Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Crit Rev Food Sci Nutr ; 63(20): 4757-4784, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34898343

RESUMEN

Tea flavonoids are widely recognized as critical flavor contributors and crucial health-promoting bioactive compounds, and have long been the focus of research worldwide in food science. The aim of this review paper is to summarize the major progress in tea flavonoid chemistry, their dynamics of constituents and concentrations during tea processing as well as storage, and their health functions studied between 2001 and 2021. Moreover, the utilization of tea flavonoids in the human body has also been discussed for a detailed understanding of their uptake, metabolism, and interaction with the gut microbiota. Many novel tea flavonoids have been identified, including novel A- and B-ring substituted flavan-3-ol derivatives, condensed and oxidized flavan-3-ol derivatives, and glycosylated and methylated flavonoids, and are found to be closely associated with the characteristic color, flavor, and health benefits of tea. Flavoalkaloids exist widely in various teas, particularly 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols. Tea flavonoids behave significantly difference in constituents and concentrations depending on tea cultivars, plantation conditions, multiple stresses, the tea-specified manufacturing steps, and even the long-term storage period. Tea flavonoids exhibit multiple health-promoting effects, particularly their anti-inflammatory in alleviating metabolic syndromes. Interaction of tea flavonoids with the gut microbiota plays vital roles in their health function.


Asunto(s)
Camellia sinensis , , Humanos , Té/química , Camellia sinensis/química , Flavonoides/análisis
2.
Molecules ; 27(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36500365

RESUMEN

Food extract supplements, with high functional activity and low side effects, play a recognized role in the adjunctive therapy of human colorectal cancer. The present study reported a new functional beverage, which is a type of Chinese Hakka stir-fried green tea (HSGT) aged for several years. The extracts of the lyophilized powder of five HSGT samples with different aging periods were analyzed with high-performance liquid chromatography. The major components of the extract were found to include polyphenols, catechins, amino acids, catechins, gallic acid and caffeine. The tea extracts were also investigated for their therapeutic activity against human colorectal cancer cells, HT-29, an epithelial cell isolated from the primary tumor. The effect of different aging time of the tea on the anticancer potency was compared. Our results showed that, at the cellular level, all the extracts of the aged teas significantly inhibited the proliferation of HT-29 in a concentration-dependent manner. In particular, two samples prepared in 2015 (15Y, aged for 6 years) and 2019 (19Y, aged for 2 years) exhibited the highest inhibition rate for 48 h treatment (cell viability was 50% at 0.2 mg/mL). Further, all the aged tea extracts examined were able to enhance the apoptosis of HT-29 cells (apoptosis rate > 25%) and block the transition of G1/S phase (cell-cycle distribution (CSD) from <20% to >30%) population to G2/M phase (CSD from nearly 30% to nearly 10%) at 0.2 mg/mL for 24 h or 48 h. Western blotting results also showed that the tea extracts inhibited cyclin-dependent kinases 2/4 (CDK2, CDK4) and CylinB1 protein expression, as well as increased poly ADP-ribose polymerase (PRAP) expression and Bcl2-associated X (Bax)/B-cell lymphoma-2 (Bcl2) ratio. In addition, an upstream signal of one of the above proteins, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signalling, was found to be involved in the regulation, as evidenced by the inhibition of phosphorylated PI3K and AKT by the extracts of the aged tea. Therefore, our study reveals that traditional Chinese aged tea (HSGT) may inhibit colon cancer cell proliferation, cell-cycle progression and promoted apoptosis of colon cancer cells by inactivating PI3K/AKT signalling.


Asunto(s)
Camellia sinensis , Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Apoptosis , Camellia sinensis/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2 , Té/química
3.
Mol Biol Rep ; 47(1): 507-519, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31673889

RESUMEN

Liver cancer, one of the most common malignancies, is the second leading cause of cancer death in the world. The citrus reticulate peel and black tea have been studied for their beneficial health effects. In spite of the many studies have been reported, the underlying molecular mechanisms underlying its health benefits are still not fully understood. In present study, we developed a unique citrus reticulate peel black tea (CRPBT) by combined citrus reticulate peel and black tea and assessed its active ingredients, anti-oxidant and anti-liver cancer effects in vitro. The results suggested that CRPBT exhibited antioxidant capacity and effectively inhibited proliferation and migration of liver cancer cells in a dose- and time- dependent manner. Mechanistically, CRPBT significantly down-regulated phosphorylation of PI3K and AKT, and up-regulated the ratio of Bax/Bcl-2, and suppressed the expression of MMP2/9, N-cadherin and Vimetin proteins in liver cancer cells. Taken together, CRPBT has good effect on inhibiting migration, invasion, proliferation, and inducing apoptosis in liver cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Citrus , Neoplasias Hepáticas/metabolismo , Preparaciones de Plantas/farmacología , Transducción de Señal/efectos de los fármacos , , Antioxidantes/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Hep G2 , Humanos , Metaloproteinasas de la Matriz/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Preparaciones de Plantas/química , Proteínas Proto-Oncogénicas c-akt/metabolismo
4.
Nano Lett ; 19(11): 7781-7792, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31558022

RESUMEN

Though plastic nanoparticles have already raised much concern for their potential impact on health, our understanding of their biological effects is still utterly limited. Here we demonstrate for the first time that carboxyl-modified polystyrene nanoparticles (CPS) could effectively inhibit ferroptosis as a result of reduced cellular ROS which was triggered by transcription factor EB (TFEB) nucleus translocation. In this process, CPS first entered cells via macropinocytosis, then CPS-containing macropinosomes fused with lysosomes and expanded into abnormal lysosome-like large vacuoles in vacuolar-type H+-ATPase (V-ATPase) and aquaporins (AQPs) in a dependent way. These large vacuoles were detected both in vitro and in vivo, which was found to be a sign of lysosome stress. The lysosome stress induced deactivation of mammalian target of rapamycin (mTOR) which led to nucleus translocation of TFEB. Then, TFEB-dependent enhanced expression of lysosomal proteins and superoxide dismutase (SOD) which ultimately led to ROS reduction and inhibition of ferroptosis. Knockout of TFEB-enhanced ferroptosis was triggered by Erastin and abolished the effect of CPS on ROS and ferroptosis. In summary, our results reveal a novel mechanism whereby CPS reduced ROS and inhibited ferroptosis in a TFEB-dependent way. These findings have important implications for understanding the biological effects of polystyrene nanoparticles and searching for new anti-ROS and antiferroptosis particles or reagents.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ferroptosis/efectos de los fármacos , Lisosomas/efectos de los fármacos , Nanopartículas , Poliestirenos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Humanos , Lisosomas/metabolismo , Ratones , Nanopartículas/química , Pinocitosis/efectos de los fármacos , Poliestirenos/química , Transporte de Proteínas/efectos de los fármacos , Células RAW 264.7
5.
Molecules ; 25(20)2020 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-33050668

RESUMEN

Peptic ulcer disease is a common gastrointestinal tract disorder that affects up to 20% of the population of the world. Treatment of peptic ulcer remains challenging due to the limited effectiveness and severe side effects of the currently available drugs. Hence, natural compounds, owing to their medicinal, ecological, and other safe properties, are becoming popular potential candidates in preventing and treating peptic ulcers. Flavonoids, the most abundant polyphenols in plants, exhibit gastroprotective effects against peptic ulcer both in vivo and in vitro. In this review, we summarized the anti-ulcer functions and mechanisms, and also the bioavailability, efficacy, and safety, of flavonoid monomers in the gastrointestinal tract. Flavonoids exerted cytoprotective and rehabilitative effects by not only strengthening defense factors, such as mucus and prostaglandins, but also protecting against potentially harmful factors via their antioxidative, anti-inflammatory, and antibacterial activities. Although controlled clinical studies are limited at present, flavonoids have shown a promising preventable and therapeutic potential in peptic ulcers.


Asunto(s)
Antiinflamatorios/uso terapéutico , Flavonoides/uso terapéutico , Úlcera Péptica/tratamiento farmacológico , Antioxidantes/uso terapéutico , Flavonoides/efectos adversos , Humanos
6.
Biochem Biophys Res Commun ; 503(2): 408-413, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-29964015

RESUMEN

Human ABCG2 is one of the most important ATP-binding cassette (ABC) transporters. This protein functions as a xenobiotic transporter of large, hydrophobic, positively or negatively charged molecules, a wide variety anticancer drugs, fluorescent dyes, and different toxic compounds found in normal food. SNPs in ABCG2 may affect absorption and distribution of these substrates, altering the accumulation, effectiveness and toxicity of compounds or drugs in large populations. Its transport properties have been implicated clinically and ABCG2 expression is linked with different disease states. We reviewed the SNPs of ABCG2 in clinical relevance about gout, acute myeloid leukemia, solid tumors, and other diseases.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Proteínas de Neoplasias/genética , Polimorfismo de Nucleótido Simple , Enfermedad de Alzheimer/genética , Animales , Epilepsia/genética , Gota/genética , Humanos , Leucemia Mieloide Aguda/genética , Neoplasias/genética
7.
Mol Biol Rep ; 45(5): 689-697, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29923153

RESUMEN

The effects of certain tea components on the prevention of obesity in humans have been reported recently. However, whether Yinghong NO. 9 black tea consumption has beneficial effects on obesity are not known. Here, we obtained a Yinghong NO. 9 black tea infusion (Y9 BTI) and examined the anti-obesity effects of its oral administration. ICR mice were fed a standard diet supplemented with Y9 BTI at 0.5, 1.0, or 2.0 g/kg body weight for two weeks, and the body weight were recorded. HE staining was used to evaluate the effect of Y9 BTI on mice liver. Western blot analysis was used to detect the expression levels of related proteins in the mice liver and adipose. We found that the body weights of the mice in the control group were significantly higher than those of the mice in the middle and high dose groups. The results of western blot showed that Y9 BTI up-regulated the expression of liver kinase B1 (LKB1) and adenosine monophosphate-activated protein kinase (AMPK) and also increased in AMPK phosphorylation (p-AMPK) and LKB1 phosphorylation (p-LKB1). Y9 BTI significantly down-regulated Fas Cell Surface Death Receptor(FAS) and activated the phosphorylation of acetyl-CoA carboxylase (ACC). Furthermore, Y9 BTI (2.0 g/kg BW) down-regulated the expression of three factors (IL-1ß, Cox-2, and iNOS). Altogether, Y9 BTI supplementation reduced the feed intake of mice and may prevent obesity by inhibiting lipid absorption. These results suggest that Y9 BTI may regulate adipogenic processes through the LKB1/AMPK pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Obesidad/tratamiento farmacológico , Té/metabolismo , Té/fisiología , Acetil-CoA Carboxilasa/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos ICR , Nutrientes/metabolismo , Fosforilación/efectos de los fármacos , Extractos Vegetales/farmacología , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Receptor fas/efectos de los fármacos
9.
Food Chem X ; 22: 101470, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38883921

RESUMEN

The sensory quality of black tea (BT) influenced by various factors, among which tree age is particularly significant. People prefer BT produced by fresh leaves from old tea trees, yet the correlation between tree age and tea quality has not been thoroughly investigated. In this study, we analyzed the quality of BT from young trees (H-JYH) and old trees (H-OJYH) using e-tongue technology and sensory evaluation. Our findings revealed that H-OJYH had stronger sweetness and sourness, richer flavor, and diminished bitter-astringency compared to H-JYH. 1231 non-volatile metabolites and 504 volatile metabolites were discovered by ultra-performance liquid chromatography (UPLC) and gas chromatography-mass spectrometry (GC-MS). L-tartaric acid and trans-citridic acid were found to contribute to increase acidity, and 7,8-dihydroxy-6-methoxycoumarin and d-fructose 6-phosphate were associated with enhanced sweetness in H-OJYH. Additionally, lower levels of octyl gallate and vanillic acid in H-OJYH contributed to the diminished bitter-astringency. ß-ionone, 2-phenylethanol and phenylacetaldehyde merged as characteristic compounds of older tree BT with stronger floral and sweet aroma. Our study serves as a guideline to explore the relationship between tree age and tea quality.

10.
Food Chem ; 444: 138680, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38325077

RESUMEN

Fermentation durations are crucial in determining the quality of black tea flavour. The mechanism underlying the degradation of black tea flavour caused by inappropriate fermentation duration remains unclear. In this study, the taste of black teas with different fermentation durations (BTFs) was analysed using sensory evaluation, electronic tongue, and metabolomics. The results revealed significant differences in 46 flavour profile components within the BTFs. Notably, metabolites such as gallocatechin gallate, gallocatechin, and epigallocatechin were found to be primarily reduced during fermentation, leading to a reduction in the astringency of black tea. Conversely, an increase in d-mandelic acid and guanine among others was observed to enhance the bitter flavour of black tea, while 3-Hydroxy-5-methylphenol nucleotides were found to contribute to sweetness. Furthermore, succinic acid and cyclic-3',5'-adenine nucleotides were associated with diminished freshness. This study offers a theoretical foundation for the regulation of flavour quality in large leaf black tea.


Asunto(s)
Camellia sinensis , , Té/metabolismo , Gusto , Fermentación , Camellia sinensis/metabolismo , Metabolómica/métodos , Hojas de la Planta/metabolismo
11.
Foods ; 13(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928848

RESUMEN

The bioactivity of tea polysaccharides (TPs) has been widely reported, but studies to date have focused on green tea. Some human health investigations have implied that black tea may possess potential antidiabetic effects, but less is known about their potential role and related antidiabetic mechanism. The present study was, therefore, conducted to investigate the chemical properties and antidiabetic activity of TPs from black tea. Monosaccharide composition revealed that Alduronic acid (77.8 mol%) considerably predominated in the fraction. TP conformation analysis indicated that three components in TPs were all typical of high-branching structures. Oral administration of TPs could effectively alleviate fasting blood glucose in type 2 diabetes mellitus (T2D) mice, with the values 23.6 ± 1.42, 19.6 ± 2.25, and 16.4 ± 2.07 mmol/L in the 200, 400, and 800 mg/kg·BW groups, respectively. Among these TPs groups, the 800 mg/kg·BW groups significantly decreased by 37.88% when compared with the T2D+water group (p < 0.05). Further studies demonstrated that TP treatment upregulated the expression of p-Akt/p-PI3K (p < 0.001). Additionally, TP treatment significantly promoted glucose transporter protein 2 (GLUT2) translocation in the liver (p < 0.001). These findings suggest that TPs from black tea protect against T2D by activating PI3K/Akt/GLUT2 signaling and might serve as a novel therapeutic candidate for T2D.

12.
Nutrients ; 16(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38613030

RESUMEN

Black tea (BT), the most consumed tea worldwide, can alleviate hyperlipidemia which is a serious threat to human health. However, the quality of summer BT is poor. It was improved by microbial fermentation in a previous study, but whether it affects hypolipidemic activity is unknown. Therefore, we compared the hypolipidemic activity of BT and microbially fermented black tea (EFT). The results demonstrated that BT inhibited weight gain and improved lipid and total bile acid (TBA) levels, and microbial fermentation reinforced this activity. Mechanistically, both BT and EFT mediate bile acid circulation to relieve hyperlipidemia. In addition, BT and EFT improve dyslipidemia by modifying the gut microbiota. Specifically, the increase in Lactobacillus johnsonii by BT, and the increase in Mucispirillum and Colidextribacter by EFT may also be potential causes for alleviation of hyperlipidemia. In summary, we demonstrated that microbial fermentation strengthened the hypolipidemic activity of BT and increased the added value of BT.


Asunto(s)
Camellia sinensis , Hiperlipidemias , Humanos , , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/prevención & control , Fermentación , Ácidos y Sales Biliares
13.
Food Chem X ; 22: 101342, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38665631

RESUMEN

Yellow tea (YT) has an additional process of yellowing before or after rolling than green tea (GT), making YT sweeter. We analyzed the variations of composition and taste throughout the withering, fixing and rolling steps using UPLC-MS/MS and sensory evaluation, and investigated the influence of various yellowing times on flavor profile of YT. 532 non-volatile metabolites were identified. Withering and fixing were the important processes to form the taste quality of GT. Withering, fixing and yellowing were important processes to form flavor profile of YT. Withering mainly regulated bitterness and astringency, and fixing mainly regulated bitterness, astringency and sweetness of YT and GT. Yellowing mainly regulated sweetness of YT. Trans-4-hydroxy-L-proline and glutathione reduced form as the key characteristic components of YT, increased significantly during yellowing mainly through Arginine and proline metabolism and ABC transporters. The paper offers a systematic insight into intrinsic mechanisms of flavor formation in YT and GT.

14.
Biomed Pharmacother ; 158: 114136, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36535201

RESUMEN

The gut-liver axis is a bidirectional relationship between the gut with its microbiota and the hepatic. Ulcerative colitis (UC) disrupts the intestinal barrier and influx of intestinal microorganisms and their products into the liver, which trigger liver injury. Tea consumption is associated with a low incidence of UC in Asian countries. In this study, we revealed the mechanisms of six types of tea water extracts (TWEs) obtained from the leaves of Camellia sinensis on the dextran sodium sulfate (DSS)-induced colitis and liver injury in mice. The TWEs significantly restored mucin production and increased the expression levels of tight junction (TJ) proteins such as zonula occludens-1 (ZO-1), occluding, and claudin-1. In addition, TWEs also reduced the levels of pro-inflammatory cytokines in the colon and liver tissue by inactivating the NF-κB/NLRP3. Moreover, TEWs treatment promoted the integrity of the intestinal barrier to reduce serum lipopolysaccharide (LPS) levels, thereby reducing liver injury caused by intestinal microbial translocation and LPS induction. Analysis of 16 S rRNA microbial sequencing revealed that tea water extracts (TWEs) restored the DSS-induced gut dysbiosis. Interestingly, our results showed that the degree of fermentation of tea leaves was negatively associated with the alleviation of DSS-induced colitis effects, and there was also an overall negative trend with colitis-induced liver injury, except for black tea. Taken together, tea consumption mitigated DSS-induced colitis and liver injury in mice via inhibiting the TLR4/NF-κB/NLRP3 inflammasome pathway.


Asunto(s)
Camellia sinensis , Colitis Ulcerosa , Colitis , Animales , Ratones , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Inflamasomas/metabolismo , Lipopolisacáridos , Hígado/metabolismo , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , , Proteínas de Uniones Estrechas/metabolismo , Receptor Toll-Like 4
15.
Foods ; 12(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37761123

RESUMEN

Tea is the most popular and widely consumed beverage worldwide, especially black tea. Summer tea has a bitter and astringent taste and low aroma compared to spring tea due to the higher content of polyphenols and lower content of amino acids. Microbial fermentation is routinely used to improve the flavor of various foods. This study analyzed the relationship between the quality of black tea, metabolic characteristics, and microbial communities after microbial stuck fermentation in summer black tea. Stuck fermentation decreased the bitterness, astringency sourness, and freshness, and increased the sweetness, mellowness, and smoothness of summer black tea. The aroma also changed from sweet and floral to fungal, with a significant improvement in overall quality. Metabolomics analysis revealed significant changes in 551 non-volatile and 345 volatile metabolites after fermentation. The contents of compounds with bitter and astringent taste were decreased. Sweet flavor saccharides and aromatic lipids, and acetophenone and isophorone that impart fungal aroma showed a marked increase. These changes are the result of microbial activities, especially the secretion of extracellular enzymes. Aspergillus, Pullululanibacillus, and Bacillus contribute to the reduction of bitterness and astringency in summer black teas after stuck fermentation, and Paenibacillus and Basidiomycota_gen_Incertae_sedis contribute positively to sweetness. In addition, Aspergillus was associated with the formation of fungal aroma. In summary, our research will provide a suitable method for the improvement of tea quality and utilization of summer tea, as well as provide a reference for innovation and improvement in the food industry.

16.
Food Res Int ; 172: 113137, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37689901

RESUMEN

Aroma is a crucial determinant of tea quality. While some studies have examined the aroma of yellow tea, there are no reports of the difference and formation mechanism of aroma quality between yellow and green teas from the same tea tree variety. This study employed gas chromatography-mass spectrometry to investigate the difference and formation mechanism of the aroma of yellow and green tea at the omics level, based on sensory evaluation. The sensory evaluation revealed that green tea has a distinct faint scent and bean aroma, while yellow tea, which was yellowed for 48 h, has a noticeable corn aroma and sweet fragrance. A total of 79 volatile metabolites were detected in the processing of yellow and green tea, covering 11 subclasses and 27 were differential volatile metabolites. Benzoic acid, 2-(methylamino-), methyl ester, terpinen-4-ol ethanone, 1-(1H-pyrrol-2-yl-), 3-penten-2-one, 4-methyl- and benzaldehyde were characteristic components of the difference in aroma quality between green and yellow teas. Eleven volatile metabolites significantly contributed to the aroma quality of green and yellow teas, especially acetic acid, 2-phenylethyl ester, with rose and fruity aromas. KEGG enrichment analysis showed that the arginine and proline metabolism might be the key mechanism of aroma formation during green and yellow teas' processing. These finding provide a theoretical basis way for the aroma formation of green and yellow teas.


Asunto(s)
Odorantes , Espectrometría de Masas en Tándem , Cromatografía de Gases y Espectrometría de Masas , Metabolómica , Ésteres
17.
Food Sci Nutr ; 11(11): 7026-7038, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37970412

RESUMEN

Niudali (Callerya speciosa) is commonly grown in southeastern regions of China and consumed as a food ingredient. Although Niudali root extracts showed various biological activities, the hepatoprotective effects of Niudali root phytochemicals are not fully studied. Herein, we prepared two Niudali root aqueous extracts, namely, c and Niudali polysaccharides-enriched extract (NPE), and identified an alkaloid, (hypaphorine) in NEW. The hepatoprotective effects of NWE, NPE, and hypaphorine were evaluated in an acute liver injury model induced by carbon tetrachloride (CCl4) in mice. Pathohistological examination and blood chemistry assays showed that treatment of NWE, NPE, and hypaphorine alleviated CCl4-induced liver damage by lowering the liver injury score (by 75.51%, 80.01%, and 41.22%) and serum aspartate and alanine transaminases level (by 63.24%, 85.22%, and 49.74% and by 78.73%, 80.08%, and 81.70%), respectively. NWE, NPE, and hypaphorine also reduced CCl4-induced hepatic oxidative stresses in the liver tissue by decreasing the levels of malondialdehyde (by 40.00%, 51.25%, and 28.75%) and reactive oxygen species (by 30.22%, 36.14%, and 33.54%) while increasing the levels of antioxidant enzymes including superoxide dismutase (by 21.36%, 21.64%, and 8.90%), catalase (by 22.13%, 33.33%, and 5.39%), and glutathione (by 84.87%, 90.65%, and 80.53%), respectively. Mechanistic assays showed that NWE, NPE, and hypaphorine alleviated liver damage by mediating inflammatory biomarkers (e.g., pro-inflammatory cytokines) via the signaling pathways of mitogen-activated protein kinases and nuclear factor-κB. Findings from our study extend the understanding of Niudali's hepatoprotective effects, which is useful for its development as a dietary intervention for liver inflammation.

18.
Food Chem ; 426: 136601, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37329793

RESUMEN

Most aged tea has superior sensory qualities and good health benefits. The content of organic acids determines of the quality and biological effects of aged tea, but there are no reports of the effect of storage on the composition and relative proportion of acidic compounds in black tea. This study analyzed and compared the sourness and metabolite profile of black tea produced in 2015, 2017, 2019 and 2021 using pH determination and UPLC-MS/MS. In total, 28 acidic substances were detected, with 17 organic acids predominating. The pH of black tea decreased significantly during storage from pH 4.64 to pH 4.25 with significantly increased in l-ascorbic acid, salicylic acid, benzoic acid and 4-hydroxybenzoic acid. The metabolic pathways ascorbate biosynthesis, salicylate degradation, toluene degradation, etc. were mainly enriched. These findings provide a theoretical basis to regulate the acidity of aged black tea.


Asunto(s)
Camellia sinensis , , Té/química , Cromatografía Liquida , Espectrometría de Masas en Tándem , Camellia sinensis/química , Metabolómica , Hojas de la Planta/química
19.
Food Res Int ; 174(Pt 1): 113643, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37986484

RESUMEN

Aroma is one of the significant quality factors of dark tea (DT). However, for a single large-leaf tea variety, there are few studies analyzing the effect of pile-fermentation on the aroma quality of DT. The GC × GC-QTOFMS, electronic nose (E-nose) and GC-olfactometry (GC-O) techniques were employed to analysis the difference of tea products before and after pile-fermentation. A total of 149 volatile metabolites (VMs) were identified, with 92 VMs exhibiting differential characteristics. Among these, 31 VMs with OAV > 1.0 were found to be correlated with E-nose results (|r| > 0.8). Additionally, GC-O analysis validated seven major differential metabolites. Notably, naphthalene, 2-methylnaphthalene, and dibenzofuran were found to enhance the woody aroma, while (Z)-4-heptenal, 2-nonenal and 1-hexanol were associated with an increase in mushroom, fatty and sweet odors, respectively. Moreover, 1-octen-3-ol was linked to reducing pungent fishy smell. These findings could provide a certain theoretical basis for understanding the influence of pile-fermentation on the aroma quality of dark tea.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Odorantes/análisis , Nariz Electrónica , Fermentación , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Hojas de la Planta/química ,
20.
Food Chem X ; 20: 100991, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144858

RESUMEN

The reasons for the change in volatile metabolites and aroma of black tea during storage remain unclear. Therefore, we used HS-SPME and GC-MS methods to analyze the aroma compounds of new tea (2021) versus aged tea groups (2015, 2017, and 2019). A total of 109 volatile components were identified. During storage, 36 metabolites mainly with floral and fruity aromas decreased significantly, while 18 volatile components with spicy, sour, and woody aromas increased significantly. Linalool and beta-ionone mainly contributed to sweet and floral aromas of freshly-processed and aged black tea, respectively. Isovaleric acid and hexanoic acid mainly caused sour odor of aged black tea. The monoterpene biosynthesis and secondary metabolic biosynthesis pathways might be key metabolic pathways leading to changes in the relative content of metabolites during storage of black tea. Our study provides theoretical support for fully understanding the changes in the aroma quality of black tea during storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA