RESUMEN
The immune checkpoint blockade (ICB) response in human cancers is closely linked to the gut microbiota. Here, we report that the abundance of commensal Lactobacillus johnsonii is positively correlated with the responsiveness of ICB. Supplementation with Lactobacillus johnsonii or tryptophan-derived metabolite indole-3-propionic acid (IPA) enhances the efficacy of CD8+ T cell-mediated αPD-1 immunotherapy. Mechanistically, Lactobacillus johnsonii collaborates with Clostridium sporogenes to produce IPA. IPA modulates the stemness program of CD8+ T cells and facilitates the generation of progenitor exhausted CD8+ T cells (Tpex) by increasing H3K27 acetylation at the super-enhancer region of Tcf7. IPA improves ICB responsiveness at the pan-cancer level, including melanoma, breast cancer, and colorectal cancer. Collectively, our findings identify a microbial metabolite-immune regulatory pathway and suggest a potential microbial-based adjuvant approach to improve the responsiveness of immunotherapy.
Asunto(s)
Linfocitos T CD8-positivos , Inmunoterapia , Lactobacillus , Neoplasias , Humanos , Lactobacillus/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Indoles/metabolismo , Inhibidores de Puntos de Control Inmunológico/uso terapéuticoRESUMEN
Orbital observations suggest that Mars underwent a recent 'ice age' (roughly 0.4-2.1 million years ago), during which a latitude-dependent ice-dust mantle (LDM)1,2 was emplaced. A subsequent decrease in obliquity amplitude resulted in the emergence of an 'interglacial period'1,3 during which the lowermost latitude LDM ice4-6 was etched and removed, returning it to the polar cap. These observations are consistent with polar cap stratigraphy1,7, but lower- to mid-latitude in situ surface observations in support of a glacial-interglacial transition that can be reconciled with mesoscale and global atmospheric circulation models8 is lacking. Here we present a suite of measurements obtained by the Zhurong rover during its traverse across the southern LDM region in Utopia Planitia, Mars. We find evidence for a stratigraphic sequence involving initial barchan dune formation, indicative of north-easterly winds, cementation of dune sediments, followed by their erosion by north-westerly winds, eroding the barchan dunes and producing distinctive longitudinal dunes, with the transition in wind regime consistent with the end of the ice age. The results are compatible with the Martian polar stratigraphic record and will help improve our understanding of the ancient climate history of Mars9.
RESUMEN
Bones and articular cartilage are important load-bearing tissues. The fluid flow inside the bone cells and cell interaction with the extracellular matrix serve as the mechanical cues for bones and joints. Piezo1 is an ion channel found on the cell surface of many cell types, including osteocytes and chondrocytes. It is activated in response to mechanical stimulation, which subsequently mediates a variety of signaling pathways in osteoblasts, osteocytes, and chondrocytes. Piezo1 activation in osteoblastic cells positively regulates osteogenesis, while its activation in joints mediates cartilage degradation. This review focuses on the most recent research on Piezo1 in bone development and regeneration.
Asunto(s)
Huesos , Condrocitos , Estrés Mecánico , Condrocitos/fisiología , Homeostasis , BiofisicaRESUMEN
Well-established knowledge about inversion-symmetric Bi2TexSe3-x topological insulators characterizes the promising new-generation quantum device. Noticeably, the inversion asymmetric phase containing different surface electronic structures may create an extra topological phenomenon pointing to a new device paradigm. Herein, Janus Bi2TeSe2 single-crystal nanosheets with an unconventional stacking sequence of Se-Bi-Se-Bi-Te are realized via chemical vapor deposition growth, which is clarified by atomically resolved AC-STEM and elemental mapping. An obvious polarization-dependent second-harmonic generation with a representative 6-fold rotational symmetry is detected due to the broken out-of-plane mirror symmetry in this system. Low-temperature transport measurements display a strange metal-like linear-in-temperature resistivity. Anomalous conductance peaks under low magnetic fields induced by the weak antilocalization effect of topological surface states and the two-dimensional transport-dominated anisotropic magnetoresistance are revealed. These findings correlate the Janus Bi2TeSe2 phase with emerging physics topics, which would inspire fresh thoughts in well-developed Bi3TexSe3-x topological insulators and open up opportunities for exploring hybrid nonlinear optoelectronic topological devices.
RESUMEN
Patients treated with Pt-based anticancer drugs (PtII) often experience severe side effects and are susceptible to cancer recurrence due to the limited bioavailability of PtII and tumor-induced immunosuppression. The exposure of phosphatidylserine on the cell's outer surface induced by PtII results in profound immunosuppression through the binding of phosphatidylserine to its receptors on immune cells. Here, we report a novel approach for enhanced cancer chemoimmunotherapy, where a novel nuclear-targeting lipid PtIV prodrug amphiphile was used to deliver a small interfering RNA (siXkr8) to simultaneously amplify Pt-DNA adducts and reduce the level of exposure of phosphatidylserine. This drug delivery vehicle is engineered by integrating the PtIV prodrug with self-assembly performance and siXkr8 into a lipid nanoparticle, which shows tumor accumulation, cancer cell nucleus targeting, and activatable in a reduced microenvironment. It is demonstrated that nuclear-targeting lipid PtIV prodrug increases the DNA cross-linking, resulting in increased Pt-DNA adduct formation. The synergistic effects of the PtIV prodrug and siXkr8 contribute to the improvement of the tumor immune microenvironment. Consequently, the increased Pt-DNA adducts and immunogenicity effectively inhibit primary tumor growth and prevent tumor recurrence. These results underscore the potential of utilizing the nuclear-targeting lipid PtIV prodrug amphiphile to enhance Pt-DNA adduct formation and employing siXkr8 to alleviate immunosuppression during chemotherapy.
Asunto(s)
Antineoplásicos , Neoplasias , Profármacos , Humanos , Profármacos/farmacología , Aductos de ADN , Fosfatidilserinas , ARN Interferente Pequeño , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , ARN Bicatenario , Línea Celular Tumoral , Cisplatino , Microambiente TumoralRESUMEN
Nanoscale defect engineering plays a crucial role in incorporating extraordinary catalytic properties in two-dimensional materials by varying the surface groups or site interactions. Herein, we synthesized high-loaded nitrogen-doped Boridene (N-Boridene (Mo4/3(BnN1-n)2-mTz), N-doped concentration up to 26.78 at %) nanosheets by chemical exfoliation followed by cyanamide intercalation. Three different nitrogen sites are observed in N-Boridene, wherein the site of boron vacancy substitution mainly accounts for its high chemical activity. Attractively, as a cathode for Mg-CO2 batteries, it delivers a long-term lifetime (305 cycles), high-energy efficiency (93.6%), and ultralow overpotential (â¼0.09 V) at a high current of 200 mA g-1, which overwhelms all Mg-CO2 batteries reported so far. Experimental and computational studies suggest that N-Boridene can remarkably change the adsorption energy of the reaction products and lower the energy barrier of the rate-determining step (*MgCO2 â *MgCO3·xH2O), resulting in the rapid reversible formation/decomposition of new MgCO3·5H2O products. The surging Boridene materials with defects provide substantial opportunities to develop other heterogeneous catalysts for efficient capture and converting of CO2.
RESUMEN
BACKGROUND: The present study aimed to dissect the cellular complexity of Crohn's disease (CD) using single-cell RNA sequencing, focusing on identifying key cell populations and their transcriptional profiles in inflamed tissue. METHODS: We applied scRNA-sequencing to compare the cellular composition of CD patients with healthy controls, utilizing Seurat for clustering and annotation. Differential gene expression analysis and protein-protein interaction networks were constructed to identify crucial genes and pathways. RESULTS: Our study identified eight distinct cell types in CD, highlighting crucial fibroblast and T cell interactions. The analysis revealed key cellular communications and identified significant genes and pathways involved in the disease's pathology. The role of fibroblasts was underscored by elevated expression in diseased samples, offering insights into disease mechanisms and potential therapeutic targets, including responses to ustekinumab treatment, thus enriching our understanding of CD at a molecular level. CONCLUSIONS: Our findings highlight the complex cellular and molecular interplay in CD, suggesting new biomarkers and therapeutic targets, offering insights into disease mechanisms and treatment implications.
Asunto(s)
Enfermedad de Crohn , Análisis de la Célula Individual , Ustekinumab , Enfermedad de Crohn/genética , Enfermedad de Crohn/tratamiento farmacológico , Humanos , Ustekinumab/uso terapéutico , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica/métodos , Mapas de Interacción de Proteínas , Fibroblastos/metabolismo , Biomarcadores , Femenino , Transcriptoma , Adulto , Masculino , Linfocitos T/metabolismo , Linfocitos T/inmunología , Resultado del Tratamiento , Análisis de Secuencia de ARN/métodos , Redes Reguladoras de GenesRESUMEN
Pyroptosis, an inflammatory cell death, plays a pivotal role in activating inflammatory response, reversing immunosuppression and enhancing anti-tumor immunity. However, challenges remain regarding how to induce pyroptosis efficiently and precisely in tumor cells to amplify anti-tumor immunotherapy. Herein, a pH-responsive polydopamine (PDA) nanocluster, perfluorocarbon (PFC)@octo-arginine (R8)-1-Hexadecylamine (He)-porphyrin (Por)@PDA-gambogic acid (GA)-cRGD (R-P@PDA-GC), is rationally design to augment phototherapy-induced pyroptosis and boost anti-tumor immunity through a two-input programmed cascade therapy. Briefly, oxygen doner PFC is encapsulated within R8 linked photosensitizer Por and He micelles as the core, followed by incorporation of GA and cRGD peptides modified PDA shell, yielding the ultimate R-P@PDA-GC nanoplatforms (NPs). The pH-responsive NPs effectively alleviate hypoxia by delivering oxygen via PFC and mitigate heat resistance in tumor cells through GA. Upon two-input programmed irradiation, R-P@PDA-GC NPs significantly enhance reactive oxygen species production within tumor cells, triggering pyroptosis via the Caspase-1/GSDMD pathway and releasing numerous inflammatory factors into the TME. This leads to the maturation of dendritic cells, robust infiltration of cytotoxic CD8+ T and NK cells, and diminution of immune suppressor Treg cells, thereby amplifying anti-tumor immunity.
Asunto(s)
Inmunoterapia , Indoles , Polímeros , Piroptosis , Polímeros/química , Indoles/química , Inmunoterapia/métodos , Piroptosis/efectos de los fármacos , Animales , Humanos , Nanopartículas/química , Ratones , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/patología , Concentración de Iones de HidrógenoRESUMEN
Improving the interconnected structure and bioregulatory function of natural chitosan is beneficial for optimizing its performance in bone regeneration. Here, a facile immunoregulatory constructional design is proposed for developing instructive chitosan by directional freezing and alkaline salting out. The molecular dynamics simulation confirmed the assembly kinetics and structural features of various polyphenols and chitosan molecules. Along with the in vitro anti-inflammatory, antioxidative, promoting bone mesenchymal stem cell (BMSC) adhesion and proliferation performance, proanthocyanidin optimizing chitosan (ChiO) scaffold presented an optimal immunoregulatory structure with the directional microchannel. Transcriptome analysis in vitro further revealed the cytoskeleton- and immune-regulation effect of ChiO are the key mechanism of action on BMSC. The rabbit cranial defect model (Φ = 10 mm) after 12 weeks of implantation confirmed the significantly enhanced bone reconstitution. This facile immunoregulatory directional microchannel design provides effective guidance for developing inducible chitosan scaffolds.
Asunto(s)
Quitosano , Células Madre Mesenquimatosas , Proantocianidinas , Quitosano/química , Proantocianidinas/química , Proantocianidinas/farmacología , Animales , Conejos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Andamios del Tejido/química , Proliferación Celular/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Simulación de Dinámica MolecularRESUMEN
The development of economical and efficient oxygen reduction reaction (ORR) catalysts is crucial to accelerate the widespread application rhythm of aqueous rechargeable zinc-air batteries (ZABs). Here, a strategy is reported that the modification of the binding energy for reaction intermediates by the axial N-group converts the inactive spinel MgAl2O4 into the active motif of MgAl2O4-N. It is found that the introduction of N species can effectively optimize the electronic configuration of MgAl2O4, thereby significantly reducing the adsorption strength of *OH and boosting the reaction process. This main-group MgAl2O4-N catalyst exhibits a high ORR activity in a broad pH range from acidic and alkaline environments. The aqueous ZABs assembled with MgAl2O4-N shows a peak power density of 158.5 mW cm-2, the long-term cyclability over 2000 h and the high stability in the temperature range from -10 to 50 °C, outperforming the commercial Pt/C in terms of activity and stability. This work not only serves as a significant candidate for the robust ORR electrocatalysts of aqueous ZABs, but also paves a new route for the effective reutilization of waste Mg alloys.
RESUMEN
The Erp3 protein, which is an important member of the p24 family, is primarily responsible for the transport of cargo from the ER to the Golgi apparatus in Saccharomyces cerevisiae. However, the function of Erp3 in plant pathogenic fungi has not been reported. In this study, we characterized the ERP3 gene in Ceratocystis fimbriata, which causes the devastating disease sweetpotato black rot. The ΔCferp3 mutants exhibited slow growth, reduced conidia production, attenuated virulence, and reduced ability to induce host to produce toxins. Further analysis revealed that CfErp3 was localized in the ER and vesicles and regulated endocytosis, cell wall integrity, and osmotic stress responses, modulated ROS levels, and the production of ipomeamarone during pathogen-host interactions. These results indicate that CfErp3 regulates C. fimbriata growth and pathogenicity as well as the production of ipomeamarone in sweetpotato by controlling endocytosis, oxidative homeostasis, and responses to cell wall and osmotic stresses.
Asunto(s)
Ascomicetos , Sesquiterpenos , Virulencia/genética , Ceratocystis , Saccharomyces cerevisiaeRESUMEN
The active structural change of actin cytoskeleton is a general host response upon pathogen attack. This study characterized the function of the cotton (Gossypium hirsutum) actin-binding protein VILLIN2 (GhVLN2) in host defense against the soilborne fungus Verticillium dahliae. Biochemical analysis demonstrated that GhVLN2 possessed actin-binding, -bundling, and -severing activities. A low concentration of GhVLN2 could shift its activity from actin bundling to actin severing in the presence of Ca2+. Knockdown of GhVLN2 expression by virus-induced gene silencing reduced the extent of actin filament bundling and interfered with the growth of cotton plants, resulting in the formation of twisted organs and brittle stems with a decreased cellulose content of the cell wall. Upon V. dahliae infection, the expression of GhVLN2 was downregulated in root cells, and silencing of GhVLN2 enhanced the disease tolerance of cotton plants. The actin bundles were less abundant in root cells of GhVLN2-silenced plants than in control plants. However, upon infection by V. dahliae, the number of actin filaments and bundles in the cells of GhVLN2-silenced plants was raised to a comparable level as those in control plants, with the dynamic remodeling of the actin cytoskeleton appearing several hours in advance. GhVLN2-silenced plants exhibited a higher incidence of actin filament cleavage in the presence of Ca2+, suggesting that pathogen-responsive downregulation of GhVLN2 could activate its actin-severing activity. These data indicate that the regulated expression and functional shift of GhVLN2 contribute to modulating the dynamic remodeling of the actin cytoskeleton in host immune responses against V. dahliae.
Asunto(s)
Ascomicetos , Verticillium , Gossypium/metabolismo , Resistencia a la Enfermedad/genética , Actinas/metabolismo , Calcio/metabolismo , Verticillium/fisiología , Ascomicetos/metabolismo , Citoesqueleto de Actina/metabolismo , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismoRESUMEN
Bound states in the continuum (BICs) provide an alternative way of trapping light at nanoscale. Although the last 10 years have witnessed tremendous progress on BICs from fundamentals to applications, nonreciprocal BICs and their potential applications have not been fully exploited yet. In this study, we demonstrated a one-way quasi-BIC by leveraging an all-dielectric magneto-optical (MO) metasurface. We show that the key point for achieving a one-way quasi-BIC is to excite a magnetization-induced leaky resonance. Here we adopt the longitudinal toroidal dipole (TD) resonance characterized by a vortex distribution of head-to-tail magnetic dipoles parallel to the plane of the MO metasurface. We show that, by breaking the time-reversal symmetry, at critical conditions, the TD resonance can be enhanced in the forward channel and perfectly canceled in the time-reversed channel, resulting in a one-way quasi-BIC. The demonstrated phenomena hold significant promise for practical applications such as magnetic field optical sensing, nonreciprocal optical switching, isolation, and modulation.
RESUMEN
Topological edge state, a unique mode for manipulating electromagnetic waves (EMs), has been extensively studied in both fundamental and applied physics. Up to now, the work on topological edge states has focused on manipulating linearly polarized waves. Here, we realize chirality-dependent topological edge states in one-dimensional photonic crystals (1DPCs) to manipulate circularly polarized waves. By introducing the magneto-electric coupling term (chirality), the degeneracy Dirac point (DP) is opened in PCs with symmetric unit cells. The topological properties of the upper and lower bands are different in the cases of left circularly polarized (LCP) and right circularly polarized (RCP) waves by calculating the Zak phase. Moreover, mapping explicitly 1D Maxwell's equations to the Dirac equation, we demonstrate that the introduction of chirality can lead to different topological properties of bandgaps for RCP and LCP waves. Based on this chirality-dependent topology, we can further realize chirality-dependent topological edge states in photonic heterostructures composed of two kinds of PCs. Finally, we propose a realistic structure for the chirality-dependent topological edge states by placing metallic helixes in host media. Our work provides a method for manipulating topological edge states for circularly polarized waves, which has a broad range of potential applications in designing optical devices including polarizers, filters, and sensors with robustness against disorder.
RESUMEN
PURPOSE: The aim of this study is to delve into the value of N6-Methyladenosine (m6A)-associated genes (MAGs) in pancreatic cancer (PC) prognosis. METHODS: PC sequencing data and corresponding clinicopathological information were retrieved from GEO and TCGA databases. We filtered 19 MAGs in PC specimens and implemented functional annotation in biology. Later, the m6A modification pattern was stratified into m6Acluster A-B according to MAG expression levels, and further categorized into genecluster A-C based on differentially expressed genes between m6Acluster A and B. Next, a MAG-based prognostic prediction model was established by the least absolute shrinkage and selection operator (LASSO) regression analysis and multivariate Cox regression analysis. At last, the role of KRT7 in PC were explored. RESULTS: We found m6Acluster A pattern presented enrichment pathways associated with cell apoptosis, proliferation, migration, and cancer pathways. Additionally, high-risk group displayed more dismal prognosis and a higher programmed death-ligand 1 expression. The survival prediction ability of the model was verified in three independent PC GEO datasets. KRT7 is the most momentous risk gene in the established prognostic model. Among 18 clinical samples, the KRT7 protein in the surviving patient samples is lower than that in the deceased patient samples. We also identified elevated expression of KRT7 in PC tumor tissues compared to normal tissues using GEPIA 2. Then, the metastasis of PC cells was promoted by overexpressed KRT7 in vitro and in vivo. And IGF2BP3 upregulated KRT7 by increasing the mRNA stability of KRT7. CONCLUSIONS: The PPM built based on CXCL5, LY6K and KRT7 is an encouraging biomarker to define the prognosis. Additionally, IGF2BP3 promoted KRT7 by stabilizing mRNA of KRT7. And KRT7 promoted the metastasis of PC cells by promoting EMT.
RESUMEN
BACKGROUND: This study investigated the molecular mechanism of long intergenic non-protein coding RNA 1605 (LINC01605) in the process of tumor growth and liver metastasis of pancreatic ductal adenocarcinoma (PDAC). METHODS: LINC01605 was filtered out with specificity through TCGA datasets (related to DFS) and our RNA-sequencing data of PDAC tissue samples from Renji Hospital. The expression level and clinical relevance of LINC01605 were then verified in clinical cohorts and samples by immunohistochemical staining assay and survival analysis. Loss- and gain-of-function experiments were performed to estimate the regulatory effects of LINC01605 in vitro. RNA-seq of LINC01605-knockdown PDAC cells and subsequent inhibitor-based cellular function, western blotting, immunofluorescence and rescue experiments were conducted to explore the mechanisms by which LINC01605 regulates the behaviors of PDAC tumor cells. Subcutaneous xenograft models and intrasplenic liver metastasis models were employed to study its role in PDAC tumor growth and liver metastasis in vivo. RESULTS: LINC01605 expression is upregulated in both PDAC primary tumor and liver metastasis tissues and correlates with poor clinical prognosis. Loss and gain of function experiments in cells demonstrated that LINC01605 promotes the proliferation and migration of PDAC cells in vitro. In subsequent verification experiments, we found that LINC01605 contributes to PDAC progression through cholesterol metabolism regulation in a LIN28B-interacting manner by activating the mTOR signaling pathway. Furthermore, the animal models showed that LINC01605 facilitates the proliferation and metastatic invasion of PDAC cells in vivo. CONCLUSIONS: Our results indicate that the upregulated lncRNA LINC01605 promotes PDAC tumor cell proliferation and migration by regulating cholesterol metabolism via activation of the mTOR signaling pathway in a LIN28B-interacting manner. These findings provide new insight into the role of LINC01605 in PDAC tumor growth and liver metastasis as well as its value for clinical approaches as a metabolic therapeutic target in PDAC.
RESUMEN
BACKGROUND: Early targeted antibiotic therapy is crucial for improving the prognosis of immunocompromised patients with severe respiratory infections (SRIs) in the intensive care unit (ICU). Metagenomic next-generation sequencing (mNGS) has shown significant value in pathogen detection, but research on lower respiratory tract microorganisms remains limited. METHODS: This study enrolled 234 patients with SRIs in the ICU, and individuals were categorized into immunocompromised and immunocompetent groups. We compared the diagnostic performance of mNGS using bronchoalveolar lavage fluid (BALF) with conventional microbiological tests (CMTs) and analyzed the value of mNGS in immunocompromised patients with SRIs in the ICU. RESULTS: Among all patients, the pathogenic microorganism detection rate of mNGS was higher than that of CMTs (94.02% vs 66.67%, P < 0.05), both in the immunocompromised group (95.0% vs 58.75%, P < 0.05) and the immunocompetent group (93.51% vs 71.43%, P < 0.05). mNGS detected more pathogens than CMTs did (167 vs 51), identifying 116 organisms that were missed by CMTs. The proportion of antibiotic regimen adjustments based on mNGS results was significantly higher compared to CMTs in both the immunocompromised (70.00% vs 17.50%, P < 0.05) and immunocompetent groups (48.70% vs 15.58%, P < 0.05). In the immunocompromised group, patients who had their antibiotic treatment adjusted on mNGS results had improved prognosis, with significantly lower ICU mortality (8.93% vs 50%, P < 0.05) and 28-day mortality rates (30.36% vs 68.75%, P < 0.05) than CMTs. In the immunocompetent group, no statistically significant differences were observed in ICU mortality or 28-day mortality (20.00% vs 33.33%, P > 0.05; 42.67% vs 45.83%, P > 0.05). CONCLUSION: mNGS shows significant value in detecting pathogens in immunocompromised patients with SRIs in ICU. For immunocompromised patients who respond poorly to empirical treatment, mNGS can provide an etiological basis, helping adjust antibiotic regimens more precisely and thereby improving patient prognosis.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Huésped Inmunocomprometido , Unidades de Cuidados Intensivos , Metagenómica , Infecciones del Sistema Respiratorio , Humanos , Masculino , Femenino , Persona de Mediana Edad , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Anciano , Metagenómica/métodos , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/mortalidad , Líquido del Lavado Bronquioalveolar/microbiología , Adulto , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Antibacterianos/uso terapéuticoRESUMEN
It is commonly believed that topologically nontrivial one-dimensional systems support edge states rather than bulk states at zero energy. In this work, we find an unanticipated case of topological Anderson insulator (TAI) phase where two bulk modes are degenerate at zero energy, in addition to degenerate edge modes. We term this "ungapped TAI" to distinguish it from the previously known gapped TAIs. Our experimental realization of both gapped and ungapped TAIs relies on coupled photonic resonators, in which the disorder in coupling is judiciously engineered by adjusting the spacing between the resonators. By measuring the local density of states both in the bulk and at the edges, we demonstrate the existence of these two types of TAIs, together forming a TAI plateau in the phase diagram. Our experimental findings are well supported by theoretical analysis. In the ungapped TAI phase, we observe stable coexistence of topological edge states and localized bulk states at zero energy, highlighting the distinction between TAIs and traditional topological insulators.
RESUMEN
BACKGROUND: Previous studies have revealed that vitamin K is essential for preventing various chronic diseases. Phylloquinone is the primary dietary and circulating form of vitamin K. However, data concerning the association between plasma phylloquinone and all-cause mortality are limited. OBJECTIVES: This study aimed to evaluate the association between plasma phylloquinone and risk of all-cause mortality and examine some potential confounders. METHODS: This study is a post hoc analysis of the RCT and a nested, case-control design was used. Enrolled participants had to have hypertension at baseline. Study initiation was 19 May, 2008, and the median follow-up was 4.5 y. A total of 604 mortality cases and 604 controls matched for age, sex, treatment group, and study site were included in this study. Odds ratios (OR) and 95% confidence intervals (CIs) of all-cause mortality were calculated using conditional or unconditional logistic regression, without or with adjusting for pertinent covariates, respectively. The concentration of phylloquinone was measured by liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS). RESULTS: The mean and median phylloquinone levels were 1.62 nmol/L and 0.89 nmol/L, respectively. There was a significant negative association between log-transformed plasma phylloquinone and all-cause mortality after controlling for potential confounders (per 1 unit increase-OR: 0.79; 95% CI: 0.66, 0.95). Furthermore, the association of plasma phylloquinone with risk of all-cause mortality differed by body mass index (BMI) (<25 kg/m2 compared with ≥25 kg/m2, P-interaction = 0.004). A significant trend of decreasing risk with increasing concentration of phylloquinone was observed in participants with higher BMI (per 1 unit increase-OR: 0.71; 95% CI: 0.56, 0.90; P = 0.004). No significant correlation was found between phylloquinone and risk of all-cause mortality in those with BMI <25 kg/m2. CONCLUSIONS: In Chinese patients with hypertension, there was a significant negative association between baseline plasma phylloquinone and all-cause mortality, especially among those with higher BMI.
Asunto(s)
Hipertensión , Vitamina K 1 , Adulto , Humanos , Cromatografía Liquida , Estudios de Casos y Controles , Espectrometría de Masas en Tándem , Vitamina K , ChinaRESUMEN
BACKGROUND: Patients with primary multifocal hepatocellular carcinoma (HCC) have a poor prognosis and often experience a high rate of treatment failure. Multifocal HCC is mainly caused by intrahepatic metastasis (IM), and though portal vein tumor thrombosis (PVTT) is considered a hallmark of IM, the molecular mechanism by which primary HCC cells invade the portal veins remains unclear. Therefore, it is necessary to recognize the early signs of metastasis of HCC to arrange better treatment for patients. RESULTS: To determine the differential molecular features between primary HCC with and without phenotype of metastasis, we used the CIBERSORTx software to deconvolute cell types from bulk RNA-Seq based on a single-cell transcriptomic dataset. According to the relative abundance of tumorigenic and metastatic hepatoma cells, VEGFA+ macrophages, effector memory T cells, and natural killer cells, HCC samples were divided into five groups: Pro-T, Mix, Pro-Meta, NKC, and MemT, and the transcriptomic and genomic features of the first three groups were analyzed. We found that the Pro-T group appeared to retain native hepatic metabolic activity, whereas the Pro-Meta group underwent dedifferentiation. Genes highly expressed in the group Pro-Meta often signify a worse outcome. CONCLUSIONS: The HCC cohort can be well-typed and prognosis predicted according to tumor microenvironment components. Primary hepatocellular carcinoma may have obtained corresponding molecular features before metastasis occurred.