Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 77(1): 213-229, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35363898

RESUMEN

BACKGROUND AND AIMS: Metabolism in the liver is dysregulated in obesity, contributing to various health problems including steatosis and insulin resistance. While the pathogenesis of lipid accumulation has been extensively studied, the protective mechanism against lipid challenge in the liver remains unclear. Here, we report that Src homology 3 domain binding kinase 1 (SBK1) is a regulator of hepatic lipid metabolism and systemic insulin sensitivity in response to obesity. APPROACH AND RESULTS: Enhanced Sbk1 expression was found in the liver of high-fat diet (HFD)-induced obese mice and fatty acid (FA)-challenged hepatocytes. SBK1 knockdown in mouse liver cells augmented FA uptake and lipid accumulation. Similarly, liver-specific SBK1 knockout ( Lsko ) mice displayed more severe hepatosteatosis and higher expression of genes in FA uptake and lipogenesis than the Flox/Flox ( Fl/Fl ) control mice when fed the HFD. The HFD-fed Lsko mice also showed symptoms of hyperglycemia, poor systemic glucose tolerance, and lower insulin sensitivity than the Fl/Fl mice. On the other hand, hepatic Sbk1 overexpression alleviated the high-fructose diet-induced hepatosteatosis, hyperlipidemia, and hyperglycemia in mice. White adipose tissue browning was also observed in hepatic SBK1 -overexpressed mice. Moreover, we found that SBK1 was a positive regulator of FGF21 in the liver during energy surplus conditions. Mechanistically, SBK1 phosphorylates the orphan nuclear receptor 4A1 (Nur77) on serine 344 to promote hepatic FGF21 expression and inhibit the transcription of genes involved in lipid anabolism. CONCLUSIONS: Collectively, our data suggest that SBK1 is a regulator of the metabolic adaption against obesity through the Nur77-FGF21 pathway.


Asunto(s)
Hígado Graso , Resistencia a la Insulina , Proteínas Quinasas , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Hígado Graso/metabolismo , Hígado Graso/patología , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Hiperglucemia/patología , Lípidos , Hígado/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/complicaciones , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares
2.
Exp Eye Res ; 240: 109812, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342335

RESUMEN

Gasdermin D (GSDMD) is a key executor which triggers pyroptosis as well as an attractive checkpoint in various inflammatory and autoimmune diseases but it has yet to prove its function in Graves'orbitopathy (GO). Our aim was to investigate GSDMD levels in orbital connective tissue and serum of GO patients and then assess the association between serum levels and patients' clinical activity score (CAS). Further, GSDMD-mediated pyroptosis and the underlying mechanism in inflammatory pathogenesis in the cultured orbital fibroblasts (OFs) of GO patients were examined. OFs were collected after tumor necrosis factor (TNF)-α or interferon (IFN)-γ treatment or combination treatment at different times, and the expression of GSDMD and related molecular mechanisms were analyzed. Then, we constructed the GSDMD knockout system with siRNA and the system was further exposed to the medium with or without IFN-γ and TNF-α for a specified time. Finally, we evaluated the production of interleukin (IL)-1ß and IL-18. We found that serum GSDMD levels were elevated and positively correlated with the CAS in GO patients. Meanwhile, the expression of GSDMD and N-terminal domain (NT-GSDMD) in orbital connective tissue of GO patients was augmented. Also, increased expression of GSDMD and related pyroptosis factors was observed in vitro model of GO. We further demonstrated that GSDMD-mediated pyroptosis induced inflammation via the nuclear factor kB (NF-κB)/absent in melanoma-2 (AIM-2)/caspase-1 pathway. In addition, blocking GSDMD suppressed proinflammatory cytokine production in GO. We concluded that GSDMD may be a biomarker as well as a potential target for the evaluation and treatment of inflammation related with GO.


Asunto(s)
Oftalmopatía de Graves , Humanos , Oftalmopatía de Graves/metabolismo , FN-kappa B/metabolismo , Piroptosis , Caspasa 1/metabolismo , Células Cultivadas , Inflamación/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas de Unión al ADN/metabolismo , Gasderminas , Proteínas de Unión a Fosfato/metabolismo
3.
Environ Sci Technol ; 58(3): 1484-1494, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38198516

RESUMEN

The environmental impact of sunscreen is a growing concern, yet the combined effects of its components on marine animals are poorly understood. In this study, we investigated the combined effects of sunscreen-extracted zinc oxide nanoparticles (nZnO) and microplastics (MPs) on the development of barnacle larvae, focusing on the different roles played by primary microplastics (PMPs) and secondary microplastics (SMPs) generated through the phototransformation of PMPs. Our findings revealed that a lower concentration of nZnO (50 µg/L) enhanced molting and eye development in barnacle larvae, while a higher concentration (500 µg/L) inhibited larval growth. Co-exposure to PMPs had no significant effect on larval development, whereas SMPs mitigated the impact of nZnO by restricting the in vivo transformation to ionic Zn. Accumulated SMPs reduced gut dissolution of nZnO by up to 40%, lowering gut acidity by 85% and buffering the in vivo dissolution of nZnO. We further identified a rough-surfaced Si-5 fragment in SMPs that damaged larval guts, resulting in decreased acidity. Another Si-32 resisted phototransformation and had no discernible effects. Our study presented compelling evidence of the impacts of SMPs on the bioeffect of nZnO, highlighting the complex interactions between sunscreen components and their combined effects on marine organisms.


Asunto(s)
Nanopartículas , Thoracica , Contaminantes Químicos del Agua , Óxido de Zinc , Animales , Microplásticos , Plásticos , Larva , Protectores Solares
4.
BMC Cancer ; 23(1): 1224, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087278

RESUMEN

BACKGROUND: The clinical relevance of circulating tumor cell-white blood cell (CTC-WBC) clusters in cancer prognosis is a subject of ongoing debate. This study aims to unravel their contentious predictive value for patient outcomes. METHODS: We conducted a comprehensive literature search of PubMed, Embase, and Cochrane Library up to December 2022. Eligible studies that reported survival outcomes and examined the presence of CTC-WBC clusters in solid tumor patients were included. Hazard ratios (HR) were pooled to assess the association between CTC-WBC clusters and overall survival (OS), as well as progression-free survival (PFS)/disease-free survival (DFS)/metastasis-free survival (MFS)/recurrence-free survival (RFS). Subgroup analyses were performed based on sampling time, treatment method, detection method, detection system, and cancer type. RESULTS: A total of 1471 patients from 10 studies were included in this meta-analysis. The presence of CTC-WBCs was assessed as a prognostic factor for overall survival and PFS/DFS/MFS/RFS. The pooled analysis demonstrated that the presence of CTC-WBC clusters was significantly associated with worse OS (HR = 2.44, 95% CI: 1.74-3.40, P < 0.001) and PFS/DFS/MFS/RFS (HR = 1.83, 95% CI: 1.49-2.24, P < 0.001). Subgroup analyses based on sampling time, treatment method, detection method, detection system, cancer type, and study type consistently supported these findings. Further analyses indicated that CTC-WBC clusters were associated with larger tumor size (OR = 2.65, 95% CI: 1.58-4.44, P < 0.001) and higher alpha-fetoprotein levels (OR = 2.52, 95% CI: 1.50-4.22, P < 0.001) in hepatocellular carcinoma. However, no significant association was found between CTC-WBC clusters and TNM stage, depth of tumor invasion, or lymph node metastasis in the overall analysis. CONCLUSIONS: CTC-WBC clusters are negative predictors for OS and PFS/DFS/MFS/RFS in patients with solid tumors. Monitoring CTC-WBC levels may provide valuable information for predicting disease progression and guiding treatment decisions.


Asunto(s)
Neoplasias Hepáticas , Células Neoplásicas Circulantes , Humanos , Pronóstico , Células Neoplásicas Circulantes/patología , Supervivencia sin Enfermedad , Supervivencia sin Progresión
5.
Environ Sci Technol ; 57(21): 8118-8129, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37192337

RESUMEN

Both zinc oxide nanoparticles (ZnO NPs) and microplastics (MPs) were extracted from one commercial sunscreen, while other ingredients were removed based on the "like dissolves like" principle. MPs were further extracted by acidic digestion of ZnO NPs using HCl and characterized as spherical particles of approximately 5 µm with layered sheets in an irregular shape on the surface. Although MPs were stable in the presence of simulated sunlight and water after 12 h of exposure, ZnO NPs promoted the photooxidation by producing hydroxyl radicals, with a 2.5-fold increase in the carbonyl index of the degree of surface oxidation. As a result of surface oxidation, spherical MPs were more soluble in water and fragmented to irregular shapes with sharp edges. We then compared the cytotoxicity of primary MPs and secondary MPs (25-200 mg/L) to the HaCaT cell line based on viability loss and subcellular damages. The cellular uptake of MPs transformed by ZnO NPs was enhanced by over 20%, and MPs caused higher cytotoxicity compared with the pristine ones, as evidenced by a 46% lower cell viability, 220% higher lysosomal accumulation, 69% higher cellular reactive oxygen species, 27% more mitochondrial loss, and 72% higher mitochondrial superoxide at 200 mg/L. Our study for the first time explored the activation of MPs by ZnO NPs derived from commercial products and revealed the high cytotoxicity caused by secondary MPs, providing new evidence on the effects of secondary MPs on human health.


Asunto(s)
Nanopartículas , Óxido de Zinc , Humanos , Óxido de Zinc/toxicidad , Microplásticos , Plásticos , Fotólisis , Nanopartículas/toxicidad
6.
Int J Mol Sci ; 24(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37176063

RESUMEN

Fibrosis is the late stage of thyroid-associated ophthalmopathy (TAO), resulting in serious complications. Effective therapeutic drugs are still lacking. We aimed to explore the mechanism of TAO fibrosis and to find a targeted drug. High-throughput RNA sequencing was performed on orbital connective tissues from twelve patients with TAO and six healthy controls. Protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) database and we identified the hub gene by Cytoscape software. Additionally, the RNA sequencing results were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatic prediction identified the functions of differentially expressed genes (DEGs). Further orbital connective tissue and serum samples of the TAO and control groups were collected for subsequent experiments. Histologic staining, Western blotting (WB), qRT-PCR, enzyme-linked immunosorbent assays (ELISAs), gene overexpression through lentiviral infection or silencing gene by short interfering RNA (siRNA) were performed. We found that the relaxin signaling pathway is an important regulatory pathway in TAO fibrosis pathogenesis. Serelaxin exerts antifibrotic and anti-inflammatory effects in TAO. Furthermore, the downstream Notch pathway was activated by serelaxin and was essential to the antifibrotic effect of serelaxin in TAO. The antifibrotic effect of serelaxin is dependent on RXFP1.


Asunto(s)
Oftalmopatía de Graves , Relaxina , Humanos , Oftalmopatía de Graves/tratamiento farmacológico , Oftalmopatía de Graves/genética , Oftalmopatía de Graves/metabolismo , Ensayo de Inmunoadsorción Enzimática , Western Blotting , Transducción de Señal , Fibrosis , Proteínas Recombinantes
7.
Mol Cancer ; 21(1): 92, 2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35366893

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are involved in regulatory processes of ubiquitination and deubiquitination in various tumors at post-transcriptional epigenetic modification level. However, the underlying mechanism and its biological functions of circRNAs in the advanced laryngeal squamous cell carcinoma (LSCC) remain obscure. METHODS: RNA sequencing and quantitative real-time PCR (qRT-PCR) assays were applied to screen for circRNAs differentially expressed in LSCC tissues and cell lines. The candidate RNA-binding proteins and target signalling pathway were detected by RNA pull-down and mass spectrometry, in situ hybridization (ISH), immunohistochemistry (IHC), qRT-PCR assays, and bioinformatics analysis. The functional roles of these molecules were investigated using in vitro and in vivo experiments including EdU, transwell, wound healing, western blot assays, and the xenograft mice models. The molecular mechanisms were identified using RNA pull-down assays, RNA immunoprecipitation (RIP), Co-IP, ISH, Ubiquitination assay, bioinformatics analysis, and the rescue experiments. RESULTS: Here, we unveil that microtubule cross-linking factor 1 circRNA (circMTCL1, circ0000825) exerts its critical oncogenic functions by promoting complement C1q-binding protein (C1QBP)-dependent ubiquitin degradation and subsequently activating Wnt/ß-catenin signalling in laryngeal carcinoma initiation and development. Specifically, circMTCL1 was remarkably up-regulated in the paired tissues of patients with LSCC (n = 67), which predicted a worse clinical outcome. Functionally, circMTCL1 exerted oncogenic biological charactersistics by promoting cell proliferative capability and invasive and migrative abilities. Ectopic circMTCL1 augumented cell proliferation, migration, and invasion of LSCC cells, and this effect could be reversed by C1QBP knocking down in vitro and in vivo. Mechanistically, circMTCL1 directly recruited C1QBP protein by harboring the specific recognized sequence (+ 159 - + 210), thereby accelerating the translation of C1QBP expression by inhibiting its ubiquitin-proteasome-mediated degradation. Importantly, the direct interaction of C1QBP with ß-catenin protein was enhanced via suppressing the ß-catenin phosphorylation and accelerating its accumulation in cytoplasm and nucleus. CONCLUSION: Our findings manifested a novel circMTCL1-C1QBP-ß-catenin signaling axis involving in LSCC tumorigenesis and progression, which shed new light on circRNAs-ubiquitous acidic glycoprotein mediated ubiquitin degradation and provided strategies and targets in the therapeutic intervention of LSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , ARN Circular , Animales , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Mitocondriales/genética , ARN Circular/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Ubiquitina/genética , Ubiquitina/metabolismo , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo
8.
Environ Microbiol ; 24(11): 5574-5582, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36070190

RESUMEN

Despite the importance of soil bacterial and fungal communities for ecosystem services and human welfare, how their ecological networks respond to climatic aridity have yet been evaluated. Here, we collected soil samples from 47 sites across 2500 km in coastal and inland areas of eastern Australia with contrasting status of aridity. We found that the diversity of both bacteria and fungi significantly differed between inland and coastal soils. Despite the significant differences in soil nutrient availability and stoichiometry between the inland and coastal regions, aridity was the most important predictor of bacterial and fungal community compositions. Aridity has altered the potential microbial migration rates and further impacted the microbial assembly processes by increasing the importance of stochasticity in bacterial and fungal communities. More importantly, ecological network analysis indicated that aridity enhanced the complexity and stability of the bacterial network but reduced that of the fungal network, possibly due to the contrasting impacts of aridity on the community-level habitat niche breadth and overlaps. Our work paves the way towards a more comprehensive understanding of how climate changes will alter soil microbial communities, which is integral to predicting their long-term consequences for ecosystem sustainability and resilience to future disturbances.


Asunto(s)
Microbiota , Suelo , Humanos , Microbiología del Suelo , Ecosistema , Hongos/genética , Bacterias/genética
9.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555150

RESUMEN

The pathogenesis of thyroid-associated ophthalmopathy (TAO) is still unclear, and therapeutic drugs have great limitations. As metformin has multiple therapeutic effects in many autoimmune diseases, we explored the effects of metformin on TAO in an in vitro fibroblast model. We used orbital connective tissues and fibroblasts that were obtained from TAO patients and normal controls. The activity of adenosine monophosphate-activated protein kinase (AMPK) and the levels of inflammatory or fibrotic factors were examined by immunofluorescence (IF) and immunohistochemistry (IHC). Quantitative real-time polymerase chain reaction (qPCR), cytokine quantification by enzyme-linked immunosorbent sssay (ELISA), IF, and western blotting (WB) were used to measure the expression of factors related to inflammation, fibrosis, and autophagy. To determine the anti-inflammatory and antifibrotic mechanisms of metformin, we pretreated cells with metformin, 5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR, an AMPK activator) or compound C (CC, an AMPK inhibitor) for 24 h and used WB to verify the changes in protein levels in the AMPK/mammalian target of rapamycin (mTOR) pathway. We determined that the low activity of AMPK in the periorbital tissue of TAO patients may be closely related to the occurrence and development of inflammation and fibrosis, and metformin exerts multiple effects by activating AMPK in TAO. Furthermore, we suggest that AMPK may be a potential target of TAO therapy.


Asunto(s)
Oftalmopatía de Graves , Metformina , Humanos , Oftalmopatía de Graves/patología , Metformina/farmacología , Metformina/uso terapéutico , Proteínas Quinasas Activadas por AMP/metabolismo , Inflamación/tratamiento farmacológico , Fibrosis
10.
Environ Microbiol ; 23(4): 2169-2183, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33400366

RESUMEN

Crop plants carry an enormous diversity of microbiota that provide massive benefits to hosts. Protists, as the main microbial consumers and a pivotal driver of biogeochemical cycling processes, remain largely understudied in the plant microbiome. Here, we characterized the diversity and composition of protists in sorghum leaf phyllosphere, and rhizosphere and bulk soils, collected from an 8-year field experiment with multiple fertilization regimes. Phyllosphere was an important habitat for protists, dominated by Rhizaria, Alveolata and Amoebozoa. Rhizosphere and bulk soils had a significantly higher diversity of protists than the phyllosphere, and the protistan community structure significantly differed among the three plant-soil compartments. Fertilization significantly altered specific functional groups of protistan consumers and parasites. Variation partitioning models revealed that soil properties, bacteria and fungi predicted a significant proportion of the variation in the protistan communities. Changes in protists may in turn significantly alter the compositions of bacterial and fungal communities from the top-down control in food webs. Altogether, we provide novel evidence that fertilization significantly affects the functional groups of protistan consumers and parasites in crop-associated microbiomes, which have implications for the potential changes in their ecological functions under intensive agricultural managements.


Asunto(s)
Microbiota , Parásitos , Animales , Fertilización , Rizosfera , Suelo , Microbiología del Suelo
11.
Environ Sci Technol ; 53(7): 3791-3801, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30870590

RESUMEN

Although increasing attention has been paid to the nanotoxicity of graphene oxide quantum dots (GOQDs) due to their broad range of applications, the persistence and recoverability associated with GOQDs had been widely ignored. Interestingly, stress-response hormesis for algal growth was observed for Chlorella vulgaris as a single-celled model organism. Few physiological parameters, such as algal density, plasmolysis, and levels of reactive oxygen species, exhibited facile recovery. In contrast, the effects on chlorophyll a levels, permeability, and starch grain accumulation exhibited persistent toxicity. In the exposure stage, the downregulation of genes related to unsaturated fatty acid biosynthesis, carotenoid biosynthesis, phenylpropanoid biosynthesis, and binding contributed to toxic effects on photosynthesis. In the recovery stage, downregulation of genes related to the cis-Golgi network, photosystem I, photosynthetic membrane, and thylakoid was linked to the persistence of toxic effects on photosynthesis. The upregulated galactose metabolism and downregulated aminoacyl-tRNA biosynthesis also indicated toxicity persistence in the recovery stage. The downregulation and upregulation of phenylalanine metabolism in the exposure and recovery stages, respectively, reflected the tolerance of the algae to GOQDs. The present study highlights the importance of studying nanotoxicity by elucidation of stress and recovery patterns with metabolomics and transcriptomics.


Asunto(s)
Chlorella vulgaris , Grafito , Puntos Cuánticos , Atención , Clorofila , Clorofila A , Óxidos , Fotosíntesis
12.
Environ Sci Technol ; 53(8): 4215-4223, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30882209

RESUMEN

Diets of soil-feeding earthworms contain abundant nitrate and iron(III) oxides, which are potential electron acceptors for mineralization of organic compounds. The earthworm gut provides an ideal habitat for ingested iron(III)-reducing microorganisms. However, little is known about iron(III) reduction and its interaction with other processes in the guts of earthworms. Here, we determined the dynamics of iron(III) and revealed its interaction with the turnover of organic acids and nitrate in the gut of the earthworm Pheretima guillelmi. Samples from gut contents combined with anoxic incubation were used for chemical analysis and 16S rRNA based Illumina sequencing. Chemical analysis showed that higher ratios of iron(II)/iron(III), nitrite/nitrate, and more abundant organic acids were contained in the in vivo gut of the earthworm P. guillelmi than those in the in situ soil. A higher rate of iron(III) reduction was detected in treatments of microcosmic incubation with gut contents (IG gut) than that with soil (IG soil), and nitrate reduction occurred earlier than iron(III) reduction in both treatments. Potential iron(III) reducers were dominated by fermentative genera Clostridium, Bacillus, and Desulfotomaculum in the treatment of IG gut, while they were dominated by dissimilatory iron(III)-reducing genera Geobacter in the treatment of IG soil. The iron(III)-reducing microbial community shared several genera with denitrifers in the treatment of IG gut, revealing a close link between iron(III) reduction and denitrification in the gut of earthworms. Collectively, our findings demonstrated that iron(III) reduction occurred along the gut and provided novel insights into the great contribution of earthworm gut microbiota on Fe and the associated C and N cycling in soil environments.


Asunto(s)
Oligoquetos , Animales , Desnitrificación , Incubadoras , Hierro , ARN Ribosómico 16S , Suelo , Microbiología del Suelo
13.
Opt Lett ; 43(7): 1538-1541, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29601024

RESUMEN

The vortex beam which carries the orbital angular momentum has versatile applications, such as high-resolution imaging, optical communications, and particle manipulation. Generating vortex beams with the Pancharatnam-Berry (PB) phase has drawn considerable attention for its unique spin-to-orbital conversion features. Despite the PB phase being frequency independent, an optical element with broadband high-efficiency circular polarization conversion feature is still needed for the broadband high-efficiency vortex beam generation. In this work, a broadband and high-efficiency vortex beam generator based on the PB phase is built with a hybrid helix array. Such devices can generate vortex beams with arbitrary topological charge. Moreover, vortex beams with opposite topological charge can be generated with an opposite handedness incident beam that propagates backward. The measured efficiency of our device is above 65% for a wide frequency range, with the relative bandwidth of 46.5%.

14.
Environ Sci Technol ; 52(17): 9666-9676, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30059221

RESUMEN

Due to the numerous factors (e.g., nanoparticle [NP] properties and experimental conditions) influencing nanotoxicity, it is difficult to identify the priority factors dominating nanotoxicity. Herein, by integrating data from the literature and a random forest model, the priority factors determining reproductive toxicity were successfully screened from highly heterogeneous data. Among 10 factors from more than 18 different NPs, the NP type and the exposure pathway were found to dominantly determine NP accumulation. The reproductive toxicity of various NPs primarily depended on the NP type and the toxicity indicators. Nanoparticles containing major elements (e.g., Zn and Fe) tended to accumulate in rats but induced lower toxicity than NPs containing noble elements. Compared with other exposure pathways, i.p. injection posed significantly higher risks for NP accumulation. By combining similarity network analysis and hierarchical clustering, the sources of highly heterogeneous data were identified, the factor-toxicity dependencies were extracted and visualized, and the prediction of nanotoxicity was then achieved based on the screened priority factors. The present work provides insights for the design of animal experiments and the illustration and prediction of nanotoxicity.


Asunto(s)
Nanopartículas , Reproducción , Animales , Ratas , Reproducción/efectos de los fármacos
15.
Small ; 12(33): 4486-91, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27400777

RESUMEN

In situ quantitative tensile tests of individual carbon nanotube (CNT)/SiC core-shell nanofibers are carried out in both a scanning electron microscope (SEM) and a transmission electron microscope (TEM). The incorporation of CNTs into a SiC matrix led to improved elastic modulus and fracture strength of the CNT/SiC nanofibers as compared to SiC alone.

16.
J Hazard Mater ; 474: 134791, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38833954

RESUMEN

Despite the growing awareness of potential human and environmental risks associated with sunscreens, identifying the specific constituents responsible for their potential toxicity is challenging. In this study, we applied three different types of sunscreens with contrasting compositions and compared the effects of their particulate and soluble fractions based on 15 cellular biomarkers of HaCaT cells. Multilinear regression analysis revealed that the internalized soluble fractions played a primary role in the overall cytotoxicity of sunscreen mixtures, which was primarily attributed to their biotransformation, generating metabolites with higher toxicity. The presence of plastic microspheres in sunscreens either inhibited the internalization of soluble fractions or led to their redistribution toward lysosomes. Conversely, subcellular toxicity resulting from the sunscreen mixture was predominantly influenced by particulates. Bio-transformable particulates such as ZnO dissolved in the organelles and induced higher subcellular toxicity compared to bioinert particulates such as microplastics. Subcellular biomarkers including lysosomal count, lysosomal size, mitochondrial count and mitochondrial shape emerged as the potential predictors of sunscreen presence. Our study provides important understanding of sunscreen toxicity by elucidating the differential impacts of particulate and soluble fractions in mixture contaminants.


Asunto(s)
Lisosomas , Protectores Solares , Protectores Solares/toxicidad , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Supervivencia Celular/efectos de los fármacos , Línea Celular , Células HaCaT , Biomarcadores/metabolismo , Solubilidad , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Microplásticos/toxicidad , Material Particulado/toxicidad , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Microesferas
17.
Sci Total Environ ; 950: 175274, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39117190

RESUMEN

Rising instances of flash droughts are contributing to notable variability in soil moisture across terrestrial ecosystems. These phenomena challenge urban ecosystem services, yet the reaction of soil ecological functions (SEFs) to such events is poorly understood. This study investigates the responses of SEFs (about nutrient metabolism capacity and potential) and the microbiome under two specific scenarios: a flooding-drought sequence and a direct drought condition. Using quantitative microbial element cycling analysis, high-throughput sequencing, and enzyme activity measurements, we found that unlike in forests, the microbial composition in urban soils remained unchanged during flash drought conditions. However, SEFs were affected in both settings. Correlation analysis and Mantel test showed that forest soils exhibited more complex interactions among soil moisture, properties, and microbial communities. Positive linear correlation revealed that bacteria were the sole drivers of SEFs. Interestingly, while multi-threshold results suggested bacterial α diversity impeded the maximization of SEFs in urban soils, fungi and protists had a beneficial impact. Cross-domain network of urban soils had higher number of nodes and edges, but lower average degree and robustness than forest soils. Mantel test revealed that fungi and protist had significant correlations with bacterial composition in forest soils, but not in urban soils. In the urban network, the degree and eigenvector centrality of bacterial, fungal and protistan ASVs were significantly lower compared to those in the forest. These results suggest that the lower robustness of the microbial network in urban soils is attributed to limited interactions among fungi, consumer protists, and bacteria, contributing to the failure of microbial-driven ecological functions. Overall, our findings emphasize the critical role of fungi and protists in shielding urban soils from drought-induced disturbances and in enhancing the resistance of urban ecological functions amidst environmental changes.


Asunto(s)
Sequías , Hongos , Microbiota , Microbiología del Suelo , Suelo , Suelo/química , Ecosistema , Eucariontes , Ciudades , Bosques , Bacterias/clasificación
18.
Int Immunopharmacol ; 137: 112374, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38851162

RESUMEN

Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a neurological disorder, characterized by cognitive deficits as one of its vital features. The nucleotide-binding oligomerization domain-like receptor (NLRP3) inflammasome is a key contributor to neuroinflammation and cognitive deficits in neurological diseases. However, the underlying mechanism of anti-NMDAR encephalitis remains unclear, and the biological function of the NLRP3 inflammasome in this condition has not been elucidated. In this study, a mouse model of anti-NMDAR encephalitis was induced by active immunization with the GluN1356-385 peptide (NEA model). The NLRP3 inflammasome in the hippocampus and temporal cortex was investigated using real-time quantitative PCR (RT-qPCR), western blotting, and immunofluorescence staining. The impact of MCC950 on cognitive function and NLRP3 inflammation was assessed. Confocal immunofluorescence staining and Sholl analysis were employed to examine the function and morphology of microglia. In the current study, we discovered overactivation of the NLRP3 inflammasome and an enhanced inflammatory response in the NEA model, particularly in the hippocampus and temporal cortex. Furthermore, significant cognitive dysfunction was observed in the NEA model. While, MCC950, a selective inhibitor of the NLRP3 inflammasome, sharply attenuated the inflammatory response in mice, leading to mitigated cognitive deficits of mice and more regular arrangements of neurons and reduced number of hyperchromatic cells were also observed in the hippocampus area. In addition, we found that the excess elevation of NLRP3 inflammasome was mainly expressed in microglia accompanied with the overactivation of microglia, while MCC950 treatment significantly inhibited the increased number and activated morphological changes of microglia in the NEA model. Altogether, our study reveals the vital role of overactivated NLRP3 signaling pathway in aggravating the inflammatory response and cognitive deficits and the potential protective effect of MCC950 in anti-NMDAR encephalitis. Thus, MCC950 represents a promising strategy for anti-inflammation in anti-NMDAR encephalitis and our study lays a theoretical foundation for it to become a clinically targeted drug.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Disfunción Cognitiva , Modelos Animales de Enfermedad , Hipocampo , Indenos , Inflamasomas , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Sulfonamidas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/inmunología , Disfunción Cognitiva/etiología , Inflamasomas/metabolismo , Inflamasomas/antagonistas & inhibidores , Inflamasomas/inmunología , Ratones , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/metabolismo , Hipocampo/inmunología , Encefalitis Antirreceptor N-Metil-D-Aspartato/inmunología , Encefalitis Antirreceptor N-Metil-D-Aspartato/tratamiento farmacológico , Indenos/uso terapéutico , Sulfonamidas/uso terapéutico , Sulfonamidas/farmacología , Microglía/efectos de los fármacos , Microglía/inmunología , Furanos/uso terapéutico , Furanos/farmacología , Sulfonas/uso terapéutico , Sulfonas/farmacología , Ratones Endogámicos C57BL , Femenino , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Masculino , Lóbulo Temporal/patología
19.
Neuroreport ; 35(10): 612-620, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38813900

RESUMEN

Epilepsy is a common neurologic disorder. While a good clinical solution is still missing, studies have confirmed that exosomes (Exos) derived from adipose-derived stem cells (ADSCs) had a therapeutic effect on various diseases, including neurological diseases. Therefore, this study aimed to reveal whether ADSC-Exo treatment could improve kainic acid (KA)-induced seizures in epileptic mice. ADSCs and Exos were isolated. Mice were generated with KA-induced epileptic seizures. ELISA was used to detect inflammatory factor expression. Luciferase reporter analysis detection showed a relationship among miR-23b-3p, STAT1, and glyoxylate reductase 1 (GlyR1). ADSC-Exos had a protective effect on KA-induced seizures by inhibiting inflammatory factor expression and the M1 microglia phenotype. The result showed that miR-23b-3p played an important role in the Exo-mediated protective effect in KA-induced seizures in epileptic mice by regulating STAT1 and GlyR1. Luciferase reporter analysis confirmed that miR-23b-3p interacted with the 3'-UTR of STAT1 and GlyR1. The miR-23b-3p inhibited M1 microglia-mediated inflammatory factor expression in microglial cells by regulating STAT1 and GlyR1. The downregulation of miR-23b-3p decreased the protective effect of ADSC-Exos on KA-induced seizures in epileptic mice. The miR-23b-3p from ADSC-Exos alleviated inflammation in mice with KA-induced epileptic seizures.


Asunto(s)
Exosomas , Inflamación , Ácido Kaínico , MicroARNs , Convulsiones , Animales , Ácido Kaínico/toxicidad , MicroARNs/metabolismo , MicroARNs/genética , Exosomas/metabolismo , Ratones , Inflamación/metabolismo , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Masculino , Microglía/metabolismo , Epilepsia/inducido químicamente , Epilepsia/metabolismo , Epilepsia/terapia , Factor de Transcripción STAT1/metabolismo , Tejido Adiposo/metabolismo , Ratones Endogámicos C57BL
20.
Int Immunopharmacol ; 132: 111910, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38552295

RESUMEN

Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is one of the most prevalent forms of autoimmune encephalitis, characterized by a series of neurological and psychiatric symptoms, including cognitive impairment, seizures and psychosis. The underlying mechanism of anti-NMDAR encephalitis remains unclear. In the current study, the mouse model of anti-NMDAR encephalitis with active immunization was performed. We first uncovered excessive mitochondrial fission in the hippocampus and temporal cortex of anti-NMDAR encephalitis mice, indicated by elevated level of Phospho-DRP1 (Ser616) (p-Drp1-S616). Moreover, blockade of the autophagic flux was also demonstrated, leading to the accumulation of fragmented mitochondria, and elevated levels of mitochondrial reactive oxygen species (mtROS) and mitochondrial DNA (mtDNA) in anti-NMDAR encephalitis. More importantly, we found that the mTOR signaling pathway was overactivated, which could aggravate mitochondrial fission and inhibit autophagy, resulting in mitochondrial dysfunction. While rapamycin, the specific inhibitor of the mTOR signaling pathway, significantly alleviated mitochondrial dysfunction by inhibiting mitochondrial fission and enhancing autophagy. Levels of mtROS and mtDNA were markedly reduced after the treatment of rapamycin. In addition, rapamycin also significantly alleviated cognitive dysfunction and anxious behaviors found in anti-NMDAR encephalitis mice. Thus, our study reveals the vital role of mitochondrial dysfunction in pathological mechanism of anti-NMDAR encephalitis and lays a theoretical foundation for rapamycin to become a clinically targeted drug for anti-NMDAR encephalitis.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Modelos Animales de Enfermedad , Mitocondrias , Dinámicas Mitocondriales , Especies Reactivas de Oxígeno , Sirolimus , Serina-Treonina Quinasas TOR , Animales , Encefalitis Antirreceptor N-Metil-D-Aspartato/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Sirolimus/uso terapéutico , Sirolimus/farmacología , Ratones , Serina-Treonina Quinasas TOR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , ADN Mitocondrial , Autofagia/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Femenino , Dinaminas/metabolismo , Dinaminas/genética , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Humanos , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA