Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862818

RESUMEN

Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus characterized by heart failure and cardiac remodeling. Previous studies show that tetrahydroberberrubine (THBru) retrogrades cardiac aging by promoting PHB2-mediated mitochondrial autophagy and prevents peritoneal adhesion by suppressing inflammation. In this study we investigated whether THBru exerted protective effect against DCM in db/db mice and potential mechanisms. Eight-week-old male db/db mice were administered THBru (25, 50 mg·kg-1·d-1, i.g.) for 12 weeks. Cardiac function was assessed using echocardiography. We showed that THBru administration significantly improved both cardiac systolic and diastolic function, as well as attenuated cardiac remodeling in db/db mice. In primary neonatal mouse cardiomyocytes (NMCMs), THBru (20, 40 µM) dose-dependently ameliorated high glucose (HG)-induced cell damage, hypertrophy, inflammatory cytokines release, and reactive oxygen species (ROS) production. Using Autodock, surface plasmon resonance (SPR) and DARTS analyses, we revealed that THBru bound to the domain of the receptor for advanced glycosylation end products (RAGE), subsequently leading to inactivation of the PI3K/AKT/NF-κB pathway. Importantly, overexpression of RAGE in NMCMs reversed HG-induced inactivation of the PI3K/AKT/NF-κB pathway and subsequently counteracted the beneficial effects mediated by THBru. We conclude that THBru acts as an inhibitor of RAGE, leading to inactivation of the PI3K/AKT/NF-κB pathway. This action effectively alleviates the inflammatory responses and oxidative stress in cardiomyocytes, ultimately leading to ameliorated DCM.

2.
Environ Res ; : 119815, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159778

RESUMEN

Bromate ()-induced pharmaceutical and personal care products (PPCPs) oxidation is enhanced in freezing systems. Reduced forms of metals are widely present, often coexisting with various contaminants. However, their effects on the interaction of PPCPs with in ice in cold regions may have been overlooked. Herein we investigated the effects of representative reducing metal Cr(III) on the interaction between the representative PPCP carbamazepine (CBZ) and in the freezing system. Our findings demonstrated that the degradation rate constants of CBZ by and Cr(III) were 29.4%-60.3% lower than those by in ice, revealing the inhibition of Cr(III) on CBZ degradation by in ice. In /freezing/sunlight system, contributed 62.8% to CBZ degradation. In /Cr(III)/freezing/sunlight system, Cr(III) promoted the generation of hydroxyl radical (·OH), leading to 51% contribution of ·OH to CBZ degradation. Oxidants were consumed by Cr(III) to form Cr(VI) rather than reacting with CBZ, thereby decreasing CBZ degradation by in ice. Due to sunlight-induced Cr(VI) reduction in ice, only 0.3% of Cr(III) was converted to Cr(VI) in /Cr(III)/freezing/sunlight system. -induced CBZ degradation rate in ice decreased in order of Fe(II), Cr(III), and Mn(II), which was due to the different reducing capabilities. An effective reduction in comprehensive toxicity of systems followed the freezing-sunlight process, even in the presence of Cr(III). This work sheds new light on the environmental behaviors and fate of PPCPs, brominated disinfection by-products, and reducing metals during seasonal freezing.

3.
Sci Total Environ ; 923: 171376, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38432388

RESUMEN

Seasonal freezing of waters occurs during winter in cold regions. Bromate ( [Formula: see text] ) is a disinfection by-product generated during water treatment, its interaction with emerging contaminants may be affected by freezing. Nitrite ( [Formula: see text] ) is widely distributed in the environment, whereas its effect on the interaction of emerging contaminants and [Formula: see text] in ice may have been overlooked. Herein carbamazepine (CBZ) was selected as a model emerging contaminant to elucidate the role of reactive nitrogen species (RNS) in contaminant transformation during the reduction of [Formula: see text] by [Formula: see text] in ice. Results indicated that freezing significantly enhanced CBZ degradation by [Formula: see text] . The CBZ degradation by [Formula: see text] and [Formula: see text] in ice was 25.4 %-27.8 % higher than that by [Formula: see text] . Contributions of hydroxyl radical (•OH), bromine radical (•Br), and RNS to CBZ degradation in freezing/dark or sunlight systems were 8.1 % or 15.9 %, 25.4 % or 7.2 %, and 66.5 % or 76.9 %, respectively. Most CBZ was degraded by RNS generated during the reduction of [Formula: see text] by [Formula: see text] in ice, resulting in 16.4 % of transformation products being nitro-containing byproducts. Hybrid toxicity of CBZ/ [Formula: see text] / [Formula: see text] system was reduced effectively after the freezing-sunlight process. This study can provide new insights into the environmental fate of emerging contaminants, [Formula: see text] , and [Formula: see text] in cold regions.

4.
Sci Total Environ ; 949: 175205, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39097023

RESUMEN

Crop contamination of perfluoroalkyl substances (PFASs) may threaten human health, with root and leaves representing the primary uptake pathways of PFASs in crops. Therefore, it is imperative to elucidate the uptake characteristics of PFASs by crop roots and leaves as well as the critical influencing factors. In this study, the uptake and translocation of PFASs by roots and leaves of pak choi and radish were systematically explored based on perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS). Additionally, the roles of root Casparian strips, leaf stomata, and PFAS structures in the aforementioned processes were elucidated. Compared with pak choi, PFASs are more easily transferred to leaves after root uptake in radish, resulting from the lack of root Casparian strips. In pak choi root, the bioaccumulation of C4-C8 perfluoroalkyl carboxylic acids (PFCAs) showed a U-shaped trend with the increase of their carbon chain lengths, and the translocation potentials of individual PFASs from root to leaves negatively correlated with their chain lengths. The leaf uptake of PFOA in pak choi and radish mainly depended on cuticle sorption, with the evidence of a slight decrease in the concentrations of PFOA in exposed leaves after stomatal closure induced by abscisic acid. The leaf bioaccumulation of C4-C8 PFCAs in pak choi exhibited an inverted U-shaped trend as their carbon chain lengths increased. PFASs in exposed leaves can be translocated to the root and then re-transferred to unexposed leaves in vegetables. The longer-chain PFASs showed higher translocation potentials from exposed leaves to root. PFOS demonstrated a higher bioaccumulation than PFOA in crop roots and leaves, mainly due to the greater hydrophobicity of PFOS. Planting root vegetables lacking Casparian strips is inadvisable in PFAS-contaminated environments, in view of their higher PFAS bioaccumulation and considerable human intake.


Asunto(s)
Fluorocarburos , Hojas de la Planta , Raíces de Plantas , Fluorocarburos/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/metabolismo , Caprilatos/metabolismo , Ácidos Alcanesulfónicos/metabolismo , Verduras/metabolismo , Raphanus/metabolismo , Caproatos/metabolismo , Monitoreo del Ambiente
5.
Neural Netw ; 175: 106319, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38640698

RESUMEN

To enhance deep learning-based automated interictal epileptiform discharge (IED) detection, this study proposes a multimodal method, vEpiNet, that leverages video and electroencephalogram (EEG) data. Datasets comprise 24 931 IED (from 484 patients) and 166 094 non-IED 4-second video-EEG segments. The video data is processed by the proposed patient detection method, with frame difference and Simple Keypoints (SKPS) capturing patients' movements. EEG data is processed with EfficientNetV2. The video and EEG features are fused via a multilayer perceptron. We developed a comparative model, termed nEpiNet, to test the effectiveness of the video feature in vEpiNet. The 10-fold cross-validation was used for testing. The 10-fold cross-validation showed high areas under the receiver operating characteristic curve (AUROC) in both models, with a slightly superior AUROC (0.9902) in vEpiNet compared to nEpiNet (0.9878). Moreover, to test the model performance in real-world scenarios, we set a prospective test dataset, containing 215 h of raw video-EEG data from 50 patients. The result shows that the vEpiNet achieves an area under the precision-recall curve (AUPRC) of 0.8623, surpassing nEpiNet's 0.8316. Incorporating video data raises precision from 70% (95% CI, 69.8%-70.2%) to 76.6% (95% CI, 74.9%-78.2%) at 80% sensitivity and reduces false positives by nearly a third, with vEpiNet processing one-hour video-EEG data in 5.7 min on average. Our findings indicate that video data can significantly improve the performance and precision of IED detection, especially in prospective real clinic testing. It suggests that vEpiNet is a clinically viable and effective tool for IED analysis in real-world applications.


Asunto(s)
Aprendizaje Profundo , Electroencefalografía , Epilepsia , Grabación en Video , Humanos , Electroencefalografía/métodos , Grabación en Video/métodos , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Adolescente , Redes Neurales de la Computación , Adulto Joven , Niño
6.
Aging Cell ; 23(3): e14063, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38098220

RESUMEN

Heart aging is a prevalent cause of cardiovascular diseases among the elderly. NAD+ depletion is a hallmark feature of aging heart, however, the molecular mechanisms that affect NAD+ depletion remain unclear. In this study, we identified microRNA-203 (miR-203) as a senescence-associated microRNA that regulates NAD+ homeostasis. We found that the blood miR-203 level negatively correlated with human age and its expression significantly decreased in the hearts of aged mice and senescent cardiomyocytes. Transgenic mice with overexpressed miR-203 (TgN (miR-203)) showed resistance to aging-induced cardiac diastolic dysfunction, cardiac remodeling, and myocardial senescence. At the cellular level, overexpression of miR-203 significantly prevented D-gal-induced cardiomyocyte senescence and mitochondrial damage, while miR-203 knockdown aggravated these effects. Mechanistically, miR-203 inhibited PARP1 expression by targeting its 3'UTR, which helped to reduce NAD+ depletion and improve mitochondrial function and cell senescence. Overall, our study first identified miR-203 as a genetic tool for anti-heart aging by restoring NAD+ function in cardiomyocytes.


Asunto(s)
Cardiopatías , MicroARNs , Ratones , Humanos , Animales , Anciano , NAD/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Senescencia Celular/genética , Ratones Transgénicos , Poli(ADP-Ribosa) Polimerasa-1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA