Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Theor Appl Genet ; 137(8): 183, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002016

RESUMEN

KEY MESSAGE: The exploration and dissection of a set of QTLs and candidate genes for gray leaf spot disease resistance using two fully assembled parental genomes may help expedite maize resistance breeding. The fungal disease of maize known as gray leaf spot (GLS), caused by Cercospora zeae-maydis and Cercospora zeina, is a significant concern in China, Southern Africa, and the USA. Resistance to GLS is governed by multiple genes with an additive effect and is influenced by both genotype and environment. The most effective way to reduce the cost of production is to develop resistant hybrids. In this study, we utilized the IBM Syn 10 Doubled Haploid (IBM Syn10 DH) population to identify quantitative trait loci (QTLs) associated with resistance to gray leaf spot (GLS) in multiple locations. Analysis of seven distinct environments revealed a total of 58 QTLs, 49 of which formed 12 discrete clusters distributed across chromosomes 1, 2, 3, 4, 8 and 10. By comparing these findings with published research, we identified colocalized QTLs or GWAS loci within eleven clustering intervals. By integrating transcriptome data with genomic structural variations between parental individuals, we identified a total of 110 genes that exhibit both robust disparities in gene expression and structural alterations. Further analysis revealed 19 potential candidate genes encoding conserved resistance gene domains, including putative leucine-rich repeat receptors, NLP transcription factors, fucosyltransferases, and putative xyloglucan galactosyltransferases. Our results provide a valuable resource and linked loci for GLS marker resistance selection breeding in maize.


Asunto(s)
Cercospora , Mapeo Cromosómico , Resistencia a la Enfermedad , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Zea mays , Zea mays/genética , Zea mays/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Cercospora/genética , Fitomejoramiento , Fenotipo , Haploidia , Genotipo , Genes de Plantas
2.
Int J Mol Sci ; 24(24)2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38139397

RESUMEN

Cucumber is an economically important vegetable crop, and the warts (composed of spines and Tubercules) of cucumber fruit are an important quality trait that influences its commercial value. WOX transcription factors are known to have pivotal roles in regulating various aspects of plant growth and development, but their studies in cucumber are limited. Here, genome-wide identification of cucumber WOX genes was performed using the pan-genome analysis of 12 cucumber varieties. Our findings revealed diverse CsWOX genes in different cucumber varieties, with variations observed in protein sequences and lengths, gene structure, and conserved protein domains, possibly resulting from the divergent evolution of CsWOX genes as they adapt to diverse cultivation and environmental conditions. Expression profiles of the CsWOX genes demonstrated that CsWOX9 was significantly expressed in unexpanded ovaries, especially in the epidermis. Additionally, analysis of the CsWOX9 promoter revealed two binding sites for the C2H2 zinc finger protein. We successfully executed a yeast one-hybrid assay (Y1H) and a dual-luciferase (LUC) transaction assay to demonstrate that CsWOX9 can be transcriptionally activated by the C2H2 zinc finger protein Tu, which is crucial for fruit Tubercule formation in cucumber. Overall, our results indicated that CsWOX9 is a key component of the molecular network that regulates wart formation in cucumber fruits, and provide further insight into the function of CsWOX genes in cucumber.


Asunto(s)
Cucumis sativus , Cucumis sativus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Regiones Promotoras Genéticas , Regulación de la Expresión Génica de las Plantas , Filogenia , Frutas/metabolismo
3.
BMC Oral Health ; 23(1): 30, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658579

RESUMEN

BACKGROUND: Severe early childhood caries (SECC) is an inflammatory disease with complex pathology. Although changes in the oral microbiota and metabolic profile of patients with SECC have been identified, the salivary metabolites and the relationship between oral bacteria and biochemical metabolism remains unclear. We aimed to analyse alterations in the salivary microbiome and metabolome of children with SECC as well as their correlations. Accordingly, we aimed to explore potential salivary biomarkers in order to gain further insight into the pathophysiology of dental caries. METHODS: We collected 120 saliva samples from 30 children with SECC and 30 children without caries. The microbial community was identified through 16S ribosomal RNA (rRNA) gene high-throughput sequencing. Additionally, we conducted non-targeted metabolomic analysis through ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry to determine the relative metabolite levels and their correlation with the clinical caries status. RESULTS: There was a significant between-group difference in 8 phyla and 32 genera in the microbiome. Further, metabolomic and enrichment analyses revealed significantly altered 32 salivary metabolites in children with dental caries, which involved pathways such as amino acid metabolism, pyrimidine metabolism, purine metabolism, ATP-binding cassette transporters, and cyclic adenosine monophosphate signalling pathway. Moreover, four in vivo differential metabolites (2-benzylmalate, epinephrine, 2-formaminobenzoylacetate, and 3-Indoleacrylic acid) might be jointly applied as biomarkers (area under the curve = 0.734). Furthermore, the caries status was correlated with microorganisms and metabolites. Additionally, Spearman's correlation analysis of differential microorganisms and metabolites revealed that Veillonella, Staphylococcus, Neisseria, and Porphyromonas were closely associated with differential metabolites. CONCLUSION: This study identified different microbial communities and metabolic profiles in saliva, which may be closely related to caries status. Our findings could inform future strategies for personalized caries prevention, detection, and treatment.


Asunto(s)
Caries Dental , Microbiota , Niño , Preescolar , Humanos , Caries Dental/microbiología , Susceptibilidad a Caries Dentarias , Saliva/química , Microbiota/genética , Metaboloma , ARN Ribosómico 16S/genética , Biomarcadores
4.
J Environ Manage ; 314: 115055, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35429690

RESUMEN

Modified Fenton technique has been widely used to remediate soils contaminated with crude oil but significantly limited to soil organic matter (SOM) consuming oxidants. In this study, soils with developed SOM inactivation by FeOOH formed in situ were created and spiked with crude oil (total petroleum hydrocarbons (TPH): 19453 mg/kg), then treated by modified Fenton reagents. The reaction activity of hydroxyl radicals (•OH) relative to TPH (K) notably increased to 0.65 when the degree of developed inactivation of the SOM (ß) was 100% (DIS-100), which was 1.45, 2.03 and 2.83-fold than that of DIS-50, DIS-15 and control (CK), respectively. Meanwhile, the higher the K, the more •OH transferred, which realized the efficient oriented oxidation of TPH. Moreover, improving the transfer of •OH from SOM to TPH was more important than increasing •OH production in soil remediation. With the ß increasing to 100%, the ratio of invalid H2O2 decomposition to produce O2 decreased to 22%, equal to 25% reduction compared to CK. Therefore, when ß was 100%, the utilization efficiency of H2O2 was improved to 1.48 mg/mmol, which was approximately 1.39, 3.35 and 5.43-fold higher than the efficiency got by DIS-50, DIS-15 and CK, respectively, achieving the cost-effective dedicated oxidation of TPH. In addition, the FeOOH cross-linked with SOM via Fe-O-C and Fe-N bonds to develop inactivation of SOM. In general, this study highlighted a new insight into the effect of developed inactivation of SOM on soil remediation.


Asunto(s)
Petróleo , Contaminantes del Suelo , Alcanos , Análisis Costo-Beneficio , Hidrocarburos , Peróxido de Hidrógeno/química , Oxidación-Reducción , Suelo/química , Contaminantes del Suelo/análisis
5.
J Environ Manage ; 301: 113933, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34731951

RESUMEN

The long-alkanes biodegradation rate was generally found slow during widely used pre-oxidation combined with biodegradation for oil contamination treatment, resulting in long and unsustainable removal. In this study, different chitosan content was used to produce iron catalysts for pre-oxidation, and nutrients were added for the long-alkanes biodegradation experiment. Mechanism of Fenton pre-oxidation and improvement in the biodegradation rate of long-alkanes were studied by analyzing the change in organic matter and bacterial community structure, the amount and activity of bacteria in the biological stage, and the degradation amount long-alkanes hydrocarbon before and after pre-oxidation. Results showed that the destruction of bacteria greatly reduced when hydroxyl radical intensity decreased to 4.40 a.u.. Also, the proportion of humic acid-like was high (40.88%), and the community structure was slightly changed with the pre-oxidation for the fast biodegradation (FB) group. In the subsequent biodegradation, it was found that the degradation rate of each long-alkanes in the FB group increased significantly (C30: 4.18-8.32 mg/(kg·d)) with the increase of the degradation of long-alkanes (10-50%). Further studies showed that the high nutrient dynamics (6.05 mg/(kg·d)) of the FB group resulted in high bacteria performance rate (0.53 mol CO2 × log CFU/(104 g2 d)), which further accelerated the substrate transformation(41%). Therefore, the biodegradation rate of long-alkanes was increased (43.8 mg/(kg·d)) with the removal rate of long-alkanes of 76%. The half-life of long-alkanes for the FB group (64 d) was 33 d shorter than the slow biodegradation group (99 d). These results exhibited that pre-oxidation regulation can shorten the bioremediation cycle by improving the biodegradation rate of long-alkanes. This research has good engineering application value.


Asunto(s)
Alcanos , Petróleo , Bacterias , Biodegradación Ambiental , Hidrocarburos
6.
J Neurosci ; 37(4): 936-959, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28123027

RESUMEN

Alzheimer's disease (AD) is characterized by the presence of parenchymal amyloid-ß (Aß) plaques, cerebral amyloid angiopathy (CAA) and neurofibrillary tangles. Currently there are no effective treatments for AD. Immunotherapeutic approaches under development are hampered by complications related to ineffectual clearance of CAA. Genome-wide association studies have demonstrated the importance of microglia in AD pathogenesis. Microglia are the primary innate immune cells of the brain. Depending on their activation state and environment, microglia can be beneficial or detrimental. In our prior work, we showed that stimulation of innate immunity with Toll-like receptor 9 agonist, class B CpG (cytosine-phosphate-guanine) oligodeoxynucleotides (ODNs), can reduce amyloid and tau pathologies without causing toxicity in Tg2576 and 3xTg-AD mouse models. However, these transgenic mice have relatively little CAA. In the current study, we evaluated the therapeutic profile of CpG ODN in a triple transgenic mouse model, Tg-SwDI, with abundant vascular amyloid, in association with low levels of parenchymal amyloid deposits. Peripheral administration of CpG ODN, both before and after the development of CAA, negated short-term memory deficits, as assessed by object-recognition tests, and was effective at improving spatial and working memory evaluated using a radial arm maze. These findings were associated with significant reductions of CAA pathology lacking adverse effects. Together, our extensive evidence suggests that this innovative immunomodulation may be a safe approach to ameliorate all hallmarks of AD pathology, supporting the potential clinical applicability of CpG ODN. SIGNIFICANCE STATEMENT: Recent genetic studies have underscored the emerging role of microglia in Alzheimer's disease (AD) pathogenesis. Microglia lose their amyloid-ß-clearing capabilities with age and as AD progresses. Therefore, the ability to modulate microglia profiles offers a promising therapeutic avenue for reducing AD pathology. Current immunotherapeutic approaches have been limited by poor clearance of a core AD lesion, cerebral amyloid angiopathy (CAA). The present study used Tg-SwDI mice, which have extensive CAA. We found that stimulation of the innate immune system and microglia/macrophage activation via Toll-like receptor 9 using CpG (cytosine-phosphate-guanine) oligodeoxynucleotides (ODNs) leads to cognitive improvements and CAA reduction, without associated toxicity. Our data indicate that this novel concept of immunomodulation represents a safer method to reduce all aspects of AD pathology and provide essential information for potential clinical use of CpG ODN.


Asunto(s)
Angiopatía Amiloide Cerebral/inmunología , Angiopatía Amiloide Cerebral/metabolismo , Cognición/fisiología , Inmunidad Innata/fisiología , Receptor Toll-Like 9/inmunología , Receptor Toll-Like 9/metabolismo , Animales , Angiopatía Amiloide Cerebral/tratamiento farmacológico , Cognición/efectos de los fármacos , Femenino , Humanos , Inmunidad Innata/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oligodesoxirribonucleótidos/farmacología , Oligodesoxirribonucleótidos/uso terapéutico , Placa Amiloide/tratamiento farmacológico , Placa Amiloide/inmunología , Placa Amiloide/metabolismo , Receptor Toll-Like 9/agonistas
7.
Cell Physiol Biochem ; 44(2): 618-633, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29161719

RESUMEN

BACKGROUND/AIMS: The generation of reactive oxygen species (ROS) caused by amyloid-ß (Aß) is considered to be one of mechanisms underlying the development of Alzheimer's disease. Curcumin can attenuate Aß-induced neurotoxicity through ROS scavenging, but the protective effect of intracellular curcumin on neurocyte membranes against extracellular Aß may be compromised. To address this issue, we synthesized a palmitic acid curcumin ester (P-curcumin) which can be cultivated on the cell membrane and investigated the neuroprotective effect of P-curcumin and its interaction with Aß. METHODS: P-curcumin was prepared through chemical synthesis. Its structure was determined via nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). An MTT assay was used to assess Aß cytotoxicity and the protective effect of P-curcumin on SH-SY5Y cells. The effect of P-curcumin on Aß-induced ROS production in vitro and in vivo were assessed based on changes in dichlorofluorescein (DCF) fluorescence. A spectrophotometric method was employed to detect lipid peroxidation. To mimic the interaction of P-curcumin on cell membranes with Aß, liposomes were prepared by thin film method. Finally, the interactions between free P-curcumin and P-curcumin cultivated on liposomes and Aß were determined via spectrophotometry. RESULTS: A novel derivative, palmitic acid curcumin ester was prepared and characterized. This curcumin, cultivated on the membranes of neurocytes, may prevent Aß-mediated ROS production and may inhibit the direct interaction between Aß and the cellular membrane. Furthermore, P-curcumin could scavenge Aß-mediated ROS as curcumin in vitro and in vivo, and had the potential to prevent lipid peroxidation. Morphological analyses showed that P-curcumin was better than curcumin at protecting cell shape. To examine P-curcumin's ability to attenuate direct interaction between Aß and cell membranes, the binding affinity of Aß to curcumin and P-curcumin was determined. The association constants for free P-curcumin and curcumin were 7.66 × 104 M-1 and 7.61 × 105 M-1, respectively. In the liposome-trapped state, the association constants were 3.71 × 105 M-1 for P-curcumin and 1.44× 106 M-1 for curcumin. With this data, the thermodynamic constants of P-curcumin association with soluble Aß (ΔH, ΔS, and ΔG) were also determined. CONCLUSION: Cultivated curcumin weakened the direct interaction between Aß and cell membranes and showed greater neuroprotective effects against Aß insult than free curcumin.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Proliferación Celular/efectos de los fármacos , Curcumina/farmacología , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/toxicidad , Sitios de Unión , Línea Celular Tumoral , Forma de la Célula/efectos de los fármacos , Curcumina/análogos & derivados , Curcumina/síntesis química , Humanos , Peroxidación de Lípido/efectos de los fármacos , Liposomas/química , Neuroblastoma/metabolismo , Neuroblastoma/patología , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Ácido Palmítico/química , Especies Reactivas de Oxígeno/metabolismo , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Termodinámica
8.
J Nanosci Nanotechnol ; 16(4): 3969-72, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27451748

RESUMEN

In the present study, biosynthesis of silver nanoparticles was carried out using Rosa chinensis flower extract as reducing agent. The characterization of silver nanoparticles was done by UV-VIS spectrum. The morphology and size of silver nanoparticles were determined by transmission electron microscope (TEM) image. The crystallization of silver nanoparticles was confirmed by X-ray diffraction (XRD) measurements. The Fourier transform infrared (FT-IR) analysis was used to confirm the possible involvement in the formation and stabilization of synthesized silver nanoparticles by the extract of Rosa chinensis flower. Antibacterial activity of silver nanoparticles was studied against Gram positive Staphycoccus aureus and Gram negative Escherichia coil.


Asunto(s)
Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Extractos Vegetales/química , Rosa/química , Plata/administración & dosificación , Antibacterianos/administración & dosificación , Antibacterianos/síntesis química , Apoptosis/efectos de los fármacos , Productos Biológicos/administración & dosificación , Productos Biológicos/síntesis química , Supervivencia Celular/efectos de los fármacos , Ensayo de Materiales , Extractos Vegetales/administración & dosificación , Plata/química
9.
J Neurochem ; 128(4): 577-91, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24117759

RESUMEN

Inheritance of the apolipoprotein E4 (apoE4) genotype has been identified as the major genetic risk factor for late-onset Alzheimer's disease (AD). Studies have shown that the binding between apoE and amyloid-ß (Aß) peptides occurs at residues 244-272 of apoE and residues 12-28 of Aß. ApoE4 has been implicated in promoting Aß deposition and impairing clearance of Aß. We hypothesized that blocking the apoE/Aß interaction would serve as an effective new approach to AD therapy. We have previously shown that treatment with Aß12-28P can reduce amyloid plaques in APP/PS1 transgenic (Tg) mice and vascular amyloid in TgSwDI mice with congophilic amyloid angiopathy. In the present study, we investigated whether the Aß12-28P elicits a therapeutic effect on tau-related pathology in addition to amyloid pathology using old triple transgenic AD mice (3xTg, with PS1M146V , APPSwe and tauP30IL transgenes) with established pathology from the ages of 21 to 26 months. We show that treatment with Aß12-28P substantially reduces tau pathology both immunohistochemically and biochemically, as well as reducing the amyloid burden and suppressing the activation of astrocytes and microglia. These affects correlate with a behavioral amelioration in the treated Tg mice.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/antagonistas & inhibidores , Amiloidosis/tratamiento farmacológico , Apolipoproteínas E/antagonistas & inhibidores , Fragmentos de Péptidos/farmacología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Secuencia de Aminoácidos , Péptidos beta-Amiloides/farmacología , Amiloidosis/patología , Amiloidosis/psicología , Animales , Western Blotting , Química Encefálica/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Conducta Exploratoria/fisiología , Gliosis/patología , Inmunohistoquímica , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Actividad Motora/fisiología , Equilibrio Postural/efectos de los fármacos
10.
Blood ; 120(14): 2889-98, 2012 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-22879538

RESUMEN

Platelets play a supportive role in tumor metastasis. Impairment of platelet function within the tumor microenvironment may provide a clinically useful approach to inhibit metastasis. We developed a novel humanized single-chain antibody (scFv Ab) against integrin GPIIIa49-66 (named A11) capable of lysing activated platelets. In this study, we investigate the effect of A11 on the development of pulmonary metastases. In the Lewis lung carcinoma (LLC) metastatic model, A11 decreases the mean number of surface nodules and mean volume of pulmonary nodules. It protects against lung metastases in a time window that extended 4 hours before and 4 hours after the IV injection of LLCs. Coinjection of GPIIIa49-66 albumin reverses the antimetastatic activity of A11 in the B16 melanoma model, consistent with the pathophysiologic relevance of the platelet GPIIIa49-66 epitope. Significantly, A11 had no effect on angiogenesis using both in vitro and in vivo assays. The underlying molecular mechanisms are a combination of inhibition of each of the following interactions: between activated platelets and tumor cells, platelets and endothelial cells, and platelets and monocytes, as well as disaggregation of an existing platelet/tumor thrombus. Our observations may provide a novel antimetastatic strategy through lysing activated platelets in the tumor microenvironment using humanized anti-GPIIIa49-66 scFv Ab.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Carcinoma Pulmonar de Lewis/prevención & control , Melanoma Experimental/prevención & control , Activación Plaquetaria/inmunología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/inmunología , Anticuerpos de Cadena Única/uso terapéutico , Microambiente Tumoral/inmunología , Animales , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/secundario , Adhesión Celular , Movimiento Celular , Femenino , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/inmunología , Humanos , Melanoma Experimental/inmunología , Melanoma Experimental/secundario , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica , Fragmentos de Péptidos/inmunología
11.
Meat Sci ; 209: 109411, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38061306

RESUMEN

This research aims at uncovering the effects and investigating the molecular mechanisms of dietary resveratrol (RES) supplementation on antioxidant capacity and meat quality of pigs. In this study, 20 µM RES could activate the KEAP1-NRF2 antioxidant defense pathway in response to oxidative stress in porcine skeletal muscle satellite cells was firstly found. Then, twenty-four healthy crossbred castrated boars were allocated to 4 treatments that were fed with a basal diet (control) and a basal diet supplemented with 200 mg, 400 mg or 600 mg RES per Kilogram (kg) of feed for 41 days, respectively. 400 and 600 mg/kg RES-supplemented diet can effectively improve the meat quality traits and activities of antioxidizing enzymes via the KEAP1-NRF2 signaling pathway of pigs. The molecular dynamic simulation further revealed that RES could directly binding to KEAP1 to reduce the tightness of KEAP1-NRF2 protein-protein interaction. More importantly, dietary supplementation of RES also improves antioxidant capacity through a series of KEAP1-NRF2 pathway-related lncRNAs were found by RNA sequencing (RNA-seq). Altogether, this study demonstrated that RES improves meat quality traits by effectively increasing antioxidant levels via the lncRNA-KEAP1-NRF2 axis in vivo and/or in vitro. These results provide new insights into the molecular mechanisms by which RES, as a nutritional agent, regulates antioxidant capacity and improves meat quality in pigs.


Asunto(s)
Antioxidantes , ARN Largo no Codificante , Masculino , Animales , Porcinos , Resveratrol/farmacología , Antioxidantes/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Estrés Oxidativo , Carne/análisis
12.
Biochem Pharmacol ; 225: 116250, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705537

RESUMEN

Obesity has emerged as a prominent global health concern, with heat stress posing a significant challenge to both human health and animal well-being. Despite a growing interest in environmental determinants of obesity, very few studies have examined the associations between heat stress-related environmental factors and adiposity. Consequently, there exists a clear need to understand the molecular mechanisms underlying the obesogenic effects of heat stress and to formulate preventive strategies. This study focused on culturing porcine subcutaneous preadipocytes at 41.5 ℃ to induce heat stress, revealing that this stressor triggered apoptosis and fat deposition. Analysis demonstrated an upregulation in the expression of HSP70, BAX, adipogenesis-related genes (PPARγ, AP2, CEBPα and FAS), the p-AMPK/AMPK ratio and SIRT1, PGC-1α in the heat stress group compared to the control group (P < 0.05). Conversely, the expression of lipid lysis-related genes (ATGL, HSL and LPL) and Bcl-2 decreased in the heat stress group compared to the control group (P < 0.05). Furthermore, subsequent activator and/or inhibitor experiments validated that heat stress modulated HSP70 and AMPK signalling pathways to enhance lipogenesis and inhibit lipolysis in porcine subcutaneous preadipocytes. Importantly, this study reveals, for the first time, that EGCG mitigates heat-stress-induced fat deposition by targeting HSP70 through the activation of AMPK-SIRT1-PGC-1α in porcine subcutaneous preadipocytes. These findings elucidate the molecular mechanisms contributing to heat stress-induced obesity and provide a foundation for the potential clinical utilisation of EGCG as a preventive measure against both heat stress and obesity.


Asunto(s)
Adipocitos , Catequina , Proteínas HSP70 de Choque Térmico , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Porcinos , Catequina/farmacología , Catequina/análogos & derivados , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Respuesta al Choque Térmico/fisiología , Células Cultivadas , Grasa Subcutánea/metabolismo , Grasa Subcutánea/efectos de los fármacos
13.
J Neuroinflammation ; 10: 150, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24330773

RESUMEN

BACKGROUND: Central to the pathogenesis of Alzheimer's disease (AD) and many other neurodegenerative diseases is the conformational change of a normal self-protein into toxic oligomeric species and amyloid deposits. None of these disorders have an effective therapy, but immunization approaches hold great promise. We have previously shown that active immunization with a novel peptide when polymerized into a stable oligomeric conformation, pBri, induced a humoral immune response to toxic Aß species in an AD model, APP/PS1 transgenic (Tg) mice, reducing plaque deposits. pBri is a glutaraldehyde polymerized form of the carboxyl fragment of an amyloidogenic protein, which is deposited in the brains of patients with a rare autosomal dominant disease due to a missense mutation in a stop codon, resulting in the translation of an intronic sequence, with no known sequence homology to any mammalian protein. METHODS: In the current study we tested whether pBri-peptide-based immunomodulation is effective at reducing both vascular amyloid deposits and tau-related pathology using TgSwDI mice with extensive congophilic angiopathy and 3xTg mice with tau pathology. RESULTS: Our results indicate that this immunomodulation approach, which produces a humoral response to proteins in a pathological conformation, is effective at reducing both Aß and tau-related pathologies. CONCLUSIONS: This immunomodulatory approach has the advantage of using a non-self-immunogen that is less likely to be associated with autoimmune toxicity. Furthermore we found that it is able to target all the cardinal features of AD concurrently.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Péptidos beta-Amiloides/inmunología , Proteínas Amiloidogénicas/inmunología , Inmunización , Proteínas tau/inmunología , Enfermedad de Alzheimer/patología , Proteínas Amiloidogénicas/química , Animales , Western Blotting , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Humanos , Mediciones Luminiscentes , Ratones , Ratones Transgénicos , Imitación Molecular , Estructura Secundaria de Proteína
14.
Artículo en Inglés | MEDLINE | ID: mdl-37440387

RESUMEN

Terrain mapping is not only dedicated to communicating how high or steep a landscape is but can also help to indicate how we feel about a place. However, crafting effective and expressive elevation colors is challenging for both nonexperts and experts. In this paper, we present a two-step image-to-terrain color transfer method that can transfer color from arbitrary images to diverse terrain models. First, we present a new image color organization method that organizes discrete, irregular image colors into a continuous, regular color grid that facilitates a series of color operations, such as local and global searching, categorical color selection and sequential color interpolation. Second, we quantify a series of subjective concerns about elevation color crafting, such as the "lower, higher" principle, color conventions, and aerial perspectives. We also define color similarity between images and terrain visualizations with aesthetic quality. We then mathematically formulate image-to-terrain color transfer as a dual-objective optimization problem and offer a heuristic searching method to solve the problem. Finally, we compare elevation colors from our method with a standard color scheme and a representative color scale generation tool based on four test terrains. The evaluations show that the elevation colors from the proposed method are most effective and that our results are visually favorable. We also showcase that our method can transfer emotion from images to terrain visualizations.

15.
Cells ; 12(11)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37296650

RESUMEN

Alt-EJ is an error-prone DNA double-strand break (DSBs) repair pathway coming to the fore when first-line repair pathways, c-NHEJ and HR, are defective or fail. It is thought to benefit from DNA end-resection-a process whereby 3' single-stranded DNA-tails are generated-initiated by the CtIP/MRE11-RAD50-NBS1 (MRN) complex and extended by EXO1 or the BLM/DNA2 complex. The connection between alt-EJ and resection remains incompletely characterized. Alt-EJ depends on the cell cycle phase, is at maximum in G2-phase, substantially reduced in G1-phase and almost undetectable in quiescent, G0-phase cells. The mechanism underpinning this regulation remains uncharacterized. Here, we compare alt-EJ in G1- and G0-phase cells exposed to ionizing radiation (IR) and identify CtIP-dependent resection as the key regulator. Low levels of CtIP in G1-phase cells allow modest resection and alt-EJ, as compared to G2-phase cells. Strikingly, CtIP is undetectable in G0-phase cells owing to APC/C-mediated degradation. The suppression of CtIP degradation with bortezomib or CDH1-depletion rescues CtIP and alt-EJ in G0-phase cells. CtIP activation in G0-phase cells also requires CDK-dependent phosphorylation by any available CDK but is restricted to CDK4/6 at the early stages of the normal cell cycle. We suggest that suppression of mutagenic alt-EJ in G0-phase is a mechanism by which cells of higher eukaryotes maintain genomic stability in a large fraction of non-cycling cells in their organisms.


Asunto(s)
Reparación del ADN , Proteínas Nucleares , Fosforilación , Proteínas Nucleares/metabolismo , Roturas del ADN de Doble Cadena , Puntos de Control del Ciclo Celular
16.
Aging (Albany NY) ; 15(17): 8613-8629, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-37702613

RESUMEN

Gastric cancer possesses high lethality rate, and its complex molecular mechanisms of pathogenesis lead to irrational treatment outcomes. Autophagy plays a dual role in cancer by both promoting and suppressing the cancer. However, the role of autophagy in gastric cancer is still vague. Therefore, in this study, we first obtained autophagy-related genes from the Human Autophagy Database, and then applied consensus clustering analysis to analyse the molecular subtypes of gastric cancer samples in the TCGA database. The genes obtained after subtyping were then applied to construct risk prognostic model. Following this, PCA and tSNE assessed risk scores with good discriminatory ability for gastric cancer samples. The results of Cox regression analysis and time-dependent ROC curve analysis indicated that the model had good risk prediction ability. Finally, NRP1 was selected as the final study subject in the context of expression pairwise analysis, Kaplan-Meier curves and external validation of the GEO dataset. In vitro experiments showed that NRP1 has the ability to regulate the proliferation and autophagy of gastric cancer cells by affecting the Wnt/ß-catenin signalling pathway. Similarly, in vivo experiments have shown that NRP1 can affect tumour growth in vivo. We therefore propose that NRP1 can be used as both a prognostic factor and a therapeutic target through the regulation of autophagy in gastric cancer.


Asunto(s)
Neoplasias Gástricas , Humanos , Autofagia/genética , Proliferación Celular/genética , Neoplasias Gástricas/genética , Vía de Señalización Wnt/genética
17.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(8): 708-713, 2023 Aug.
Artículo en Zh | MEDLINE | ID: mdl-37515337

RESUMEN

Objective To explore the effect and mechanism of penehyclidine hydrochloride (PHCD) on vascular endothelial injury in septic rats. Methods Fifty male SD rats were randomly divided into control group, lipopolysaccharide (LPS) induced sepsis group (model group), low dose PHCD (0.3 mg/kg) group, medium dose PHCD (1.0 mg/kg) group and high dose PHCD (3.0 mg/kg) groups, ten mice for each group. Normal saline was injected into the tail vein of the control group, and 10 mg/kg lipopolysaccharide (LPS) was injected into the tail vein of the rats in other groups to prepare the sepsis rat models. After the models were successfully established, low, medium and high doses (0.3, 1.0, 3.0 mg/kg) of PHCD solution were injected into the tail vein of the rats of corresponding groups. Wet/dry mass ratio (W/D) of lung tissue of rats in each group was measured, and ELISA was used to assay interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), IL-6 content and rat plasma angiopoietin 2 (Ang2) content in bronchoalveolar lavage fluid (BALF). HE staining was used to observe the pathological changes of lung tissues. Immunohistochemical staining was used to observe the expression of Ang2 in the right lung tissues. Western blot analysis was performed to detect Ang2 and vascular endothelial cadherin (VE-cadherin) protein in lung tissues. Results Compared with the control group, the W/D ratio of the lung tissues of rats in the model group and the contents of IL-1ß, IL-6 and TNF-α in BALF were significantly increased; the lung tissues showed obvious pathological damage, with up-regulation of Ang2 expression and down-regulation of VE-Cadherin expression. Compared with the model group, the W/D ratio of the lung tissues of rats in three PHCD treatment groups and the contents of IL-1ß, IL-6 and TNF-α in BALF were significantly reduced; the pathological damage of lung tissue was significantly reduced, with down-regulation of Ang2 expression and up-regulation of VE-cadherin expression. Conclusion PHCD can reduce LPS-induced lung inflammation in rats with sepsis by regulating the Ang2/VE-Cadherin pathway, thereby improving vascular endothelial injury.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Ratas , Ratones , Animales , Masculino , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Angiopoyetina 2/metabolismo , Angiopoyetina 2/farmacología , Interleucina-6/metabolismo , Ratas Sprague-Dawley , Pulmón , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Sepsis/inducido químicamente , Sepsis/tratamiento farmacológico , Sepsis/metabolismo
18.
Zhonghua Wai Ke Za Zhi ; 50(10): 898-901, 2012 Oct.
Artículo en Zh | MEDLINE | ID: mdl-23302459

RESUMEN

OBJECTIVE: To study the clinical value of magnetic resonance spectroscopy (MRS) image in stereotactic biopsy for brain lesion. METHODS: From April 2008 to April 2010, 126 cases (72 male and 54 female, aged from 10 to 82 years, mean 45 years) of brain lesion which were difficult to diagnose were divided into two groups by random number table, 62 cases were executed for MRI-guided frameless stereotactic biopsy (MRI group), 64 cases were executed for MRI and MRS-guided frameless stereotactic biopsy (MRS group). Operation used MRI and Three-dimensional MRS image to locate, and used frameless CAS-R-2 robots to carry out the positioning operating. RESULTS: No surgery-related deaths and infections. Pathological diagnosis was 106 cases of brain tumors, 6 cases of inflammatory disease, 4 cases of tumor-like demyelinating disease and multiple sclerosis, 3 cases of neurodegenerative disease, 7 cases failed to obtain positive pathological diagnosis. The total rate of positive diagnosis was 94.4%, the positive rate in MRS-guided stereotactic biopsy group was 98.4% (63/64), the positive rate of conventional MRI-guided biopsy group was 90.3% (56/62), and there was statistically significant difference between the two groups (χ(2) = 3.92, P = 0.047). Four cases presented with postoperative complications, the complication rate was 3.2% (4/126); the complications were cerebral hemorrhage associated with aphasia, epilepsy, subcutaneous hematoma, gastrointestinal bleeding, which were improved after treatment. CONCLUSIONS: MRS-guided stereotactic biopsy group has a higher positive rate than MRI-guided stereotactic biopsy group, indicating that this method can improve the positive rate of diagnosis, and thus will help to formulate treatment plan for brain lesion.


Asunto(s)
Biopsia/métodos , Encefalopatías/patología , Encéfalo/patología , Imagen por Resonancia Magnética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/patología , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
19.
Blood Adv ; 6(15): 4537-4552, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35764499

RESUMEN

Mutations in MYH9, the gene encoding the heavy chain of nonmuscle myosin IIa (NMII-A), cause MYH9-related disease (MYH9-RD), which is an autosomal-dominant thrombocytopenia with bleeding tendency. Previously, we showed that NMII-A in endothelial cells (ECs) is critical for hemostasis via regulating von Willebrand factor (VWF) release from Weibel-Palade bodies (WPBs). The aim of this study was to determine the role of the expression of MYH9 mutants in ECs in the pathogenesis of the MYH9-RD bleeding symptom. First, we expressed the 5 most common NMII-A mutants in ECs and found that E1841K mutant-expressing ECs secreted less VWF than the controls in response to a cyclic adenosine monophosphate (cAMP) signaling agonist. Then, we generated 2 knockin mouse lines, 1 with Myh9 E1841K in ECs and the other in megakaryocytes. Endothelium-specific E1841K mice exhibited impaired cAMP-induced VWF release and a prolonged bleeding time with normal platelets, whereas megakaryocyte-specific E1841K mice exhibited macrothrombocytopenia and a prolonged bleeding time with normal VWF release. Finally, we presented mechanistic findings that E1841K mutation not only interferes with S1943 phosphorylation and impairs the peripheral distribution of Rab27a-positive WPBs in Ecs under quiescent condition but also interferes with S1916 phosphorylation by disrupting the interaction with zyxin and CKIIα and reduces actin framework formation around WPBs and subsequent VWF secretion under the stimulation by a cAMP agonist. Altogether, our results suggest that impaired cAMP-induced endothelial VWF secretion by E1841K mutant expression may contribute to the MYH9-RD bleeding phenotype.


Asunto(s)
Células Endoteliales , Hemostasis , Cadenas Pesadas de Miosina , Trombocitopenia , Factor de von Willebrand , Animales , Células Endoteliales/metabolismo , Hemostasis/genética , Hemostasis/fisiología , Ratones , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Trombocitopenia/congénito , Trombocitopenia/genética , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
20.
Iran J Public Health ; 51(6): 1295-1302, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36447986

RESUMEN

Background: To research effective prevention and treatment strategies for pressure sores in geriatric patients and examine the results from application of a three-level linkage system. Methods: We developed and constructed a three-level linkage intervention system for pressure sores from Jun 2017 to Dec 2018, centered at the geriatrics department of the Ninth People's Hospital of Zhengzhou, China. The changes included improving the organization structure; formulating a unified evaluation system for quantitation of pressure sore risk management; formulating and standardizing the reporting/feedback mechanism; constructing and improving three-level linkage system staff training; and establishing a quality control system for process monitoring guidance and final evaluation feedback. Results: The incidence of pressure sores significantly decreased, nursing staff's knowledge level regarding pressure sore prevention and treatment increased, and pressure sore cure rate and care satisfaction increased. Conclusion: Implementation of a three-level linkage intervention system for pressure sores in geriatric patients and standardizing pressure injury assessment helps achieve pressure sore prevention and early intervention, effectively reduces the occurrence of pressure sores in geriatric nursing homes, increases the cure rate, and improves care satisfaction among patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA