Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
BMC Plant Biol ; 24(1): 307, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644483

RESUMEN

BACKGROUND: Luffa (Luffa spp.) is an economically important crop of the Cucurbitaceae family, commonly known as sponge gourd or vegetable gourd. It is an annual cross-pollinated crop primarily found in the subtropical and tropical regions of Asia, Australia, Africa, and the Americas. Luffa serves not only as a vegetable but also exhibits medicinal properties, including anti-inflammatory, antidiabetic, and anticancer effects. Moreover, the fiber derived from luffa finds extensive applications in various fields such as biotechnology and construction. However, luffa Fusarium wilt poses a severe threat to its production, and existing control methods have proven ineffective in terms of cost-effectiveness and environmental considerations. Therefore, there is an urgent need to develop luffa varieties resistant to Fusarium wilt. Single-plant GWAS (sp-GWAS) has been demonstrated as a promising tool for the rapid and efficient identification of quantitative trait loci (QTLs) associated with target traits, as well as closely linked molecular markers. RESULTS: In this study, a collection of 97 individuals from 73 luffa accessions including two major luffa species underwent single-plant GWAS to investigate luffa Fusarium wilt resistance. Utilizing the double digest restriction site associated DNA (ddRAD) method, a total of 8,919 high-quality single nucleotide polymorphisms (SNPs) were identified. The analysis revealed the potential for Fusarium wilt resistance in accessions from both luffa species. There are 6 QTLs identified from 3 traits, including the area under the disease progress curve (AUDPC), a putative disease-resistant QTL, was identified on the second chromosome of luffa. Within the region of linkage disequilibrium, a candidate gene homologous to LOC111009722, which encodes peroxidase 40 and is associated with disease resistance in Cucumis melo, was identified. Furthermore, to validate the applicability of the marker associated with resistance from sp-GWAS, an additional set of 21 individual luffa plants were tested, exhibiting 93.75% accuracy in detecting susceptible of luffa species L. aegyptiaca Mill. CONCLUSION: In summary, these findings give a hint of genome position that may contribute to luffa wild resistance to Fusarium and can be utilized in the future luffa wilt resistant breeding programs aimed at developing wilt-resistant varieties by using the susceptible-linked SNP marker.


Asunto(s)
Resistencia a la Enfermedad , Fusarium , Estudio de Asociación del Genoma Completo , Luffa , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Fusarium/fisiología , Polimorfismo de Nucleótido Simple/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Luffa/genética , Luffa/microbiología , Genoma de Planta , Marcadores Genéticos , Variación Genética
2.
Proc Natl Acad Sci U S A ; 114(45): E9722-E9729, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078399

RESUMEN

Secondary cell wall (SCW) biosynthesis is the biological process that generates wood, an important renewable feedstock for materials and energy. NAC domain transcription factors, particularly Vascular-Related NAC-Domain (VND) and Secondary Wall-Associated NAC Domain (SND) proteins, are known to regulate SCW differentiation. The regulation of VND and SND is important to maintain homeostasis for plants to avoid abnormal growth and development. We previously identified a splice variant, PtrSND1-A2IR , derived from PtrSND1-A2 as a dominant-negative regulator, which suppresses the transactivation of all PtrSND1 family members. PtrSND1-A2IR also suppresses the self-activation of the PtrSND1 family members except for its cognate transcription factor, PtrSND1-A2, suggesting the existence of an unknown factor needed to regulate PtrSND1-A2 Here, a splice variant, PtrVND6-C1IR , derived from PtrVND6-C1 was discovered that suppresses the protein functions of all PtrVND6 family members. PtrVND6-C1IR also suppresses the expression of all PtrSND1 members, including PtrSND1-A2, demonstrating that PtrVND6-C1IR is the previously unidentified regulator of PtrSND1-A2 We also found that PtrVND6-C1IR cannot suppress the expression of its cognate transcription factor, PtrVND6-C1PtrVND6-C1 is suppressed by PtrSND1-A2IR Both PtrVND6-C1IR and PtrSND1-A2IR cannot suppress their cognate transcription factors but can suppress all members of the other family. The results indicate that the splice variants from the PtrVND6 and PtrSND1 family may exert reciprocal cross-regulation for complete transcriptional regulation of these two families in wood formation. This reciprocal cross-regulation between families suggests a general mechanism among NAC domain proteins and likely other transcription factors, where intron-retained splice variants provide an additional level of regulation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas , Familia de Multigenes , Populus/genética , Factores de Transcripción/genética , Madera/crecimiento & desarrollo , Madera/genética , Xilema/genética , Empalme Alternativo , Pared Celular/genética , Pared Celular/metabolismo , Clonación Molecular , ADN de Plantas , Redes Reguladoras de Genes , Homeostasis , Proteínas Nucleares , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Populus/metabolismo , Proteínas Recombinantes/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/genética , Transcriptoma , Xilema/crecimiento & desarrollo
3.
Planta ; 245(5): 927-938, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28083709

RESUMEN

MAIN CONCLUSION: Co-expression networks based on transcriptomes of Populus trichocarpa major tissues and specific cell types suggest redundant control of cell wall component biosynthetic genes by transcription factors in wood formation. We analyzed the transcriptomes of five tissues (xylem, phloem, shoot, leaf, and root) and two wood forming cell types (fiber and vessel) of Populus trichocarpa to assemble gene co-expression subnetworks associated with wood formation. We identified 165 transcription factors (TFs) that showed xylem-, fiber-, and vessel-specific expression. Of these 165 TFs, 101 co-expressed (correlation coefficient, r > 0.7) with the 45 secondary cell wall cellulose, hemicellulose, and lignin biosynthetic genes. Each cell wall component gene co-expressed on average with 34 TFs, suggesting redundant control of the cell wall component gene expression. Co-expression analysis showed that the 101 TFs and the 45 cell wall component genes each has two distinct groups (groups 1 and 2), based on their co-expression patterns. The group 1 TFs (44 members) are predominantly xylem and fiber specific, and are all highly positively co-expressed with the group 1 cell wall component genes (30 members), suggesting their roles as major wood formation regulators. Group 1 TFs include a lateral organ boundary domain gene (LBD) that has the highest number of positively correlated cell wall component genes (36) and TFs (47). The group 2 TFs have 57 members, including 14 vessel-specific TFs, and are generally less correlated with the cell wall component genes. An exception is a vessel-specific basic helix-loop-helix (bHLH) gene that negatively correlates with 20 cell wall component genes, and may function as a key transcriptional suppressor. The co-expression networks revealed here suggest a well-structured transcriptional homeostasis for cell wall component biosynthesis during wood formation.


Asunto(s)
Proteínas de Plantas/genética , Populus/genética , Transcriptoma , Madera/genética , Pared Celular/metabolismo , Celulosa/metabolismo , Análisis por Conglomerados , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Anotación de Secuencia Molecular , Especificidad de Órganos , Floema/genética , Floema/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Populus/crecimiento & desarrollo , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Madera/crecimiento & desarrollo , Xilema/genética , Xilema/crecimiento & desarrollo
4.
Plant Cell ; 26(3): 894-914, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24619611

RESUMEN

We established a predictive kinetic metabolic-flux model for the 21 enzymes and 24 metabolites of the monolignol biosynthetic pathway using Populus trichocarpa secondary differentiating xylem. To establish this model, a comprehensive study was performed to obtain the reaction and inhibition kinetic parameters of all 21 enzymes based on functional recombinant proteins. A total of 104 Michaelis-Menten kinetic parameters and 85 inhibition kinetic parameters were derived from these enzymes. Through mass spectrometry, we obtained the absolute quantities of all 21 pathway enzymes in the secondary differentiating xylem. This extensive experimental data set, generated from a single tissue specialized in wood formation, was used to construct the predictive kinetic metabolic-flux model to provide a comprehensive mathematical description of the monolignol biosynthetic pathway. The model was validated using experimental data from transgenic P. trichocarpa plants. The model predicts how pathway enzymes affect lignin content and composition, explains a long-standing paradox regarding the regulation of monolignol subunit ratios in lignin, and reveals novel mechanisms involved in the regulation of lignin biosynthesis. This model provides an explanation of the effects of genetic and transgenic perturbations of the monolignol biosynthetic pathway in flowering plants.


Asunto(s)
Lignina/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Proteoma , Cinética , Espectrometría de Masas , Polimorfismo de Nucleótido Simple
5.
Plant Cell ; 25(11): 4324-41, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24280390

RESUMEN

Wood is an essential renewable raw material for industrial products and energy. However, knowledge of the genetic regulation of wood formation is limited. We developed a genome-wide high-throughput system for the discovery and validation of specific transcription factor (TF)-directed hierarchical gene regulatory networks (hGRNs) in wood formation. This system depends on a new robust procedure for isolation and transfection of Populus trichocarpa stem differentiating xylem protoplasts. We overexpressed Secondary Wall-Associated NAC Domain 1s (Ptr-SND1-B1), a TF gene affecting wood formation, in these protoplasts and identified differentially expressed genes by RNA sequencing. Direct Ptr-SND1-B1-DNA interactions were then inferred by integration of time-course RNA sequencing data and top-down Graphical Gaussian Modeling-based algorithms. These Ptr-SND1-B1-DNA interactions were verified to function in differentiating xylem by anti-PtrSND1-B1 antibody-based chromatin immunoprecipitation (97% accuracy) and in stable transgenic P. trichocarpa (90% accuracy). In this way, we established a Ptr-SND1-B1-directed quantitative hGRN involving 76 direct targets, including eight TF and 61 enzyme-coding genes previously unidentified as targets. The network can be extended to the third layer from the second-layer TFs by computation or by overexpression of a second-layer TF to identify a new group of direct targets (third layer). This approach would allow the sequential establishment, one two-layered hGRN at a time, of all layers involved in a more comprehensive hGRN. Our approach may be particularly useful to study hGRNs in complex processes in plant species resistant to stable genetic transformation and where mutants are unavailable.


Asunto(s)
Redes Reguladoras de Genes , Proteínas de Plantas/genética , Populus/genética , Factores de Transcripción/metabolismo , Madera/genética , Algoritmos , Pared Celular/genética , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Genéticos , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa/métodos , Populus/metabolismo , Protoplastos , Reproducibilidad de los Resultados , Factores de Transcripción/genética , Transfección , Madera/metabolismo , Xilema/citología , Xilema/genética
6.
Proc Natl Acad Sci U S A ; 110(26): 10848-53, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23754401

RESUMEN

Laccases, as early as 1959, were proposed to catalyze the oxidative polymerization of monolignols. Genetic evidence in support of this hypothesis has been elusive due to functional redundancy of laccase genes. An Arabidopsis double mutant demonstrated the involvement of laccases in lignin biosynthesis. We previously identified a subset of laccase genes to be targets of a microRNA (miRNA) ptr-miR397a in Populus trichocarpa. To elucidate the roles of ptr-miR397a and its targets, we characterized the laccase gene family and identified 49 laccase gene models, of which 29 were predicted to be targets of ptr-miR397a. We overexpressed Ptr-MIR397a in transgenic P. trichocarpa. In each of all nine transgenic lines tested, 17 PtrLACs were down-regulated as analyzed by RNA-seq. Transgenic lines with severe reduction in the expression of these laccase genes resulted in an ∼40% decrease in the total laccase activity. Overexpression of Ptr-MIR397a in these transgenic lines also reduced lignin content, whereas levels of all monolignol biosynthetic gene transcripts remained unchanged. A hierarchical genetic regulatory network (GRN) built by a bottom-up graphic Gaussian model algorithm provides additional support for a role of ptr-miR397a as a negative regulator of laccases for lignin biosynthesis. Full transcriptome-based differential gene expression in the overexpressed transgenics and protein domain analyses implicate previously unidentified transcription factors and their targets in an extended hierarchical GRN including ptr-miR397a and laccases that coregulate lignin biosynthesis in wood formation. Ptr-miR397a, laccases, and other regulatory components of this network may provide additional strategies for genetic manipulation of lignin content.


Asunto(s)
Regulación hacia Abajo/genética , Lacasa/genética , MicroARNs/genética , MicroARNs/metabolismo , Populus/enzimología , Populus/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Secuencia de Bases , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas , Lacasa/antagonistas & inhibidores , Lignina/antagonistas & inhibidores , Lignina/química , Lignina/metabolismo , Filogenia , Proteínas de Plantas/genética
7.
Proc Natl Acad Sci U S A ; 109(36): 14699-704, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22915581

RESUMEN

Secondary Wall-Associated NAC Domain 1s (SND1s) are transcription factors (TFs) known to activate a cascade of TF and pathway genes affecting secondary cell wall biosynthesis (xylogenesis) in Arabidopsis and poplars. Elevated SND1 transcriptional activation leads to ectopic xylogenesis and stunted growth. Nothing is known about the upstream regulators of SND1. Here we report the discovery of a stem-differentiating xylem (SDX)-specific alternative SND1 splice variant, PtrSND1-A2(IR), that acts as a dominant negative of SND1 transcriptional network genes in Populus trichocarpa. PtrSND1-A2(IR) derives from PtrSND1-A2, one of the four fully spliced PtrSND1 gene family members (PtrSND1-A1, -A2, -B1, and -B2). Each full-size PtrSND1 activates its own gene, and all four full-size members activate a common MYB gene (PtrMYB021). PtrSND1-A2(IR) represses the expression of its PtrSND1 member genes and PtrMYB021. Repression of the autoregulation of a TF family by its only splice variant has not been previously reported in plants. PtrSND1-A2(IR) lacks DNA binding and transactivation abilities but retains dimerization capability. PtrSND1-A2(IR) is localized exclusively in cytoplasmic foci. In the presence of any full-size PtrSND1 member, PtrSND1-A2(IR) is translocated into the nucleus exclusively as a heterodimeric partner with full-size PtrSND1s. Our findings are consistent with a model in which the translocated PtrSND1-A2(IR) lacking DNA-binding and transactivating abilities can disrupt the function of full-size PtrSND1s, making them nonproductive through heterodimerization, and thereby modulating the SND1 transcriptional network. PtrSND1-A2(IR) may contribute to transcriptional homeostasis to avoid deleterious effects on xylogenesis and plant growth.


Asunto(s)
Redes Reguladoras de Genes/genética , Homeostasis/fisiología , Modelos Biológicos , Populus/genética , Isoformas de Proteínas/genética , Factores de Transcripción/genética , Western Blotting , Clonación Molecular , Cartilla de ADN/genética , Dimerización , Electroforesis en Gel de Poliacrilamida , Plásmidos/genética , Transporte de Proteínas , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Plants (Basel) ; 13(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38794468

RESUMEN

AIM: Plants distributed between southern Taiwan and the north of the Philippines are spread among numerous small islands in an area crossed by the powerful Kuroshio current. Oceanic currents can be effective seed-dispersal agents for coastal plant species. Moreover, the Luzon Strait is an area prone to tropical cyclones. The aim of this study is to look at the dispersal capability of an endangered coastal plant species, the Mearns fig (Ficus pedunculosa var. mearnsii), using both experimental and population genetics methods. LOCATION: Southern Taiwan, the Philippines, and the islands between Luzon and Taiwan Island. METHODS: This study combined two types of analysis, i.e., buoyancy experiments on syconia and double digest restriction-associated DNA sequencing (ddRAD), to analyze the population genetics of the Mearns fig. RESULTS: We first discovered that mature Mearns fig syconia could float in seawater. They have a mean float duration of 10 days to a maximum of 21 days. Germination rates varied significantly between Mearns fig seeds that had undergone different durations of flotation treatment. Population genetic analysis shows a high degree of inbreeding among various Mearns fig populations. Moreover, no isolation by distance was found between the populations and individuals. MAIN CONCLUSIONS: From our analysis of the genetic structure of the Mearns fig populations, we can clearly highlight the effect of the Kuroshio oceanic current on the seed dispersal of this fig tree. Comprehensive analysis has shown that Mearns fig seeds are still viable before the mature syconium sinks into the seawater, and so they could use the Kuroshio Current to float to the current population locations in Taiwan.

9.
Planta ; 238(3): 487-97, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23765265

RESUMEN

Phenylalanine ammonia-lyase (PAL) catalyzes the initial step of phenylpropanoid biosynthesis in plants. Five PAL genes (PtrPAL1 to 5) have been identified in Populus trichocarpa. These genes are classified into two subgroups according to their transcript sequence similarity and tissue specificity. However, the regulation of these genes and their protein functions are not well understood. In this study, enzymatic properties of each PtrPALs were characterized based on their recombinant proteins expressed in E.coli. Subcellular localizations of each PtrPALs in stem wood forming tissue were investigated and individual PtrPAL protein abundances in cytosol and membrane protein fractions were measured using protein cleavage-isotope dilution mass spectrometry (PC-IDMS). Protein/mRNA ratios of PtrPALs were further verified using RNA-Seq and gel-enhanced liquid chromatography mass spectrometry (GeLC-MS). All PtrPALs have similar catalytic properties for the deamination of L-phenylalanine, their major substrate. All PtrPALs have similar subcellular locations in stem wood forming tissue, with major amount in the cytosol (93-96 %) and less in the membrane (4-7 %). However, the protein/mRNA ratios of subgroup A (PtrPAL2, 4 and 5) are about five times that of subgroup B (PtrPAL1 and 3) in stem wood forming tissue, while all PtrPALs have similar transcript abundances. These results indicate a greater functional significance of subgroup A PtrPALs for stem wood formation, and highlight the role of gene post-transcriptional regulation.


Asunto(s)
Fenilanina Amoníaco-Liasa/metabolismo , Populus/enzimología , Populus/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Espectrometría de Masas
10.
Plants (Basel) ; 12(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37687281

RESUMEN

The purpose of this study was to investigate the relationship between lignan biosynthesis and programmed cell death (PCD) of ray parenchyma cells during the heartwood formation of Taiwania (Taiwania cryptomerioides Hayata). Since the PCD of ray parenchyma cells and the synthesis of lignans are the two main processes involved in the formation of heartwood, both of which need to be completed through gene regulation. Based on the results of genomics and bioinformatics analysis, that the PCD of tracheids are induced by genotoxic, and the PCD of ray parenchyma cells is induced by biological factors, such as fungi, bacteria, and viruses, which could induce oxidative stress. According to the results of time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis, lignans are produced in ray parenchyma cells, and the accumulation of savinin and its downstream lignans might be the cause of PCD in ray parenchyma cells. An in vitro experiment further confirmed that the accumulation of savinin could cause protoplasts of Taiwania's xylem to produce taiwanin A, which is the marker of heartwood formation in Taiwania. Resulting in an increase in reactive oxygen species (ROS) content, which could induce oxidative stress in ray parenchyma cells and potentially lead to PCD. Based on these findings, we conclude that accumulation of savinin could be induced PCD of ray parenchyma cells in heartwood formation in Taiwania.

11.
Genome Biol ; 24(1): 3, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624504

RESUMEN

BACKGROUND: Xylem, the most abundant tissue on Earth, is responsible for lateral growth in plants. Typical xylem has a radial system composed of ray parenchyma cells and an axial system of fusiform cells. In most angiosperms, fusiform cells comprise vessel elements for water transportation and libriform fibers for mechanical support, while both functions are performed by tracheids in other vascular plants such as gymnosperms. Little is known about the developmental programs and evolutionary relationships of these xylem cell types. RESULTS: Through both single-cell and laser capture microdissection transcriptomic profiling, we determine the developmental lineages of ray and fusiform cells in stem-differentiating xylem across four divergent woody angiosperms. Based on cross-species analyses of single-cell clusters and overlapping trajectories, we reveal highly conserved ray, yet variable fusiform, lineages across angiosperms. Core eudicots Populus trichocarpa and Eucalyptus grandis share nearly identical fusiform lineages, whereas the more basal angiosperm Liriodendron chinense has a fusiform lineage distinct from that in core eudicots. The tracheids in the basal eudicot Trochodendron aralioides, an evolutionarily reversed trait, exhibit strong transcriptomic similarity to vessel elements rather than libriform fibers. CONCLUSIONS: This evo-devo framework provides a comprehensive understanding of the formation of xylem cell lineages across multiple plant species spanning over a hundred million years of evolutionary history.


Asunto(s)
Transcriptoma , Xilema , Xilema/genética , Madera , Perfilación de la Expresión Génica , Plantas
12.
J Proteome Res ; 11(6): 3390-404, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22524869

RESUMEN

The economic value of wood/pulp from many tree species is largely dictated by the quantity and chemical properties of lignin, which is directly related to the composition and linkages of monolignols comprising the polymer. Although much is known regarding the monolignol biosynthetic pathway, our understanding is still deficient due to the lack of quantitative information at the proteomic level. We developed an assay based on protein cleavage isotope dilution mass spectrometry (PC-IDMS) for the determination of all potential, primary enzymes involved in the biosynthesis of monolignols and the peroxidases responsible for their polymerization to form lignin in the model tree species, Populus trichocarpa. Described is the identification of quantitative surrogate peptides through shotgun analysis of native and recombinant proteins, optimization of trypsin proteolysis using fractional factorial design of experiments, and development of a liquid chromatography-selected reaction monitoring method for specific detection of all targeted peptides. Of the 25 targeted enzymes, three were undetected in the normal xylem tissues, and all but two of the detectable species showed good day-to-day precision (CV < 10%). This represents the most comprehensive assay for quantification of proteins regulating monolignol biosynthesis and will lead to a better understanding of lignin formation at a systems level.


Asunto(s)
Proteínas de Plantas/metabolismo , Populus/enzimología , Xilema/enzimología , Secuencia de Aminoácidos , Vías Biosintéticas , Marcaje Isotópico , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteoma/química , Proteoma/metabolismo , Estándares de Referencia , Espectrometría de Masa por Ionización de Electrospray/normas
13.
Plant Mol Biol ; 80(1): 37-53, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22161564

RESUMEN

MicroRNAs (miRNAs) are 20-24 nucleotide long molecules processed from a specific class of RNA polymerase II transcripts that mainly regulate the stability of mRNAs containing a complementary sequence by targeted degradation in plants. Many features of tree biology are regulated by miRNAs affecting development, metabolism, adaptation and evolution. MiRNAs may be modified and harnessed for controlled suppression of specific genes to learn about gene function, or for practical applications through genetic engineering. Modified (artificial) miRNAs act as dominant suppressors and are particularly useful in tree genetics because they bypass the generations of inbreeding needed for fixation of recessive mutations. The purpose of this review is to summarize the current status of information on miRNAs in trees and to guide future studies on the role of miRNAs in the biology of woody perennials and to illustrate their utility in directed genetic modification of trees.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , ARN de Planta/genética , Árboles/genética , MicroARNs/metabolismo , Modelos Genéticos , Filogenia , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Árboles/clasificación , Árboles/metabolismo
14.
Planta ; 236(3): 795-808, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22628084

RESUMEN

Flowering plants have syringyl and guaiacyl subunits in lignin in contrast to the guaiacyl lignin in gymnosperms. The biosynthesis of syringyl subunits is initiated by coniferaldehyde 5-hydroxylase (CAld5H). In Populus trichocarpa there are two closely related CAld5H enzymes (PtrCAld5H1 and PtrCAld5H2) associated with lignin biosynthesis during wood formation. We used yeast recombinant PtrCAld5H1 and PtrCAld5H2 proteins to carry out Michaelis-Menten and inhibition kinetics with LC-MS/MS based absolute protein quantification. CAld5H, a monooxygenase, requires a cytochrome P450 reductase (CPR) as an electron donor. We cloned and expressed three P. trichocarpa CPRs in yeast and show that all are active with both CAld5Hs. The kinetic analysis shows both CAld5Hs have essentially the same biochemical functions. When both CAld5Hs are coexpressed in the same yeast membranes, the resulting enzyme activities are additive, suggesting functional redundancy and independence of these two enzymes. Simulated reaction flux based on Michaelis-Menten kinetics and inhibition kinetics confirmed the redundancy and independence. Subcellular localization of both CAld5Hs as sGFP fusion proteins expressed in P. trichocarpa differentiating xylem protoplasts indicate that they are endoplasmic reticulum resident proteins. These results imply that during wood formation, 5-hydroxylation in monolignol biosynthesis of P. trichocarpa requires the combined metabolic flux of these two CAld5Hs to maintain adequate biosynthesis of syringyl lignin. The combination of genetic analysis, absolute protein quantitation-based enzyme kinetics, homologous CPR specificity, SNP characterization, and ER localization provides a more rigorous basis for a comprehensive systems understanding of 5-hydroxylation in lignin biosynthesis.


Asunto(s)
Lignina/biosíntesis , Oxigenasas de Función Mixta/metabolismo , Populus/metabolismo , Xilema/enzimología , Clonación Molecular , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hidroxilación , Cinética , Lignina/análisis , Plantas Modificadas Genéticamente , Levaduras/metabolismo
15.
Nucleic Acids Res ; 37(6): 1878-85, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19188256

RESUMEN

The modification or degradation of RNAs including miRNAs may play vital roles in regulating RNA functions. The polyadenylation- and exosome-mediated RNA decay is involved in the degradation of plant RNAs including the primary miRNA processing intermediates. However, plant miRNA levels are not affected by exosome depletion. Here, we report the cloning of a large number of 5' and/or 3' truncated versions of the known miRNAs from various tissues of Populus trichocarpa (black cottonwood). It suggests that plant miRNAs may be degraded through either 5' to 3' or 3' to 5' exonucleolytic digestion. We also show that a significant portion of the isolated miRNAs contains, at the 3'-end, one or a few post-transcriptionally added adenylic acid residues, which are distinct in length from the polyadenylate tail added to other plant RNAs for exosome-mediated degradation. Using an in vitro miRNA degradation system, where synthesized miRNA oligos were degraded in extracts of P. trichocarpa cells, we revealed that the adenylated miRNAs were degraded slower than others without adenylation. It indicates that addition of adenylic acid residues on the 3'-end plays a negative role in miRNA degradation. Our results provide new information for understanding the mechanism of miRNA degradation.


Asunto(s)
MicroARNs/metabolismo , Procesamiento de Término de ARN 3' , Estabilidad del ARN , ARN de Planta/metabolismo , Adenosina Monofosfato/análisis , Variación Genética , MicroARNs/química , Populus/genética , ARN de Planta/química , Análisis de Secuencia de ARN
16.
Mitochondrial DNA B Resour ; 6(12): 3369-3371, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805514

RESUMEN

The plastid genome of the deep-shade plant Selaginella erythropus, which has highly unusual chloroplasts, was characterized using Illumina pair-end sequencing. This plastome is 140,151 bp in length with a large single-copy region (LSC) of 56,133 bp, a small single-copy region (SSC) of 61,268 bp, and two direct repeats (DRs) of 11,375 bp. The overall GC content is 50.68%, while those of LSC, SSC, and DR are 48.96%, 50.3%, and 55.96%, respectively. The plastome contains 102 genes, including 76 protein-coding, 15 tRNA (12 tRNA species), and 8 rRNA genes (4 rRNA species). The phylogenetic analysis shows that S. erythropus is closely related to S. moellendorffii and S. doederleinii. This result is consistent with the previous phylogenetic relationship inferred from multiple plastid and nuclear loci. However, only S. erythropus has the two-zoned giant chloroplast, the bizonoplast. The plastome provides an excellent reference for understanding the unique chloroplast differentiation in Selaginellaceae.

17.
Plant Cell Physiol ; 51(1): 144-63, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19996151

RESUMEN

As a step toward a comprehensive description of lignin biosynthesis in Populus trichocarpa, we identified from the genome sequence 95 phenylpropanoid gene models in 10 protein families encoding enzymes for monolignol biosynthesis. Transcript abundance was determined for all 95 genes in xylem, leaf, shoot and phloem using quantitative real-time PCR (qRT-PCR). We identified 23 genes that most probably encode monolignol biosynthesis enzymes during wood formation. Transcripts for 18 of the 23 are abundant and specific to differentiating xylem. We found evidence suggesting functional redundancy at the transcript level for phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate:CoA ligase (4CL), p-hydroxycinnamoyl-CoA:quinate shikimate p-hydroxycinnamoyltransferase (HCT), caffeoyl-CoA O-methyltransferase (CCoAOMT) and coniferyl aldehyde 5-hydroxylase (CAld5H). We carried out an enumeration-based motif identification and discriminant analysis on the promoters of all 95 genes. Five core motifs correctly discriminate the 18 xylem-specific genes from the 77 non-xylem genes. These motifs are similar to promoter elements known to regulate phenylpropanoid gene expression. This work suggests that genes in monolignol biosynthesis are regulated by multiple motifs, often related in sequence.


Asunto(s)
Vías Biosintéticas/genética , Lignina/biosíntesis , Lignina/genética , Populus/genética , Populus/metabolismo , ARN de Planta/genética , Secuencias de Aminoácidos/genética , Enzimas/biosíntesis , Enzimas/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Genoma de Planta/genética , Floema/enzimología , Floema/genética , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/análisis , ARN de Planta/metabolismo , Transcripción Genética/fisiología , Xilema/enzimología , Xilema/genética
18.
J Exp Bot ; 61(5): 1483-93, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20167611

RESUMEN

Variegated plants provide a valuable tool for studying chloroplast biogenesis by allowing direct comparison between green and white/yellow sectors within the same leaf. While variegated plants are abundant in nature, the mechanism of leaf variegation remains largely unknown. Current studies are limited to a few mutants in model plant species, and are complicated by the potential for cross-contamination during dissection of leaf tissue into contrasting sectors. To overcome these obstacles, an alternative approach was explored using tissue-culture techniques to regenerate plantlets from unique sectors. Stable green and pale yellow plants were developed from a naturally variegated Epipremnum aureum 'Golden Pothos'. By comparing the gene expression between green and pale yellow plants using suppression subtractive hybridization in conjunction with homologous sequence search, nine down-regulated and 18 up-regulated genes were identified in pale yellow plants. Transcript abundance for EaZIP (Epipremnum aureum leucine zipper), a nuclear gene homologue of tobacco NTZIP and Arabidopsis CHL27, was reduced more than 4000-fold in qRT-PCR analysis. EaZIP encodes the Mg-protoporphyrin IX monomethyl ester cyclase, one of the key enzymes in the chlorophyll biosynthesis pathway. Examination of EaZIP expression in naturally variegated 'Golden Pothos' confirmed that EaZIP transcript levels were correlated with leaf chlorophyll contents, suggesting that this gene plays a major role in the loss of chlorophyll in the pale yellow sectors of E. aureum 'Golden Pothos'. This study further suggests that tissue-culture regeneration of plantlets from different coloured sectors of variegated leaves can be used to investigate the underlying mechanisms of variegation.


Asunto(s)
Araceae/embriología , Araceae/metabolismo , Proteínas de Plantas/metabolismo , Regeneración/fisiología , Secuencia de Aminoácidos , Araceae/ultraestructura , Western Blotting , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
19.
Plant J ; 55(1): 131-51, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18363789

RESUMEN

MicroRNAs (miRNAs), a group of small non-coding RNAs, have recently become the subject of intense study. They are a class of post-transcriptional negative regulators playing vital roles in plant development and growth. However, little is known about their regulatory roles in the responses of trees to the stressful environments incurred over their long-term growth. Here, we report the cloning of small RNAs from abiotic stressed tissues of Populus trichocarpa (Ptc) and the identification of 68 putative miRNA sequences that can be classified into 27 families based on sequence homology. Among them, nine families are novel, increasing the number of the known Ptc-miRNA families from 33 to 42. A total of 346 targets was predicted for the cloned Ptc-miRNAs using penalty scores of

Asunto(s)
Regulación de la Expresión Génica de las Plantas , MicroARNs/metabolismo , Populus/fisiología , Secuencia de Bases , Northern Blotting , Clonación Molecular , Frío , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes de Plantas , Calor , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Populus/genética , Salinidad , Estrés Mecánico , Agua/fisiología
20.
Nat Commun ; 9(1): 1579, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29679008

RESUMEN

A multi-omics quantitative integrative analysis of lignin biosynthesis can advance the strategic engineering of wood for timber, pulp, and biofuels. Lignin is polymerized from three monomers (monolignols) produced by a grid-like pathway. The pathway in wood formation of Populus trichocarpa has at least 21 genes, encoding enzymes that mediate 37 reactions on 24 metabolites, leading to lignin and affecting wood properties. We perturb these 21 pathway genes and integrate transcriptomic, proteomic, fluxomic and phenomic data from 221 lines selected from ~2000 transgenics (6-month-old). The integrative analysis estimates how changing expression of pathway gene or gene combination affects protein abundance, metabolic-flux, metabolite concentrations, and 25 wood traits, including lignin, tree-growth, density, strength, and saccharification. The analysis then predicts improvements in any of these 25 traits individually or in combinations, through engineering expression of specific monolignol genes. The analysis may lead to greater understanding of other pathways for improved growth and adaptation.


Asunto(s)
Lignina/biosíntesis , Lignina/genética , Populus/genética , Madera/química , Madera/fisiología , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Populus/metabolismo , Transcriptoma/genética , Árboles/genética , Árboles/metabolismo , Xilema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA