Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 537(7618): 117-121, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27556947

RESUMEN

Ca2+ antagonist drugs are widely used in therapy of cardiovascular disorders. Three chemical classes of drugs bind to three separate, but allosterically interacting, receptor sites on CaV1.2 channels, the most prominent voltage-gated Ca2+ (CaV) channel type in myocytes in cardiac and vascular smooth muscle. The 1,4-dihydropyridines are used primarily for treatment of hypertension and angina pectoris and are thought to act as allosteric modulators of voltage-dependent Ca2+ channel activation, whereas phenylalkylamines and benzothiazepines are used primarily for treatment of cardiac arrhythmias and are thought to physically block the pore. The structural basis for the different binding, action, and therapeutic uses of these drugs remains unknown. Here we present crystallographic and functional analyses of drug binding to the bacterial homotetrameric model CaV channel CaVAb, which is inhibited by dihydropyridines and phenylalkylamines with nanomolar affinity in a state-dependent manner. The binding site for amlodipine and other dihydropyridines is located on the external, lipid-facing surface of the pore module, positioned at the interface of two subunits. Dihydropyridine binding allosterically induces an asymmetric conformation of the selectivity filter, in which partially dehydrated Ca2+ interacts directly with one subunit and blocks the pore. In contrast, the phenylalkylamine Br-verapamil binds in the central cavity of the pore on the intracellular side of the selectivity filter, physically blocking the ion-conducting pathway. Structure-based mutations of key amino-acid residues confirm drug binding at both sites. Our results define the structural basis for binding of dihydropyridines and phenylalkylamines at their distinct receptor sites on CaV channels and offer key insights into their fundamental mechanisms of action and differential therapeutic uses in cardiovascular diseases.


Asunto(s)
Aminas/química , Aminas/farmacología , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/química , Dihidropiridinas/química , Dihidropiridinas/farmacología , Regulación Alostérica/efectos de los fármacos , Aminas/efectos adversos , Amlodipino/química , Amlodipino/farmacología , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/efectos de los fármacos , Sitios de Unión/genética , Calcio/química , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Línea Celular , Cristalografía por Rayos X , Dihidropiridinas/efectos adversos , Lípidos/química , Modelos Moleculares , Mariposas Nocturnas , Mutación , Niacina/análogos & derivados , Niacina/química , Niacina/farmacología , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Verapamilo/química , Verapamilo/farmacología
2.
Mol Pharmacol ; 88(1): 141-50, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25848093

RESUMEN

Voltage-gated sodium channels initiate action potentials in nerve, muscle, and other electrically excitable cells. Voltage-gated calcium channels are activated by depolarization during action potentials, and calcium influx through them is the key second messenger of electrical signaling, initiating secretion, contraction, neurotransmission, gene transcription, and many other intracellular processes. Drugs that block sodium channels are used in local anesthesia and the treatment of epilepsy, bipolar disorder, chronic pain, and cardiac arrhythmia. Drugs that block calcium channels are used in the treatment of epilepsy, chronic pain, and cardiovascular disorders, including hypertension, angina pectoris, and cardiac arrhythmia. The principal pore-forming subunits of voltage-gated sodium and calcium channels are structurally related and likely to have evolved from ancestral voltage-gated sodium channels that are widely expressed in prokaryotes. Determination of the structure of a bacterial ancestor of voltage-gated sodium and calcium channels at high resolution now provides a three-dimensional view of the binding sites for drugs acting on sodium and calcium channels. In this minireview, we outline the different classes of sodium and calcium channel drugs, review studies that have identified amino acid residues that are required for their binding and therapeutic actions, and illustrate how the analogs of those key amino acid residues may form drug-binding sites in three-dimensional models derived from bacterial channels.


Asunto(s)
Canales de Calcio/química , Mamíferos/metabolismo , Canales de Sodio/química , Potenciales de Acción , Animales , Sitios de Unión , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio/metabolismo , Humanos , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico , Canales de Sodio/metabolismo , Homología Estructural de Proteína
3.
bioRxiv ; 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37693391

RESUMEN

Receptor tyrosine kinase signaling is characterized by complex webs of interconnected pathways that regulate diverse cellular functions. The complexity of signaling is a barrier to understanding the pathways that control any particular function. In this work, we use a novel combination of approaches and a new click chemistry probe to determine the role of one pathway in regulating cell surface expression of an ion channel and a receptor tyrosine kinase. We applied an optogenetic approach to uncouple activation of the PI3K pathway from other pathways downstream of RTK activation. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the PM in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA