Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; : e0079124, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940584

RESUMEN

Fibrocytes were reported to be host cells for HIV-1, but the immunological recognition of HIV-1-infected fibrocytes has not been studied. Here, we investigated the recognition of HIV-1-infected fibrocytes by HIV-1-specific CD8+ T cells. CD8+ T cells specific for five HIV-1 epitopes (HLA-A*24:02-restricted, HLA-B*52:01-restricted, and HLA-C*12:02-restricted epitopes) produced IFN-γ and expressed CD107a after coculture with HIV-1-infected fibrocytes. HIV-1-infected fibrocytes were effectively killed by HIV-1-specific CD8+ T cells. Although it is well known that HIV-1 Nef-mediated downregulation of HLA-A and HLA-B critically affects the T cell recognition of HIV-1-infected CD4+ T cells and HIV-1-infected macrophages, Nef downregulated HLA-A, but not HLA-B, in HIV-1-infected fibrocytes. These findings suggested that HIV-1-specific CD8+ T cells could recognize HIV-1-infected fibrocytes more strongly than HIV-1-infected CD4+ T cells or HIV-1-infected macrophages. HIV-1-infected fibrocytes were also recognized by HIV-1-specific HLA-DR-restricted T cells, indicating that HIV-1-infected fibrocytes can present HIV-1 epitopes to helper T cells. Collectively, these findings suggest that fibrocytes have an important role as antigen-presenting cells during HIV-1 infection. The present study demonstrates effective recognition of HIV-1-infected fibrocytes by HIV-1-specific T cells and suggests possible roles of fibrocytes in the induction and maintenance of HIV-1-specific T cells. IMPORTANCE: Fibrocytes were identified as unique hematopoietic cells with the features of both macrophages and fibroblasts and were demonstrated to be host cells for HIV-1. However, T cell recognition of HIV-1-infected fibrocytes has not been studied. We investigated the recognition of HIV-1-infected fibrocytes by HIV-1-specific T cells. HIV-1-infected fibrocytes were effectively recognized and killed by CD8+ T cells specific for HIV-1 epitopes presented by HLA-A, HLA-B, or HLA-C and were recognized by HIV-1-specific HLA-DR-restricted CD4+ T cells. HIV-1 Nef-mediated downregulation of HLA-A and HLA-B was found in HIV-1-infected CD4+ T cells, whereas Nef did not downregulate HLA-B in HIV-1-infected fibrocytes. These results suggest that HIV-1-specific CD8+ T cells recognize HIV-1-infected fibrocytes more strongly than HIV-1-infected CD4+ T cells. The present study suggests the importance of fibrocytes in the induction and maintenance of HIV-1-specific T cells.

2.
Cancer Sci ; 115(1): 59-69, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37923388

RESUMEN

Sinus macrophages in draining lymph nodes (DLNs) are involved in anti-tumor immune reactions. CD169 (Sialoadhesin, Siglec-1) is expressed on sinus macrophages and is considered a surrogate marker for the immunostimulatory phenotype of macrophages. In this study, the significance of sinus macrophages in immunotherapy was evaluated using mouse models. Treatment with anti-programmed death-ligand 1 (PD-L1) antibody suppressed the subcutaneous tumor growth of MC38 and E0771 cells but was not effective against MB49 and LLC tumors. Decreased cytotoxic T-lymphocyte (CTL) infiltration in tumor tissues and CD169 expression in sinus macrophages were observed in MB49 and LLC cells compared to corresponding parameters in MC38 and E0771 cells. The anti-tumor effects of the anti-PD-L1 antibody on MC38 and E0771 cells were abolished when sinus macrophages in DLNs were depleted, suggesting that sinus macrophages are involved in the therapeutic effect of the anti-PD-L1 antibody. Naringin activated sinus macrophages. Naringin inhibited tumor growth in MB49- and LLC-bearing mice but did not affect that in MC38- and E0771-bearing mice. The infiltration of CTLs in tumor tissues and their activation were increased by naringin, and this effect was impaired when sinus macrophages were depleted. Combination therapy with naringin and anti-PD-L1 antibody suppressed MB49 tumor growth. In conclusion, CD169-positive sinus macrophages in DLNs are critical for anti-tumor immune responses, and naringin suppresses tumor growth by activating CD169-positive sinus macrophages and anti-tumor CTL responses. The activation status of sinus macrophages has been suggested to differ among tumor models, and this should be investigated in future studies.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Linfocitos T Citotóxicos/metabolismo , Anticuerpos/uso terapéutico , Inmunoterapia , Macrófagos/metabolismo , Antígeno B7-H1/metabolismo , Línea Celular Tumoral
3.
J Immunol ; 209(5): 970-978, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36130125

RESUMEN

The proinflammatory cytokine IL-32 is elevated in the plasma and tissues of HIV-1-infected individuals. However, its significance in HIV-1 infection remains unclear because IL-32 inhibits and stimulates viral production in monocyte-derived macrophages (MDMs) and CD4+ T cells, respectively. In this study, we initially found that the inhibitory effect on human MDMs depends on SAMHD1, a dNTP triphosphohydrolase that inhibits viral reverse transcription. IL-32 increased the unphosphorylated active form of SAMHD1, which was consistent with the reduced expression of the upstream cyclin-dependent kinases. Indeed, IL-32 lost its anti-HIV-1 activity in MDMs when SAMHD1 was depleted. These results explain why IL-32 inhibits HIV-1 in MDMs but not CD4+ T cells, because SAMHD1 restricts HIV-1 in noncycling MDMs but not in cycling CD4+ T cells. Another unique feature of IL-32 is the induction of the immunosuppressive molecule IDO1, which is beneficial for HIV-1 infection. In this study, we found that IL-32 also upregulates other immunosuppressive molecules, including PD-L1, in MDMs. Moreover, IL-32 promoted the motility of MDMs, which potentially facilitates intercellular HIV-1 transmission. Our findings indicate that IL-32 has both the direct inhibitory effect on HIV-1 production in MDMs and the indirect stimulatory effects through phenotypic modulation of MDMs, and they suggest that the stimulatory effects may outweigh the inhibitory effect because the window for IL-32 to inhibit HIV-1 is relatively confined to SAMHD1-mediated reverse transcription suppression in the viral life cycle.


Asunto(s)
Infecciones por VIH , VIH-1 , Interleucinas/metabolismo , Antígeno B7-H1/metabolismo , Células Cultivadas , Ciclinas/metabolismo , VIH-1/fisiología , Humanos , Proteína 1 que Contiene Dominios SAM y HD , Replicación Viral
4.
Med Mol Morphol ; 57(2): 91-100, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38316697

RESUMEN

Interleukin 32 (IL-32) is a proinflammatory cytokine secreted from several kinds of cancer cells. In the present study, we investigated the significance of IL-32 in lung adenocarcinoma by immunohistochemistry and bioinformatics analysis. IL-32 was positive in cancer cells of 21 cases (9.2%) of total 228 cases. Increased IL-32 gene expression was linked to worse clinical course in TCGA analysis, however, IL-32 expression in immunohistochemistry was not associated to clinical course in our cohort. It was also found that high IL-32 expression was seen in cases with increased lymphocyte infiltration. In vitro studies indicated that IFN-γ induced gene expression of IL-32 and PD1-ligands in lung adenocarcinoma cell lines. IL-32, especially IL-32ß, also induced overexpression of PD1-ligands in human monocyte-derived macrophages. Additionally, Cancer-cell-derived IL-32 was elevated by stimulation with anticancer agents. In conclusion, IL-32 potentially induced by inflammatory conditions and anticancer therapy and contribute to immune escape of cancer cells via development the immunosuppressive microenvironment. IL-32 might be a target molecule for anti-cancer therapy.


Asunto(s)
Adenocarcinoma del Pulmón , Interleucinas , Neoplasias Pulmonares , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Interleucinas/metabolismo , Interleucinas/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Macrófagos/inmunología , Macrófagos/metabolismo , Interferón gamma/metabolismo , Interferón gamma/genética , Interferón gamma/inmunología , Inmunohistoquímica , Masculino , Células A549
5.
PLoS Pathog ; 17(11): e1010126, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34843591

RESUMEN

Human T-cell leukemia virus type 1 (HTLV-1) infects target cells primarily through cell-to-cell routes. Here, we provide evidence that cellular protein M-Sec plays a critical role in this process. When purified and briefly cultured, CD4+ T cells of HTLV-1 carriers, but not of HTLV-1- individuals, expressed M-Sec. The viral protein Tax was revealed to mediate M-Sec induction. Knockdown or pharmacological inhibition of M-Sec reduced viral infection in multiple co-culture conditions. Furthermore, M-Sec knockdown reduced the number of proviral copies in the tissues of a mouse model of HTLV-1 infection. Phenotypically, M-Sec knockdown or inhibition reduced not only plasma membrane protrusions and migratory activity of cells, but also large clusters of Gag, a viral structural protein required for the formation of viral particles. Taken together, these results suggest that M-Sec induced by Tax mediates an efficient cell-to-cell viral infection, which is likely due to enhanced membrane protrusions, cell migration, and the clustering of Gag.


Asunto(s)
Membrana Celular/virología , Modelos Animales de Enfermedad , Productos del Gen tax/metabolismo , Infecciones por HTLV-I/transmisión , Virus Linfotrópico T Tipo 1 Humano/fisiología , Factores de Necrosis Tumoral/metabolismo , Proteínas Estructurales Virales/metabolismo , Animales , Membrana Celular/metabolismo , Movimiento Celular , Técnicas de Cocultivo , Productos del Gen tax/genética , Infecciones por HTLV-I/metabolismo , Infecciones por HTLV-I/virología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Factores de Necrosis Tumoral/genética , Proteínas Estructurales Virales/genética
6.
Pediatr Surg Int ; 39(1): 275, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37751001

RESUMEN

PURPOSE: This study investigated the expression of interleukin 32 (IL-32) in hepatoblastoma, the most common primary pediatric liver tumor, and its possible roles in tumorigenesis. METHODS: IL-32 expression was investigated in two hepatoblastoma cell lines (Hep G2 and HuH 6) in the steady state and after co-culture with macrophages by RNA-seq analysis and RT-qPCR, and after stimulation with chemotherapy. Cultured macrophages were stimulated by IL-32 isoforms followed by RT-qPCR and western blot analysis. IL-32 immunohistochemical staining (IHC) was performed using specimens from 21 hepatoblastoma patients. Clustering analysis was also performed using scRNA-seq data downloaded from Gene Expression Omnibus. RESULTS: The IL-32 gene is expressed by hepatoblastoma cell lines; expression is upregulated by paracrine cell-cell communication with macrophages, also by carboplatin and etoposide. IL-32 causes protumor activation of macrophages with upregulation of PD-L1, IDO-1, IL-6, and IL-10. In the patient pool, IHC was positive only in 48% of cases. However, in the downloaded dataset, IL-32 gene expression was negative. CONCLUSION: IL-32 was detected in hepatoblastoma cell lines, but not in all hepatoblastoma patients. We hypothesized that stimulation such as chemotherapy might induce expression of IL-32, which might be a critical mediator of chemoresistance in hepatoblastoma through inducing protumor activation in macrophages.


Asunto(s)
Hepatoblastoma , Interleucinas , Neoplasias Hepáticas , Humanos , Western Blotting , Comunicación Celular , Hepatoblastoma/genética , Interleucinas/genética , Neoplasias Hepáticas/genética
7.
Med Mol Morphol ; 55(3): 236-247, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35597882

RESUMEN

Tumor-associated macrophages (TAMs) have protumor functions in various cancers. However, their significance in hepatoblastoma, the most common liver tumor in children, remains unclear. The aim of this study was to explore the potential roles of TAMs in hepatoblastoma. Immunohistochemical analysis revealed that the density of CD204-positive TAMs was significantly higher in the embryonal component than in other histological subtypes of hepatoblastoma. An in vitro co-culture study with Huh6 cells and human monocyte-derived macrophages (HMDMs) showed that macrophage-colony-stimulating factor receptor (M-CSFR) was strongly up-regulated in the Huh6 cells that were directly co-cultured with HMDMs. The expressions of M-CSFR ligands (interleukin-34 and M-CSF) were also increased by co-culture with HMDMs. The proliferation of HepG2 cells (another hepatoblastoma cell line expressing M-CSFR) was inhibited by an M-CSFR inhibitor. M-CSFR was found to be highly expressed in the embryonal component and in recurrent lesions. The number of CD204-positive macrophages was also higher in the M-CSFR-positive areas than in the M-CSFR-negative areas. Thus, M-CSFR expression appeared to be induced by cell-cell contact with macrophages in hepatoblastoma cells, and M-CSFR inhibitor is potentially effective against M-CSFR-positive hepatoblastoma, especially recurrent cases.


Asunto(s)
Comunicación Celular , Hepatoblastoma , Neoplasias Hepáticas , Macrófagos , Receptor de Factor Estimulante de Colonias de Macrófagos , Línea Celular Tumoral , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo
8.
Blood ; 134(10): 814-825, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31270105

RESUMEN

Monocyte-derived fibrocytes recently garnered attention because the novel pathogenesis of myelofibrosis (MF), and suppression of fibrocyte differentiation by serum amyloid P remarkably improved MF. We previously revealed that human fibrocytes highly expressed signaling lymphocytic activation molecule F7 (SLAMF7) compared with macrophages and that SLAMF7high monocytes in the peripheral blood (PB) of MF patients were significantly elevated relative to those in healthy controls (HCs). In this study, we evaluated SLAMF7high monocyte percentage in the PB of HCs, myeloproliferative neoplasm (MPN) patients with MF, and MPN patients without MF by using a cross-sectional approach. We found that MPN patients with MF who harbored JAK2V617F had a significantly elevated SLAMF7high monocyte percentage, which correlated positively with the JAK2V617F allele burden. In addition, the serum concentration of interleukin-1ra (IL-1ra) was significantly correlated with the SLAMF7high monocyte percentage and JAK2V617F allele burden. These findings suggest that both SLAMF7high monocytes and IL-1ra could be useful noninvasive markers of MF onset. Furthermore, the JAK2V617F allele burden of SLAMF7high monocytes was significantly higher than that of SLAMF7low monocytes and could be a potential target of elotuzumab (Elo), an anti-SLAMF7 antibody used for treating multiple myeloma. Elo independently inhibited differentiation of fibrocytes derived not only from HCs but also from MF patients in vitro. Elo also ameliorated MF and splenomegaly induced by romiplostim administration in humanized NOG mice. In conclusion, an increase of SLAMF7high monocytes with higher JAK2V617F allele burden was associated with the onset of MF in MPN patients harboring JAK2V617F, and Elo could be a therapeutic agent for MPN patients with MF who harbor JAK2V617F.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Janus Quinasa 2/genética , Monocitos/patología , Mielofibrosis Primaria/tratamiento farmacológico , Mielofibrosis Primaria/genética , Adulto , Anciano , Anciano de 80 o más Años , Sustitución de Aminoácidos , Recuento de Células Sanguíneas , Proliferación Celular , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Monocitos/metabolismo , Mutación Missense , Fenilalanina/genética , Mielofibrosis Primaria/sangre , Mielofibrosis Primaria/patología , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Valina/genética
9.
Retrovirology ; 17(1): 20, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32650782

RESUMEN

BACKGROUND: HIV-1 promotes the formation of tunneling nanotubes (TNTs) that connect distant cells, aiding cell-to-cell viral transmission between macrophages. Our recent study suggests that the cellular protein M-Sec plays a role in these processes. However, the timing, mechanism, and to what extent M-Sec contributes to HIV-1 transmission is not fully understood, and the lack of a cell line model that mimics macrophages has hindered in-depth analysis. RESULTS: We found that HIV-1 increased the number, length and thickness of TNTs in a manner dependent on its pathogenic protein Nef and M-Sec in U87 cells, as observed in macrophages. In addition, we found that M-Sec was required not only for TNT formation but also motility of U87 cells, both of which are beneficial for viral transmission. In fact, M-Sec knockdown in U87 cells led to a significantly delayed viral production in both cellular and extracellular fractions. This inhibition was observed for wild-type virus, but not for a mutant virus lacking Nef, which is known to promote not only TNT formation but also migration of infected macrophages. CONCLUSIONS: By taking advantage of useful features of U87 cells, we provided evidence that M-Sec mediates a rapid and efficient cell-cell transmission of HIV-1 at an early phase of infection by enhancing both TNT formation and cell motility.


Asunto(s)
Citocinas/metabolismo , VIH-1/fisiología , Uniones Intercelulares/virología , Línea Celular , Movimiento Celular , Citocinas/genética , VIH-1/genética , VIH-1/crecimiento & desarrollo , Humanos , Uniones Intercelulares/metabolismo , Macrófagos/virología , Mutación , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
10.
PLoS Pathog ; 14(11): e1007372, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30496280

RESUMEN

Apolipoprotein E (ApoE) belongs to a class of cellular proteins involved in lipid metabolism. ApoE is a polymorphic protein produced primarily in macrophages and astrocytes. Different isoforms of ApoE have been associated with susceptibility to various diseases including Alzheimer's and cardiovascular diseases. ApoE expression has also been found to affect susceptibility to several viral diseases, including Hepatitis C and E, but its effect on the life cycle of HIV-1 remains obscure. In this study, we initially found that HIV-1 infection selectively up-regulated ApoE in human monocyte-derived macrophages (MDMs). Interestingly, ApoE knockdown in MDMs enhanced the production and infectivity of HIV-1, and was associated with increased localization of viral envelope (Env) proteins to the cell surface. Consistent with this, ApoE over-expression in 293T cells suppressed Env expression and viral infectivity, which was also observed with HIV-2 Env, but not with VSV-G Env. Mechanistic studies revealed that the C-terminal region of ApoE was required for its inhibitory effect on HIV-1 Env expression. Moreover, we found that ApoE and Env co-localized in the cells, and ApoE associated with gp160, the precursor form of Env, and that the suppression of Env expression by ApoE was cancelled by the treatment with lysosomal inhibitors. Overall, our study revealed that ApoE is an HIV-1-inducible inhibitor of viral production and infectivity in macrophages that exerts its anti-HIV-1 activity through association with gp160 Env via the C-terminal region, which results in subsequent degradation of gp160 Env in the lysosomes.


Asunto(s)
Apolipoproteínas E/fisiología , Infecciones por VIH/metabolismo , Macrófagos/metabolismo , Adulto , Apolipoproteínas/metabolismo , Apolipoproteínas E/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Regulación de la Expresión Génica/genética , Células HEK293 , Proteína gp120 de Envoltorio del VIH/metabolismo , Proteína gp41 de Envoltorio del VIH/metabolismo , Infecciones por VIH/prevención & control , VIH-1/metabolismo , Humanos , Macrófagos/virología , Masculino , Regulación hacia Arriba , Replicación Viral/genética , Replicación Viral/fisiología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
11.
J Immunol ; 196(4): 1832-41, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26773158

RESUMEN

Tunneling nanotubes (TNTs), the long membrane extensions connecting distant cells, have emerged as a novel form of cell-to-cell communication. However, it is not fully understood how and to what extent TNTs contribute to intercellular spread of pathogens including HIV-1. In this study, we show that HIV-1 promotes TNT formation per se via its protein Nef and a cellular protein M-Sec, which appears to mediate approximately half of viral spread among monocyte-derived macrophages (MDMs). A small compound that inhibits M-Sec-induced TNT formation reduced HIV-1 production by almost half in MDMs. Such inhibition was not observed with Nef-deficient mutant HIV-1 that fails to promote TNT formation and replicates less efficiently than the wild-type HIV-1 in MDMs. The TNT inhibitor-sensitive/Nef-promoting viral production was also observed in a T cell line ectopically expressing M-Sec, but not in another M-Sec(-) T cell line. Our results suggest the importance of TNTs in HIV-1 spread among MDMs and might answer the long-standing question how Nef promotes HIV-1 production in a cell type-specific manner.


Asunto(s)
Comunicación Celular/fisiología , VIH-1/metabolismo , VIH-1/patogenicidad , Macrófagos/virología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Western Blotting , Línea Celular , Citocinas/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
12.
J Immunol ; 195(9): 4341-50, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26416279

RESUMEN

Fibrocytes (fibroblastic leukocytes) are recently identified as unique hematopoietic cells with features of both macrophages and fibroblasts. Fibrocytes are known to contribute to the remodeling or fibrosis of various injured tissues. However, their role in viral infection is not fully understood. In this study, we show that differentiated fibrocytes are phenotypically distinguishable from macrophages but can be infected with HIV-1. Importantly, fibrocytes exhibited persistently infected cell-like phenotypes, the degree of which was more apparent than macrophages. The infected fibrocytes produced replication-competent HIV-1, but expressed HIV-1 mRNA at low levels and strongly resisted HIV-1-induced cell death, which enabled them to support an extremely long-term HIV-1 production at low but steady levels. More importantly, our results suggested that fibrocytes were susceptible to HIV-1 regardless of their differentiation state, in contrast to the fact that monocytes become susceptible to HIV-1 after the differentiation into macrophages. Our findings indicate that fibrocytes are the previously unreported HIV-1 host cells, and they suggest the importance of considering fibrocytes as one of the long-lived persistently infected cells for curing HIV-1.


Asunto(s)
Fibroblastos/virología , VIH-1/fisiología , Leucocitos/virología , Macrófagos/virología , Forma de la Célula/genética , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación Viral de la Expresión Génica , Infecciones por VIH/sangre , VIH-1/genética , Interacciones Huésped-Patógeno/genética , Humanos , Leucocitos/citología , Leucocitos/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Microscopía Confocal , Monocitos/citología , Monocitos/metabolismo , Monocitos/virología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Transcriptoma , Replicación Viral/genética
13.
J Immunol ; 192(11): 5083-9, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24748497

RESUMEN

M-CSF promotes the differentiation and survival of macrophages, and preferentially induces anti-inflammatory M2, rather than proinflammatory M1 macrophages. Recently, another cytokine, IL-32, was also shown to promote macrophage differentiation. In this article, we provide the first evidence, to our knowledge, that M-CSF has both additive and inhibitory effects on the macrophage-related activities of IL-32. When added to M-CSF-derived macrophages, M-CSF and IL-32 promoted macrophage survival, which was further enhanced by their combination. However, they had different effects on HIV-1 replication; that is, it was stimulated by M-CSF and inhibited by IL-32. Interestingly, the anti-HIV-1 activity of IL-32 was counteracted by M-CSF. Such inhibitory effect of M-CSF was not observed with IL-32-induced M1-like features including high cytokine/chemokine production and strong expression of the costimulatory molecule CD80. However, IL-32-treated macrophages unexpectedly showed also M2-like features including increased phagocytic activity, and high expression of CD14 and the scavenger receptor CD163, and the expression of CD14 and CD163 was further upregulated by cotreatment with M-CSF. The findings of this study regarding the unique functional interplay between M-CSF and IL-32 increase our understanding of the mechanisms that regulate the survival and M1/M2 ratio of macrophages, as well as HIV-1 replication in macrophages.


Asunto(s)
Infecciones por VIH/inmunología , VIH-1/fisiología , Interleucinas/inmunología , Factor Estimulante de Colonias de Macrófagos/inmunología , Macrófagos/inmunología , Replicación Viral/inmunología , Animales , Antígenos CD/inmunología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/inmunología , Células Cultivadas , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Humanos , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos/patología , Macrófagos/virología , Masculino , Fagocitosis/efectos de los fármacos , Fagocitosis/inmunología , Replicación Viral/efectos de los fármacos
14.
Retrovirology ; 12: 97, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26577226

RESUMEN

BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) must take advantage of its own proteins with two or more functions to successfully replicate. Although many attempts have been made to determine the function of viral proteins encoded in the HIV-1 genome, the role of the p2 peptide, a spacer between the capsid and the nucleocapsid in HIV-1 Gag in early-phase HIV infection still remains unclarified. RESULTS: In this study, we show that the p2 peptide enhances HIV-1 acute infection by increasing intracellular ATP production via the activation of mitochondrial cytochrome c oxidase (MT-CO) involved in the respiratory chain. We found that cell-permeable p2-peptide-treated cells were more effectively infected by HIV-1 than control cells. To characterize the effect of the p2 peptide on HIV-1 replication in MAGIC-5 cells, various HIV-1 cDNA products were measured by quantitative real-time PCR. The levels of the late (R/gag), 2-LTR circular (2-LTR), and integrated (Alu) forms of viral cDNAs increased in the presence of the p2 peptide. Interestingly, yeast two-hybrid analysis revealed a novel interaction between the p2 peptide and the mitochondrial intermembrane space domain (N(214)-F(235)) of MT-CO subunit I (MT-CO1). Mutational analysis indicated that Gln(6) in the p2 peptide is important for the interaction with MT-CO1. The p2 peptide activated MT-CO1 in vitro in a concentration-dependent manner, and fluorescence-microscopy analysis demonstrated that the p2 peptide had a significant effect on mitochondrial targeting. Furthermore, the analysis of HIV-1 lacking a functional p2 peptide demonstrated the inhibition of intracellular ATP production in MT-4 cells and monocyte-derived macrophages (MDMs) and a decrease in reverse transcription efficiency following infection of MT-4 cells and MDMs. CONCLUSIONS: These findings provide evidence that the p2 peptide is a viral positive allosteric modulator of MT-CO and the increased intracellular ATP production after HIV infection in a p2-peptide-dependent manner is essential for efficient reverse transcription in early-phase HIV-1 infection.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Complejo IV de Transporte de Electrones/fisiología , VIH-1/genética , VIH-1/fisiología , Humanos , Macrófagos/virología , Mitocondrias/enzimología , Fragmentos de Péptidos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcripción Reversa , Técnicas del Sistema de Dos Híbridos , Regulación hacia Arriba , Replicación Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
15.
J Immunol ; 188(8): 3620-7, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22407921

RESUMEN

HIV-1 proteins, including Tat, gp120, and Nef, activate macrophages (MΦ), which is consistent with the fact that HIV-1 infection is characterized by sustained immune activation. Meanwhile, MΦ are functionally classified into two types: proinflammatory M1-MΦ and anti-inflammatory M2-MΦ. We show that HIV-1 proteins, particularly Nef, preferentially activate M2-MΦ. Extracellular Tat, gp120, and Nef activated MAPK and NF-κB pathways in human peripheral blood monocyte-derived MΦ. However, the activation was marked in M-CSF-derived M2-MΦ but not GM-CSF-derived M1-MΦ. Nef was the most potent activator, and its signaling activation was comparable to that by TNF-α. Indeed, Nef was internalized more rapidly by M2-MΦ than by M1-MΦ. The myristoylation and proline-rich motif of Nef were responsible for the observed signaling activation. Consistent with the activation of MAPK/NF-κB pathways, Nef stimulated the production of a number of proinflammatory cytokines/chemokines by M2-MΦ. However, Nef reduced the expression of CD163 and phagocytosis, the characteristic markers of M2-MΦ, indicating that Nef drives an M2-like to M1-like phenotypic shift. Because the differentiation of most tissue MΦ depends on M-CSF and its receptor, which is the essential axis for the anti-inflammatory M2-MΦ phenotype, the current study reveals an efficient mechanism by which HIV-1 proteins, such as Nef, induce the proinflammatory MΦ.


Asunto(s)
Proteína gp120 de Envoltorio del VIH/fisiología , VIH-1/inmunología , Macrófagos/inmunología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/fisiología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/fisiología , Biomarcadores/metabolismo , Diferenciación Celular , Citocinas/biosíntesis , Citocinas/inmunología , Regulación de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Proteína gp120 de Envoltorio del VIH/farmacología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos , Inflamación/inmunología , Inflamación/patología , Activación de Macrófagos , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/inmunología , FN-kappa B/genética , FN-kappa B/inmunología , Especificidad de Órganos , Fenotipo , Cultivo Primario de Células , Transducción de Señal , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/farmacología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/farmacología
16.
Biochem Biophys Res Commun ; 440(4): 589-93, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24120500

RESUMEN

The tyrosine kinase Fms, the cell surface receptor for M-CSF and IL-34, is critical for microglial proliferation and differentiation in the brain. Recently, a number of mutations have been identified in Fms as a putative genetic cause of hereditary diffuse leukoencephalopathy with spheroids (HDLS), implying an important role of microglial dysfunction in HDLS pathogenesis. In this study, we initially confirmed that 11 mutations, which reside within the ATP-binding or major tyrosine kinase domain, caused a severe impairment of ligand-induced Fms auto-phosphorylation. Intriguingly, we found that 10 of the 11 mutants also showed a weak cell surface expression, which was associated with a concomitant increase in the low molecular weight hypo-N-glycosylated immature gp130Fms-like species. Indeed, the mutant proteins heavily accumulated to the Golgi-like perinuclear regions. These results indicate that all of the Fms mutations tested severely impair the kinase activity and most of the mutations also impair the trafficking to the cell surface, further suggesting that HDLS is caused by the loss of Fms function.


Asunto(s)
Receptor de Factor Estimulante de Colonias de Macrófagos/genética , Adenosina Trifosfato/metabolismo , Membrana Celular/enzimología , Células HEK293 , Humanos , Interleucinas/metabolismo , Leucoencefalopatías/genética , Ligandos , Factor Estimulante de Colonias de Macrófagos/metabolismo , Mutación , Fosforilación , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo
17.
J Leukoc Biol ; 114(1): 53-67, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36976024

RESUMEN

Despite effective antiretroviral therapy, HIV-1 persists in cells, including macrophages, which is an obstacle to cure. However, the precise role of macrophages in HIV-1 infection remains unclear because they reside in tissues that are not easily accessible. Monocyte-derived macrophages are widely used as a model in which peripheral blood monocytes are cultured and differentiated into macrophages. However, another model is needed because recent studies revealed that most macrophages in adult tissues originate from the yolk sac and fetal liver precursors rather than monocytes, and the embryonic macrophages possess a self-renewal (proliferating) capacity that monocyte-derived macrophages lack. Here, we show that human induced pluripotent stem cell-derived immortalized macrophage-like cells are a useful self-renewing macrophage model. They proliferate in a cytokine-dependent manner, retain macrophage functions, support HIV-1 replication, and exhibit infected monocyte-derived macrophage-like phenotypes, such as enhanced tunneling nanotube formation and cell motility, as well as resistance to a viral cytopathic effect. However, several differences are also observed between monocyte-derived macrophages and induced pluripotent stem cell-derived immortalized macrophage-like cells, most of which can be explained by the proliferation of induced pluripotent stem cell-derived immortalized macrophage-like cells. For instance, proviruses with large internal deletions, which increased over time in individuals receiving antiretroviral therapy, are enriched more rapidly in induced pluripotent stem cell-derived immortalized macrophage-like cells. Interestingly, inhibition of viral transcription by HIV-1-suppressing agents is more obvious in induced pluripotent stem cell-derived immortalized macrophage-like cells. Collectively, our present study proposes that the model of induced pluripotent stem cell-derived immortalized macrophage-like cells is suitable for mimicking the interplay between HIV-1 and self-renewing tissue macrophages, the newly recognized major population in most tissues that cannot be fully modeled by monocyte-derived macrophages alone.


Asunto(s)
Infecciones por VIH , VIH-1 , Células Madre Pluripotentes Inducidas , Adulto , Humanos , VIH-1/fisiología , Macrófagos , Monocitos , Células Cultivadas , Replicación Viral
18.
J Cell Physiol ; 227(3): 1090-7, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21567396

RESUMEN

The interaction between HIV-1 Nef and the Src kinase Hck in macrophages has been shown to accelerate the progression to AIDS. We previously showed that Nef disturbed the N-glycosylation/trafficking of Fms, a cytokine receptor essential for maintaining macrophages in an anti-inflammatory state, in an Hck-dependent manner. Here, we show the underlying molecular mechanism of this effect. Using various Hck isoforms and their mutants and Golgi-targeting Hck mutants, we confirmed that Hck activation at the Golgi causes the Nef-induced Fms N-glycosylation defect. Importantly, we found that both the co-expression of Nef and Hck and the expression of a Golgi-targeted active Hck mutant caused alterations in the distribution of GM130, a Golgi protein that was shown to be required for efficient protein glycosylation. Moreover, the activation of Hck at the Golgi caused strong serine phosphorylation of the GM130-interacting Golgi structural protein GRASP65, which is known to induce Golgi cisternal unstacking. Using pharmacological inhibitors, we also found that the activation of Hck at the Golgi followed by the activation of the MAP kinase ERK-GRASP65 cascade is involved in the Fms N-glycosylation defect. These results suggest that Nef perturbs the structure and signaling of the Golgi by activating Hck at the Golgi, and thereby, induces the N-glycosylation/trafficking defect of Fms, which is in line with the idea that Src family kinases are crucial Golgi regulators.


Asunto(s)
Aparato de Golgi/patología , Aparato de Golgi/virología , Infecciones por VIH/metabolismo , VIH-1/patogenicidad , Proteínas Proto-Oncogénicas c-hck/fisiología , Transducción de Señal/fisiología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/fisiología , Progresión de la Enfermedad , Aparato de Golgi/enzimología , Células HEK293 , Infecciones por VIH/patología , Infecciones por VIH/virología , Humanos , Transporte de Proteínas/fisiología , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo
19.
Cancer Sci ; 103(12): 2165-72, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22957741

RESUMEN

We previously showed tumor-associated macrophages/microglia (TAMs) polarized to the M2 phenotype were significantly involved in tumor cell proliferation and poor clinical prognosis in patients with high grade gliomas. However, the detailed molecular mechanisms involved in the interaction between TAMs and tumor cells have been unclear. Current results reveal that, in coculture with human macrophages, BrdU incorporation was significantly elevated in glioma cells, and signal transducer and activator of transcription-3 (Stat3) activation was found in both cell types. Direct mixed coculture led to stronger Stat3 activation in tumor cells than did indirect separate coculture in Transwell chamber dishes. Screening with an array kit for phospho-receptor tyrosine kinases revealed that phosphorylation of macrophage-colony stimulating factor receptor (M-CSFR, CD115, or c-fms) is possibly involved in this cell-cell interaction; M-CSFR activation was detected in both cell types. Coculture-induced tumor cell activation was suppressed by siRNA-mediated downregulation of the M-CSFR in macrophages and by an inhibitor of M-CSFR (GW2580). Immunohistochemical analysis of phosphorylated (p)M-CSFR, pStat3, M-CSF, M2 ratio, and MIB-1(%) in high grade gliomas revealed that higher staining of pM-CSFR in tumor cells was significantly associated with higher M-CSF expression and higher MIB-1(%). Higher staining of pStat3 was associated with higher MIB-1(%). High M2 ratios were closely correlated with high MIB-1(%) and poor clinical prognosis. Targeting these molecules or deactivating M2 macrophages might be useful therapeutic strategies for high grade glioma patients.


Asunto(s)
Glioma/metabolismo , Glioma/patología , Macrófagos/citología , Adulto , Anciano , Línea Celular Tumoral , Proliferación Celular , Técnicas de Cocultivo , Regulación hacia Abajo , Femenino , Glioma/genética , Humanos , Inmunohistoquímica , Macrófagos/metabolismo , Masculino , Microglía/metabolismo , Microglía/patología , Persona de Mediana Edad , ARN Interferente Pequeño/genética , Receptor de Factor Estimulante de Colonias de Macrófagos/genética , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo
20.
Cancer Med ; 11(6): 1441-1453, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35132816

RESUMEN

Hepatoblastoma is the most common pediatric liver tumor, but little research has been done on the role of macrophages in hepatoblastoma. The purpose of this study was to gain insight into potential roles for macrophages in hepatoblastoma. Paraffin-embedded specimens from 56 patients who underwent surgical resection were examined with immunohistochemical staining for the macrophage-specific markers, Iba1 and CD163. Significant differences were seen among histological subtypes. Significantly increased numbers of macrophages were detected in embryonal components compared to fetal components in the mixed epithelial type. In vitro studies using human monocyte-derived macrophages and two hepatoblastoma cell lines (HepG2 and Huh6) were performed. Conditioned medium from these cell lines induced increased CD163 expression in macrophages. Direct co-culture with macrophages induced tumor cell proliferation via induction of protumor cytokine secretion from macrophages. Direct co-culture with macrophages also induced interleukin (IL)-34 overexpression by Huh6 cells via Brd4 signaling. IL-34 overexpression promoted tumor cell proliferation and chemoresistance. High IL-34 and Brd4 expression was detected in embryonal components, which have potentially higher proliferation activity than fetal components. In conclusion, IL-34 expression in embryonal components may induce macrophage chemotaxis in a paracrine manner, and tumor cell proliferation and chemoresistance in an autocrine manner. IL-34 is a potential therapeutic target for hepatoblastoma.


Asunto(s)
Hepatoblastoma , Interleucinas , Neoplasias Hepáticas , Proteínas de Ciclo Celular , Línea Celular Tumoral , Niño , Hepatoblastoma/genética , Hepatoblastoma/patología , Humanos , Interleucinas/genética , Neoplasias Hepáticas/patología , Proteínas Nucleares , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA