Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34750262

RESUMEN

DNA molecules are atomic-scale information storage molecules that promote reliable information transfer via fault-free repetitions of replications and transcriptions. Remarkable accuracy of compacting a few-meters-long DNA into a micrometer-scale object, and the reverse, makes the chromosome one of the most intriguing structures from both physical and biological viewpoints. However, its three-dimensional (3D) structure remains elusive with challenges in observing native structures of specimens at tens-of-nanometers resolution. Here, using cryogenic coherent X-ray diffraction imaging, we succeeded in obtaining nanoscale 3D structures of metaphase chromosomes that exhibited a random distribution of electron density without characteristics of high-order folding structures. Scaling analysis of the chromosomes, compared with a model structure having the same density profile as the experimental results, has discovered the fractal nature of density distributions. Quantitative 3D density maps, corroborated by molecular dynamics simulations, reveal that internal structures of chromosomes conform to diffusion-limited aggregation behavior, which indicates that 3D chromatin packing occurs via stochastic processes.


Asunto(s)
Cromatina/genética , Cromosomas/genética , Línea Celular Tumoral , ADN/genética , Células HCT116 , Humanos , Metafase/genética , Difracción de Rayos X/métodos , Rayos X
2.
J Synchrotron Radiat ; 28(Pt 2): 505-511, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33650563

RESUMEN

Three-dimensional structures of Ni nanoparticles undergoing significant morphological changes on oxidation were observed non-destructively using coherent X-ray diffraction imaging. The Ni particles were oxidized into Ni1O1 while forming pores of various sizes internally. For each Ni nanoparticle, one large void was identified at a lower corner near the interface with the substrate. The porosity of the internal region of the agglomerated Ni oxide was about 38.4%. Regions of high NiO density were mostly observed at the outer crust of the oxide or at the boundary with the large voids. This research expands our understanding of general catalytic reactions with direct observation of oxidation-induced nanoscale morphological changes.

3.
J Synchrotron Radiat ; 27(Pt 1): 17-24, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31868731

RESUMEN

With each single X-ray pulse having its own characteristics, understanding the individual property of each X-ray free-electron laser (XFEL) pulse is essential for its applications in probing and manipulating specimens as well as in diagnosing the lasing performance. Intensive research using XFEL radiation over the last several years has introduced techniques to characterize the femtosecond XFEL pulses, but a simple characterization scheme, while not requiring ad hoc assumptions, to address multiple aspects of XFEL radiation via a single data collection process is scant. Here, it is shown that single-particle diffraction patterns collected using single XFEL pulses can provide information about the incident photon flux and coherence property simultaneously, and the X-ray beam profile is inferred. The proposed scheme is highly adaptable to most experimental configurations, and will become an essential approach to understanding single X-ray pulses.

4.
IUCrJ ; 10(Pt 6): 700-707, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37772598

RESUMEN

Photoinduced nonequilibrium phase transitions have stimulated interest in the dynamic interactions between electrons and crystalline ions, which have long been overlooked within the Born-Oppenheimer approximation. Ultrafast melting before lattice thermalization prompted researchers to revisit this issue to understand ultrafast photoinduced weakening of the crystal bonding. However, the absence of direct evidence demonstrating the role of orbital dynamics in lattice disorder leaves it elusive. By performing time-resolved resonant X-ray scattering with an X-ray free-electron laser, we directly monitored the ultrafast dynamics of bonding orbitals of Ge to drive photoinduced melting. Increased photoexcitation of bonding electrons amplifies the orbital disturbance to expedite the lattice disorder approaching the sub-picosecond scale of the nonthermal regime. The lattice disorder time shows strong nonlinear dependence on the laser fluence with a crossover behavior from thermal-driven to nonthermal-dominant kinetics, which is also verified by ab initio and two-temperature molecular dynamics simulations. This study elucidates the impact of bonding orbitals on lattice stability with a unifying interpretation on photoinduced melting.

5.
ACS Nano ; 15(3): 4066-4076, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33506675

RESUMEN

The structures as building blocks for designing functional nanomaterials have fueled the development of versatile nanoprobes to understand local structures of noncrystalline specimens. Progress in analyzing structures of individual specimens with atomic scale accuracy has been notable recently. In most cases, however, only a limited number of specimens are inspected lacking statistics to represent the systems with structural inhomogeneity. Here, by employing single-particle imaging with X-ray free electron lasers and algorithms for multiple-model 3D imaging, we succeeded in investigating several thousand specimens in a couple of hours and identified intrinsic heterogeneities with 3D structures. Quantitative analysis has unveiled 3D morphology, facet indices, and elastic strain. The 3D elastic energy distribution is further corroborated by molecular dynamics simulations to gain mechanical insight at the atomic level. This work establishes a route to high-throughput characterization of individual specimens in large ensembles, hence overcoming statistical deficiency while providing quantitative information at the nanoscale.

6.
Nat Commun ; 10(1): 2411, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31160671

RESUMEN

Despite more than a century of study, the fundamental mechanisms behind solid melting remain elusive at the nanoscale. Ultrafast phenomena in materials irradiated by intense femtosecond laser pulses have revived the interest in unveiling the puzzling processes of melting transitions. However, direct experimental validation of various microscopic models is limited due to the difficulty of imaging the internal structures of materials undergoing ultrafast and irreversible transitions. Here we overcome this challenge through time-resolved single-shot diffractive imaging using X-ray free electron laser pulses. Images of single Au nanoparticles show heterogeneous melting at the surface followed by density fluctuation deep inside the particle, which is directionally correlated to the polarization of the pumping laser. Observation of this directionality links the non-thermal electronic excitation to the thermal lattice melting, which is further verified by molecular dynamics simulations. This work provides direct evidence to the understanding of irreversible melting with an unprecedented spatiotemporal resolution.

7.
Nanoscale ; 10(27): 13159-13164, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-29963676

RESUMEN

Unraveling nanoscale spin structures has long been an important activity addressing various scientific interests, that are also readily adaptable to technological applications. This has invigorated the development of versatile nanoprobes suitable for imaging specimens under native conditions. Here we have demonstrated the resonant coherent diffraction of an artificial quasicrystal magnet with circularly polarized X-rays. The nanoscale magnetic structure was revealed from X-ray speckle patterns by comparing with micromagnetic simulations, as a step toward understanding the intricate relationship between the chemical and spin structures in an aperiodic quasicrystal lattice. Femtosecond X-ray pulses from free electron lasers are expected to immediately extend the current work to nanoscale structure investigations of ultrafast spin dynamics, surpassing the present spatio-temporal resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA