex. However, the species distribution and dynamic trends remain understudied in this malaria endemic region. METHODS: Mosquitoes of the Maculatus group were collected using CDC light traps every other week from four villages in Tha Song Yang District, Tak Province, Thailand from January to December 2015. Adult female mosquitoes were morphologically identified on site using taxonomic keys. Molecular species identification was performed by multiplex PCR based on the internal transcribed spacer 2 (ITS2) region of ribosomal DNA (rDNA) and sequencing of the cox1 gene at a DNA barcoding region in a subset of 29 specimens. RESULTS: A total of 1328 An. maculatus (sensu lato) female mosquitoes were captured with An. maculatus, An. sawadwongporni and An. pseudowilmori accounting for 75.2, 22.1 and 2.7% respectively. The field captured mosquitoes of the Maculatus group were most abundant in the wet season and had a preferred distribution in villages at higher elevations. The phylogenetic relationships of 29 cox1 sequences showed a clear-cut separation of the three member species of the Maculatus group, with the An. pseudowillmori cluster being separated from An. sawadwongporni and An. maculatus. CONCLUSIONS: This study provides updated information for the species composition, seasonal dynamics and microgeographical distribution of the Maculatus group in malaria-endemic areas of western Thailand. This information can be used to guide the planning and implementation of mosquito control measures in the pursuance of malaria transmission.
Asunto(s)
Anopheles/clasificación , Malaria/transmisión , Mosquitos Vectores/clasificación , Estaciones del Año , Animales , Anopheles/fisiología , ADN Espaciador Ribosómico/genética , Conducta Alimentaria , Femenino , Humanos , Malaria/epidemiología , Masculino , Filogenia , Planificación Social , Tailandia/epidemiologíaRESUMEN
The vectors of scrub typhus are the larval stage of trombiculid mites, termed "chiggers". These vectors are very small - the larvae are approximately 0.2 mm in size - and therefore their morphological identification is difficult. Trombiculid mites are widely distributed across Asia and they can be identified at the genus level by the shape, size and setae/sensilla distribution of their dorsal chitin plate (scutum = shield), while morphological identification at the species level requires more mite characteristics. We recently developed a methodology to ascertain paired matched genotype and morphotype of individual chiggers, based on autofluorescence and brightfield microscopy with subsequent molecular identification using the COI gene (approximately 640bp length). However, based on 20 chigger specimens characterised by paired genotypic and morphological data consisting of the four species [Walchia ewingi with 2 subspecies]: Walchia ewingi lupella (n = 9), W. ewingi ewingi (n = 2), W. alpestris (n = 2), W. kritochaeta (n = 5) and W. minuscuta (n = 2) we found evidence of genetic polymorphism and morphological plasticity within the genus Walchia. The phylogenetic inference of the intra-genus relationships within the Walchia spp., based on COI gene (Blankaartia spp. served as outgroup), delineated the five included species by an average interspecific divergence of mean distance 0.218 (0.126 - 0.323). We therefore applied landmark-based and outline-based geometric morphometric (GM) approaches to differentiate Walchia species using scutum measurements. A total of 261 scutum images of Walchia spp. were examined by landmark-based GM (140 chigger specimens) and outline-based GM (121 specimens) techniques. All Walchia spp. showed significant differences in scutum size and shape. W. minuscuta showed the smallest mean scutum size in both techniques. The largest scutum was found in W. ewingi lupella and W. ewingi ewingi by landmark-based and outline-based GM analysis, respectively. The scutum shapes of W. alpestris and W. minuscuta were clearly distinguished from the other species. Cross-validated classification scores were different depending on species and digitizing techniques and landmark-based GM showed better scores than outline-based GM. We conclude that the morphologically closely-related trombiculid mite species can be further differentiated by their scutum features alone, using GM approaches. This technique is a promising tool for the much-needed characterization studies of chiggers and needs evaluation using matched morphometric and genotyping data for other genera of trombiculids.
Asunto(s)
Vectores de Enfermedades , Larva/anatomía & histología , Trombiculidae/anatomía & histología , Trombiculidae/clasificación , Animales , Genotipo , Larva/microbiología , Orientia tsutsugamushi , Filogenia , Tifus por Ácaros/microbiología , Trombiculidae/microbiologíaRESUMEN
Members of the Maculatus group are important malaria vectors in the border regions of Thailand. However, the role of each species in malaria transmission remains unclear because of their highly similar morphologies, making them difficult to be differentiated. Whereas An. pseudowillmori may be identified by the color pattern of some scales on abdomen and wings, the distinction between An. maculatus and An. sawadwongporni relies on the wings only. Scales are labile structures, as they may be accidentally removed during capture and transportation to the laboratory. To discriminate among the species of this group, we tested the suitability of geometric techniques. Shape variables were used as input for discriminant analyses and validated reclassification. Both landmark- and outline-based geometric techniques disclosed significant differences between the three species. For the delicate An. maculatus - An. sawadwongporni distinction, the outline-based approach appeared as the most promising, with validated reclassification scores reaching 93%, as compared to 77% obtained by landmark data. For An. pseudowillmori, reclassification scores were 100% and 94%, respectively. Geometric morphometrics may provide an alternative and useful complement for discriminating members of the Maculatus group.