Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Steroids ; 147: 10-18, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30149075

RESUMEN

A number of isoxazole, 1,2,3-triazole, tetrazole, and 1,2,4-oxadiazole derivatives of [17(20)E]-21-norpregnene comprising 3ß-hydroxy-5-ene and 3-oxo-4-ene fragments were prepared. Among the key steps for the synthesis of isoxazoles, 1,2,3-triazoles, and tetrazoles were (i) 1,3-dipolar cycloaddition of nitrile oxides or azides to acetylenes or nitriles and ii) dehydration of 17ß-hydroxy-17α-methylene-azoles to [17(20)E]-21-norpregnene derivatives. 1,2,4-Oxadiazoles were prepared through the formation of acetimidamides. Potency of the synthesized compounds to inhibit CYP17A1 and to suppress growth of prostate carcinoma cells was investigated. Among the new azole derivatives, four compounds were found possessing high anti-proliferative activity.


Asunto(s)
Antineoplásicos/farmacología , Azoles/farmacología , Norpregnadienos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Azoles/síntesis química , Azoles/química , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Masculino , Estructura Molecular , Norpregnadienos/síntesis química , Norpregnadienos/uso terapéutico , Células PC-3 , Neoplasias de la Próstata/patología , Células Tumorales Cultivadas
2.
Biochimie ; 162: 156-166, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31034920

RESUMEN

The aim of the present work was to establish the thermodynamic and functional differences in the protein-protein interactions between the components of the P450-dependent mitochondrial (mit) and microsomal (mic) monooxygenase systems using 12 different isoforms of cytochromes P450 and two redox partners, NADPH-dependent cytochrome P450 reductase (CPR) and adrenodoxin (Adx). Comparative analysis of the affinity, thermodynamics, enzymatic activity and the ability for one-electron reduction has been carried out. The study of protein-protein interactions to determine the equilibrium dissociation constants (Kd) was performed using surface plasmon resonance (SPR) biosensor Biacore 3000. We demonstrated that CPR and Adx interacted with both, micCYPs and mitCYPs, with different affinities (Kd values ranged from 0.01 to 2 µM). All complexes of microsomal (micCYP) and mitochondrial (mitCYP) cytochrome P450 with redox partners can be divided into three groups depending on the prevalent role of either enthalpy or entropy contribution. About 90% of CYP/redox partner complexes were entropy-driven, while the contribution of enthalpy and entropy differed significantly in case of mitCYP/Adx complexes. The CYP11A1/Adx complex was enthalpy-driven, while CYP11B1/Adx and CYP11B2/Adx complexes were entropy-driven. Thermodynamic discrimination of mitCYPs/Adx complexes is likely associated with the different functional impact of CYP11A1 and CYP11B. The exception was the enthalpy-entropy-driven (mixed type) CYP21A2/Adx complex. CPR and Adx were able to transfer the first electron to micCYPs while mitCYPs demonstrated high specificity to Adx. Productive catalysis for mitCYPs observed only in the presence of Adx/AdR pair, while in case of steroidogenic micCYPs (CYP17A1, CYP19A1, and CYP21A2) it was found either in the presence of a CPR or an Adx/AdR pair. From the evolutionary point of view, the type 1 electron transport system (mitCYPs, Adx and NADPH-dependent adrenodoxin reductase (AdR)) increased the specialization of protein-protein interactions (PPI) significantly, which was accompanied by an increase in the specificity of electron transfer. In contrast, the evolution of the type 2 electron transport system (micCYPs and CPR) led to an increase in versatility of PPI as demonstrated for steroidogenic microsomal cytochrome P450s. Our data enhance the current understanding of molecular recognition and summarize qualitative and thermodynamic characteristics of protein-protein interactions in the P450-dependent mitochondrial and microsomal monooxygenase systems.


Asunto(s)
Sistema Enzimático del Citocromo P-450/química , Dominios y Motivos de Interacción de Proteínas , Adrenodoxina/química , Animales , Transporte de Electrón , Ferredoxina-NADP Reductasa/química , Humanos , Isoenzimas/química , Modelos Moleculares , NADPH-Ferrihemoproteína Reductasa/química , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie/métodos , Termodinámica
3.
Toxicol In Vitro ; 50: 249-256, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29621561

RESUMEN

CYP2C9 plays a major role in drug metabolism. It is highly polymorphic and among the variants, CYP2C9*2 and CYP2C9*3 have been known to encode the protein with moderately to markedly reduced catalytic activity. Azole antifungals are among the most frequently used drugs in human pharmacotherapy and represent a widely used class of pesticides to which humans are inevitably exposed. Due to the similarities in CYP organization throughout species, azoles can interact not only with the target fungal CYP51 substrate-binding site but can also modulate the catalytic activity of human cytochrome P450s, including CYP2C9, causing severe adverse effects. In the present study the potency of azole-containing drugs and pesticides to inhibit recombinant wild-type CYP2C9*1 and the allelic variants CYP2C9*2 and CYP2C9*3 was evaluated. Significant differences were found in their affinity to CYP2C9*1, CYP2C9*2, and CYP2C9*3 as well as in the catalytic activity of CYP2C9 allelic variants. Moreover, addition of cytochrome b5 resulted in a decrease of CYP2C9*3 activity to diclofenac in a concentration-dependent manner. Increasing the knowledge of how azoles influence polymorphic variants of CYP2C9 could help individualize drug treatment, leading to optimization of the selection of drugs and doses for individuals based on genetic information.


Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Inhibidores del Citocromo P-450 CYP2C9/farmacología , Citocromo P-450 CYP2C9/genética , Fungicidas Industriales/farmacología , Citocromo P-450 CYP2C9/metabolismo , Interacciones Farmacológicas , Escherichia coli/genética , Humanos , Polimorfismo Genético , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA