Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Chem Soc Rev ; 53(10): 5264-5290, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38619389

RESUMEN

The energy storage and vehicle industries are heavily investing in advancing all-solid-state batteries to overcome critical limitations in existing liquid electrolyte-based lithium-ion batteries, specifically focusing on mitigating fire hazards and improving energy density. All-solid-state lithium-sulfur batteries (ASSLSBs), featuring earth-abundant sulfur cathodes, high-capacity metallic lithium anodes, and non-flammable solid electrolytes, hold significant promise. Despite these appealing advantages, persistent challenges like sluggish sulfur redox kinetics, lithium metal failure, solid electrolyte degradation, and manufacturing complexities hinder their practical use. To facilitate the transition of these technologies to an industrial scale, bridging the gap between fundamental scientific research and applied R&D activities is crucial. Our review will address the inherent challenges in cell chemistries within ASSLSBs, explore advanced characterization techniques, and delve into innovative cell structure designs. Furthermore, we will provide an overview of the recent trends in R&D and investment activities from both academia and industry. Building on the fundamental understandings and significant progress that has been made thus far, our objective is to motivate the battery community to advance ASSLSBs in a practical direction and propel the industrialized process.

2.
J Am Chem Soc ; 146(18): 12681-12690, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38652868

RESUMEN

Lithium (Li) metal solid-state batteries feature high energy density and improved safety and thus are recognized as promising alternatives to traditional Li-ion batteries. In practice, using Li metal anodes remains challenging because of the lack of a superionic solid electrolyte that has good stability against reduction decomposition at the anode side. Here, we propose a new electrolyte design with an antistructure (compared to conventional inorganic structures) to achieve intrinsic thermodynamic stability with a Li metal anode. Li-rich antifluorite solid electrolytes are designed and synthesized, which give a high ionic conductivity of 2.1 × 10-4 S cm-1 at room temperature with three-dimensional fast Li-ion transport pathways and demonstrate high stability in Li-Li symmetric batteries. Reversible full cells with a Li metal anode and LiCoO2 cathode are also presented, showing the potential of Li-rich antifluorites as Li metal-compatible solid electrolytes for high-energy-density solid-state batteries.

3.
J Am Chem Soc ; 146(5): 2977-2985, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38284994

RESUMEN

The recently surged halide-based solid electrolytes (SEs) are great candidates for high-performance all-solid-state batteries (ASSBs), due to their decent ionic conductivity, wide electrochemical stability window, and good compatibility with high-voltage oxide cathodes. In contrast to the crystalline phases in halide SEs, amorphous components are rarely understood but play an important role in Li-ion conduction. Here, we reveal that the presence of amorphous component is common in halide-based SEs that are prepared via mechanochemical method. The fast Li-ion migration is found to be associated with the local chemistry of the amorphous proportion. Taking Zr-based halide SEs as an example, the amorphization process can be regulated by incorporating O, resulting in the formation of corner-sharing Zr-O/Cl polyhedrons. This structural configuration has been confirmed through X-ray absorption spectroscopy, pair distribution function analyses, and Reverse Monte Carlo modeling. The unique structure significantly reduces the energy barriers for Li-ion transport. As a result, an enhanced ionic conductivity of (1.35 ± 0.07) × 10-3 S cm-1 at 25 °C can be achieved for amorphous Li3ZrCl4O1.5. In addition to the improved ionic conductivity, amorphization of Zr-based halide SEs via incorporation of O leads to good mechanical deformability and promising electrochemical performance. These findings provide deep insights into the rational design of desirable halide SEs for high-performance ASSBs.

4.
Acc Chem Res ; 56(24): 3547-3557, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38060813

RESUMEN

ConspectusSulfur-based cathode materials have become a research hot spot as one of the most promising candidates for next-generation, high-energy lithium batteries. However, the insulating nature of elemental sulfur or organosulfides has become the biggest challenge that leads to dramatic degradation and hinders their practical application. The disadvantage is more obvious for all-solid-state battery systems, which require both high electronic and ionic migration at the same sites to realize a complete electrochemical reaction. In addition to adding conductive components into the cathode composites, another effective way to realize high-reversibility sulfur-based cathodes is by optimizing the inherent nature of sulfur-based materials to make them "conductive". Inorganic polysulfide materials including polysulfide molecules, selenium-sulfur solid solutions, and (lithium) metal polysulfides are promising, as they have different structures that can make them intrinsically conductive or becoming conductive during lithiation. They all contain at least one -S-S- bridged bond, which is the intrinsic structural characteristic and the source of the chemical properties of these polysulfide compounds. For example, by balancing the conductivity and reversible capacity, researchers in the US National Aeronautics and Space Administration (NASA) have shown that 500 Wh/kg solid-state Li-Se/S batteries can power cars and even electric aircraft.We have long been focusing on the inorganic polysulfide component, reported the selenium-sulfur solid solutions, the first sulfur-rich phosphorus polysulfide molecules, and followed the research of metal polysulfide components. The proposed Account summarizes our current knowledge of the fundamental aspects of inorganic polysulfides in energy storage systems based on state-of-the-art publications on this topic. Both fast electron and ion migrations within the electrode materials are vital to achieving high-energy batteries. We begin by illustrating effective approaches to enhance the electronic/ionic conductivity of sulfur-based electrode materials. We then present some basic observations and properties (especially the intrinsic high conductivities) of the inorganic polysulfide electrode materials. The key chemical and structural factors dictating their conductive and electrochemical behaviors will be discussed. Finally, we show the advantages and broad applications of inorganic polysulfides in energy storage areas. The proposed Account will provide an insightful perspective on the current knowledge of inorganic polysulfide materials, as well as their future research directions and development potential, serving as a keynote reference for researchers in the field of energy storage.

5.
Chem Rev ; 122(3): 3763-3819, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35015520

RESUMEN

Solid-state batteries have fascinated the research community over the past decade, largely due to their improved safety properties and potential for high-energy density. Searching for fast ion conductors with sufficient electrochemical and chemical stabilities is at the heart of solid-state battery research and applications. Recently, significant progress has been made in solid-state electrolyte development. Sulfide-, oxide-, and halide-based electrolytes have been able to achieve high ionic conductivities of more than 10-3 S/cm at room temperature, which are comparable to liquid-based electrolytes. However, their stability toward Li metal anodes poses significant challenges for these electrolytes. The existence of non-Li cations that can be reduced by Li metal in these electrolytes hinders the application of Li anode and therefore poses an obstacle toward achieving high-energy density. The finding of antiperovskites as ionic conductors in recent years has demonstrated a new and exciting solution. These materials, mainly constructed from Li (or Na), O, and Cl (or Br), are lightweight and electrochemically stable toward metallic Li and possess promising ionic conductivity. Because of the structural flexibility and tunability, antiperovskite electrolytes are excellent candidates for solid-state battery applications, and researchers are still exploring the relationship between their structure and ion diffusion behavior. Herein, the recent progress of antiperovskites for solid-state batteries is reviewed, and the strategies to tune the ionic conductivity by structural manipulation are summarized. Major challenges and future directions are discussed to facilitate the development of antiperovskite-based solid-state batteries.

6.
Fish Physiol Biochem ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696022

RESUMEN

This study investigated whether adding Herba Houttuyniae to feed can improve intestinal function and prevent diseases for koi carp (Cyprinus carpio) infected with Aeromonas veronii. There was a total of 168 koi carp with an average body length of (9.43 ± 0.99) cm and an average body weight of (26.00 ± 11.40) g. The K group was the control group fed with basal feed, while the C group was fed with feed with a H. houttuyniae content of six per thousand. After 14 days of feeding, the fish were fasted for a day and then intraperitoneally injected with A. veronii for artificial infection, injection dose is 0.2 mL, and the concentration is 1 × 107 CFU/mL. Samples were collected from the two groups on days 0, 1, 2, and 4. The fold height, intestinal villus width, and muscle layer thickness in the gut of the koi carp were measured. In addition, on day 4, the activities of trypsin, α-amylase, and lipase in the gut were determined, and the intestinal flora of the carp in both groups was tested. The results showed that on the second and fourth days of sampling, the fold height and muscle layer thickness in the C group were significantly higher than those in the K group (P < 0.05). The villus width in the C group was slightly higher than that in the K group, but the difference was not significant (P > 0.05). Microscopic observation revealed that the intestinal structure of the carp in the C4 (day 4 in C group) group was more intact than that in the K4 (day 4 in K group) group. Moreover, the activities of trypsin, α-amylase, and lipase in the foregut and midgut in the C4 group were higher than those in the K4 group (P < 0.05). The activities of trypsin and α-amylase in the hindgut in the C4 group were higher than those in the K4 group (P < 0.05). Furthermore, beneficial bacteria, especially those in the genus Cetobacterium, were more abundant in the intestinal tract of the carp in the C4 group compared to the K group. In addition, comparisons and tests of IL-4 and IL-10 in the intestines of the fish in both groups demonstrated that the H. houttuyniae added to feed enhanced the immune function of the fish intestines after bacterial attack. In conclusion, for koi carp infected with A.veronii, adding H. houttuyniae to their feed not only improves the activity of digestive enzymes and the morphological structure of the intestine but also optimizes the beneficial intestinal microbiota, thereby protecting the intestinal tract.

7.
Angew Chem Int Ed Engl ; : e202405017, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38749917

RESUMEN

The controllable anchoring of multiple metal single-atoms (SAs) into a single support exhibits scientific and technological opportunities,while marrying the concentration-complex multimetallic SAs and high-entropy SAs (HESAs) into one SAC system remains a substantial challenge.Here, we present a substrate-mediated SAs formation strategy to successfully fabricate a library of multimetallic SAs and HESAs on MoS2 and MoSe2 supports, which can precisely control the doping location of SAs. Specially, the contents of SAs can continuously increase until the accessible Mo atoms on TMDs carriers are completely replaced by SAs, thus allowing the of much higher metal contents.In-depth mechanistic study shows that the well-controlled synthesis of multimetallic SAs and HESAs is realized by controlling the reversible redox reaction occurred on the TMDs/TM ion interface.As a proof-of-concept application, a variety of SAs-TMDs were applied to hydrogen evolution reaction. The optimized HESAs-TMDs (Pt,Ru,Rh,Pd,Re-MoSe2) delivers a much higher activity and durability than state of-the-art Pt. Thus, our work will broaden the family of single-atom catalysts and provide a new guideline for the rational design of high-performance single-atom catalysts.

8.
Angew Chem Int Ed Engl ; 63(21): e202318872, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38503685

RESUMEN

Alloying Pt catalysts with transition metal elements is an effective pathway to enhance the performance of oxygen reduction reaction (ORR), but often accompanied with severe metal dissolution issue, resulting in poor stability of alloy catalysts. Here, instead of forming traditional alloy structure, we modify Pt surface with a novel Ni-W dimer structure by the atomic layer deposition (ALD) technique. The obtained NiW@PtC catalyst exhibits superior ORR performance both in liquid half-cell and practical fuel cell compared with initial Pt/C. It is discovered that strong synergistic Ni-W dimer structure arising from short atomic distance induced a stable compressive strain on the Pt surface, thus boosting Pt catalytic performance. This surface modification by synergistic dimer sites offers an effective strategy in tailoring Pt with excellent activity and stability, which provides a significant perspective in boosting the performance of commercial Pt catalyst modified with polymetallic atom sites.

9.
Angew Chem Int Ed Engl ; 63(2): e202314181, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38009453

RESUMEN

Glassy Na-ion solid-state electrolytes (GNSSEs) are an important group of amorphous SSEs. However, the insufficient ionic conductivity of state-of-the-art GNSSEs at room temperature lessens their promise in the development of all-solid-state Na-ion batteries (ASSNIBs) with high energy density and improved safety. Here we report the discovery of a new sodium superionic glass, 0.5Na2 O2 -TaCl5 (NTOC), based on dual-anion sublattice of oxychlorides. The unique local structures with abundant bridging and non-bridging oxygen atoms contributes to a highly disordered Na-ion distribution as well as low Na+ migration barrier within NTOC, enabling an ultrahigh ionic conductivity of 4.62 mS cm-1 at 25 °C (more than 20 times higher than those of previously reported GNSSEs). Moreover, the excellent formability of glassy NTOC electrolyte and its high electrochemical oxidative stability ensure a favourable electrolyte-electrode interface, contributing to superior cycling stability of ASSNIBs for over 500 cycles at room temperature. The discovery of glassy NTOC electrolyte would reignite research enthusiasm in superionic glassy SSEs based on multi-anion chemistry.

10.
Angew Chem Int Ed Engl ; : e202403331, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728142

RESUMEN

The evolution of inorganic solid electrolytes has revolutionized the field of sustainable organic cathode materials, particularly by addressing the dissolution problems in traditional liquid electrolytes. However, current sulfide-based all-solid-state lithium-organic batteries still face challenges such as high working temperatures, high costs, and low voltages. Here, we design an all-solid-state lithium battery based on a cost-effective organic cathode material phenanthrenequinone (PQ) and a halide solid electrolyte Li2ZrCl6. Thanks to the good compatibility between PQ and Li2ZrCl6, the PQ cathode achieved a high specific capacity of 248 mAh g-1 (96 % of the theoretical capacity), a high average discharge voltage of 2.74 V (vs. Li+/Li), and a good capacity retention of 95 % after 100 cycles at room temperature (25 °C). Furthermore, the interactions between the high-voltage carbonyl PQ cathode and both sulfide and halide solid electrolytes, as well as the redox mechanism of the PQ cathode in all-solid-state batteries, were carefully studied by a variety of advanced characterizations. We believe such a design and the corresponding investigations into the underlying chemistry give insights for the further development of practical all-solid-state lithium-organic batteries.

11.
Angew Chem Int Ed Engl ; 63(27): e202401373, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38659181

RESUMEN

Inorganic solid-state electrolytes (SSEs) play a vital role in high-energy all-solid-state batteries (ASSBs). However, the current method of SSE preparation usually involves high-energy mechanical ball milling and/or a high-temperature annealing process, which is not suitable for practical application. Here, a facile strategy is developed to realize the scalable synthesis of cost-effective aluminum-based oxyhalide SSEs, which involves a self-propagating method by the exothermic reaction of the raw materials. This strategy enables the synthesis of various aluminum-based oxyhalide SSEs with tunable components and high ionic conductivities (over 10-3 S cm-1 at 25 °C) for different cations (Li+, Na+, Ag+). It is elucidated that the amorphous matrix, which mainly consists of various oxidized chloroaluminate species that provide numerous sites for smooth ion migration, is actually the key factor for the achieved high conductivities. Benefit from their easy synthesis, low cost, and low weight, the aluminum-based oxyhalide SSEs synthesized by our approach could further promote practical application of high-energy-density ASSBs.

12.
Angew Chem Int Ed Engl ; 63(12): e202316360, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38243690

RESUMEN

Halide solid electrolytes (SEs) have attracted significant attention due to their competitive ionic conductivity and good electrochemical stability. Among typical halide SEs (chlorides, bromides, and iodides), substantial efforts have been dedicated to chlorides or bromides, with iodide SEs receiving less attention. Nevertheless, compared with chlorides or bromides, iodides have both a softer Li sublattice and lower reduction limit, which enable iodides to possess potentially high ionic conductivity and intrinsic anti-reduction stability, respectively. Herein, we report a new series of iodide SEs: Lix YI3+x (x=2, 3, 4, or 9). Through synchrotron X-ray/neutron diffraction characterizations and theoretical calculations, we revealed that the Lix YI3+x SEs belong to the high-symmetry cubic structure, and can accommodate abundant vacancies. By manipulating the defects in the iodide structure, balanced Li-ion concentration and generated vacancies enables an optimized ionic conductivity of 1.04 × 10-3  S cm-1 at 25 °C for Li4 YI7 . Additionally, the promising Li-metal compatibility of Li4 YI7 is demonstrated via electrochemical characterizations (particularly all-solid-state Li-S batteries) combined with interface molecular dynamics simulations. Our study on iodide SEs provides deep insights into the relation between high-symmetry halide structures and ionic conduction, which can inspire future efforts to revitalize halide SEs.

13.
J Am Chem Soc ; 145(21): 11701-11709, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37195646

RESUMEN

Inorganic solid-state electrolytes (SSEs) have gained significant attention for their potential use in high-energy solid-state batteries. However, there is a lack of understanding of the underlying mechanisms of fast ion conduction in SSEs. Here, we clarify the critical parameters that influence ion conductivity in SSEs through a combined analysis approach that examines several representative SSEs (Li3YCl6, Li3HoCl6, and Li6PS5Cl), which are further verified in the xLiCl-InCl3 system. The scaling analysis on conductivity spectra allowed the decoupled influences of mobile carrier concentration and hopping rate on ionic conductivity. Although the carrier concentration varied with temperature, the change alone cannot lead to the several orders of magnitude difference in conductivity. Instead, the hopping rate and the ionic conductivity present the same trend with the temperature change. Migration entropy, which arises from lattice vibrations of the jumping atoms from the initial sites to the saddle sites, is also proven to play a significant role in fast Li+ migration. The findings suggest that the multiple dependent variables such as the Li+ hopping frequency and migration energy are also responsible for the ionic conduction behavior within SSEs.

14.
J Am Chem Soc ; 145(4): 2183-2194, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36583711

RESUMEN

The revival of ternary halides Li-M-X (M = Y, In, Zr, etc.; X = F, Cl, Br) as solid-state electrolytes (SSEs) shows promise in realizing practical solid-state batteries due to their direct compatibility toward high-voltage cathodes and favorable room-temperature ionic conductivities. Most of the reported superionic halide SSEs have a structural pattern of [MCl6]x- octahedra and generate a tetrahedron-assisted Li+ ion diffusion pathway. Here, we report a new class of zeolite-like halide frameworks, SmCl3, for example, in which 1-dimensional channels are enclosed by [SmCl9]6- tricapped trigonal prisms to provide a short jumping distance of 2.08 Å between two octahedra for Li+ ion hopping. The fast Li+ diffusion along the channels is verified through ab initio molecular dynamics simulations. Similar to zeolites, the SmCl3 framework can be grafted with halide species to obtain mobile ions without altering the base structure, achieving an ionic conductivity over 10-4 S cm-1 at 30 °C with LiCl as the adsorbent. Moreover, the universality of the interface-bonding behavior and ionic diffusion in a class of framework materials is demonstrated. It is suggested that the ionic conductivity of the MCl3/halide composite (M = La-Gd) is likely in correlation with the ionic conductivity of the grafted halide species, interfacial bonding, and framework composition/dimensions. This work reveals a potential class of halide structures for superionic conductors and opens up a new frontier for constructing zeolite-like frameworks in halide-based materials, which will promote the innovation of superionic conductor design and contribute to a broader selection of halide SSEs.

15.
Small ; 19(48): e2304750, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37537155

RESUMEN

Replacing high-cost and scarce platinum (Pt) with transition metal and nitrogen co-doped carbon (M/N/C, M = Fe, Co, Mn, and so on) catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells has largely been impeded by the unsatisfactory ORR activity of M/N/C due to the low site utilization and inferior intrinsic activity of the M─N4 active center. Here, these limits are overcome by using a sacrificial bimetallic pyrolysis strategy to synthesize Fe─N─C catalyst by implanting the Cd ions in the backbone of ZIF-8, leading to exposure of inaccessible FeN4 edge sites (that is, increasing active site density (SD)) and high fast mass transport at the catalyst layer of cathode. As a result, the final obtained Fe(Cd)─N─C catalyst has an active site density of 33.01 µmol g-1 (with 33.01% site utilization) over 5.8 times higher than that of Fe─N─C catalyst. Specially, the optimal catalyst delivers a high ORR performance with a half-wave potential of 0.837 (vs RHE) in a 0.1 m HClO4 electrolyte, which surpasses most of Fe-based catalysts.

16.
Small ; 19(12): e2205283, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36581564

RESUMEN

Single-atom catalysts based on metal-N4 moieties and embedded in a graphite matrix (defined as MNC) are promising for oxygen reduction reaction (ORR). However, the performance of MNC catalysts is still far from satisfactory due to their imperfect adsorption energy to oxygen species. Herein, single-atom FeNC is leveraged as a model system and report an adjacent Ru-N4 moiety modulation effect to optimize the catalyst's electronic configuration and ORR performance. Theoretical simulations and physical characterizations reveal that the incorporation of Ru-N4 sites as the modulator can alter the d-band electronic energy of Fe center to weaken the FeO binding affinity, thus resulting in the lower adsorption energy of ORR intermediates at Fe sites. Thanks to the synergetic effects of neighboring Fe and Ru single-atom pairs, the FeN4 /RuN4 catalyst exhibits a half-wave potential of 0.958 V and negligible activity degradation after 10 000 cycles in 0.1 m KOH. Metal-air batteries using this catalyst in the cathode side exhibit a high power density of 219.5 mW cm-2 and excellent cycling stability for over 2370 h, outperforming the state-of-the-art catalysts.

17.
Nano Lett ; 22(12): 4905-4911, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35687074

RESUMEN

Structural evolutions are crucial for determining the performance of high-voltage lithium, manganese-rich layered cathodes. Moreover, interface between electrode and electrolyte plays a critical role in governing ionic transfer in all-solid-state batteries. Here, we unveil two different types of porous structure in Li1.2Ni0.2Mn0.6O2 cathode with LiPON solid-state electrolyte. Nanopores are found near the cathode/electrolyte interface at pristine state, where cation mixing, phase transformation, oxygen loss, and Mn reduction are also found. In situ Li+ extraction induces the evolution of nanovoids, initially formed near the interface then propagated into the bulk. Despite the development of nanovoids, layered structure is conserved, suggesting the nature of nanopores and nanovoids are different and their impact would be divergent. This work demonstrates the intrinsic interfacial layer, as well as the dynamic scenario of nanovoid formation inside high-capacity layered cathode, which helps to understand the performance fading in cathodes and offers insight into the all-solid-state battery design.

18.
Nano Lett ; 22(3): 1198-1206, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35080406

RESUMEN

Two-dimensional conductive metal-organic frameworks (2D CMOFs) can be regarded as high-performance electrode substances owing to their rich hierarchical porous architecture and excellent electrical conductivity. However, the sluggish kinetics behavior of electrodes within the bulk structure restricts their advances in energy storage fields. Herein, a series of graphene-based mixed-dimensional composite aerogels are achieved by incorporating the 2D M-tetrahydroxy-1,4-quinone (M-THQ) (M = Cu, Cu/Co, or Cu/Ni) into CNTs@rGO aerogel electrodes using a 3D-printing direct ink writing (DIW) technique. Benefiting from the high capacity of M-THQ and abundant porosity of the 3D-printed microlattice electrodes, an excellent capacitive performance of the M-THQ@CNTs@rGO cathodes is achieved based on the fast electron/ion transport. Furthermore, the 3D-printed lithium-ion hybrid supercapacitor (LIHCs) device assembled with Cu/Co-THQ@CNTs@rGO cathode and C60@VNNWs@rGO anode delivers a remarkable electrochemical performance. More importantly, this work manifests the practicability of printing 2D CMOFs electrodes, which provides a substantial research basis for 3D printing energy storage.

19.
Angew Chem Int Ed Engl ; 62(13): e202217081, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36697365

RESUMEN

Insertion-type compounds based on oxides and sulfides have been widely identified and well-studied as cathode materials in lithium-ion batteries. However, halides have rarely been used due to their high solubility in organic liquid electrolytes. Here, we reveal the insertion electrochemistry of VX3 (X=Cl, Br, I) by introducing a compatible halide solid-state electrolyte with a wide electrochemical stability window. X-ray absorption near-edge structure analyses reveal a two-step lithiation process and the structural transition of typical VCl3 . Fast Li+ insertion/extraction in the layered VX3 active materials and favorable interface guaranteed by the compatible electrode-electrolyte design enables high rate capability and stable operation of all-solid-state Li-VX3 batteries. The findings from this study will contribute to developing intercalation insertion electrochemistry of halide materials and exploring novel electrode materials in viable energy storage systems.

20.
Angew Chem Int Ed Engl ; 62(3): e202214117, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36377044

RESUMEN

Cu-Li batteries leveraging the two-electron redox property of Cu can offer high energy density and low cost. However, Cu-Li batteries are plagued by limited solubility and a shuttle effect of Cu ions in traditional electrolytes, which leads to low energy density and poor cycling stability. In this work, we rationally design a solid-state sandwich electrolyte for solid-state Cu-Li batteries, in which a deep-eutectic-solvent gel with high Cu-ion solubility is devised as a Cu-ion reservoir while a ceramic Li1.4 Al0.4 Ti1.6 (PO4 )3 interlayer is used to block Cu-ion crossover. Because of the high ionic conductivity (0.55 mS cm-1 at 25 °C), wide electrochemical window (>4.5 V vs. Li+ /Li), and high Cu ion solubility of solid-state sandwich electrolyte, a solid-state Cu-Li battery demonstrates a high energy density of 1 485 Wh kgCu -1 and long-term cyclability with 97 % capacity retention over 120 cycles. The present study lays the groundwork for future research into low-cost solid-state Cu-Li batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA