Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Liver Int ; 44(1): 125-138, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37872645

RESUMEN

OBJECTIVE: Progressive hepatic fibrosis can be considered the final stage of chronic liver disease. Hepatic stellate cells (HSC) play a central role in liver fibrogenesis. Thyroid hormones (TH, e.g. thyroxine; T4 and triiodothyronine; T3) significantly affect development, growth, cell differentiation and metabolism through activation of TH receptor α and/or ß (TRα/ß). Here, we evaluated the influence of TH in hepatic fibrogenesis. DESIGN: Human liver tissue was obtained from explanted livers following transplantation. TRα-deficient (TRα-KO) and wild-type (WT) mice were fed a control or a profibrogenic methionine-choline deficient (MCD) diet. Liver tissue was assessed by qRT-PCR for fibrogenic gene expression. In vitro, HSC were treated with TGFß in the presence or absence of T3. HSC with stable TRα knockdown and TRα deficient mouse embryonic fibroblasts (MEF) were used to determine receptor-specific function. Activation of HSC and MEF was assessed using the wound healing assay, Western blotting, and qRT-PCR. RESULTS: TRα and TRß expression is downregulated in the liver during hepatic fibrogenesis in humans and mice. TRα represents the dominant isoform in HSC. In vitro, T3 blunted TGFß-induced expression of fibrogenic genes in HSC and abrogated wound healing by modulating TGFß signalling, which depended on TRα presence. In vivo, TRα-KO enhanced MCD diet-induced liver fibrogenesis. CONCLUSION: These observations indicate that TH action in non-parenchymal cells is highly relevant. The interaction of TRα with TH regulates the phenotype of HSC via the TGFß signalling pathway. Thus, the TH-TR axis may be a valuable target for future therapy of liver fibrosis.


Asunto(s)
Fibroblastos , Células Estrelladas Hepáticas , Animales , Ratones , Humanos , Células Estrelladas Hepáticas/metabolismo , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/farmacología , Receptores alfa de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/metabolismo , Factor de Crecimiento Transformador beta
2.
J Immunol ; 208(6): 1362-1370, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35228263

RESUMEN

The oncotherapeutic promise of IL-15, a potent immunostimulant, is limited by a short serum t 1/2 The fusion protein N-803 is a chimeric IL-15 superagonist that has a >20-fold longer in vivo t 1/2 versus IL-15. This phase 1 study characterized the pharmacokinetic (PK) profile and safety of N-803 after s.c. administration to healthy human volunteers. Volunteers received two doses of N-803, and after each dose, PK and safety were assessed for 9 d. The primary endpoint was the N-803 PK profile, the secondary endpoint was safety, and immune cell levels and immunogenicity were measures of interest. Serum N-803 concentrations peaked 4 h after administration and declined with a t 1/2 of ∼20 h. N-803 did not cause treatment-emergent serious adverse events (AEs) or grade ≥3 AEs. Injection site reactions, chills, and pyrexia were the most common AEs. Administration of N-803 was well tolerated and accompanied by proliferation of NK cells and CD8+ T cells and sustained increases in the number of NK cells. Our results suggest that N-803 administration can potentiate antitumor immunity.


Asunto(s)
Linfocitos T CD8-positivos , Interleucina-15 , Voluntarios Sanos , Humanos , Proteínas Recombinantes de Fusión
3.
Am J Physiol Gastrointest Liver Physiol ; 320(6): G1044-G1053, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33908271

RESUMEN

Myosin 1c (Myo1c) is an unconventional myosin that modulates signaling pathways involved in tissue injury and repair. In this study, we observed that Myo1c expression is significantly upregulated in human chronic liver disease such as nonalcoholic steatohepatitis (NASH) and in animal models of liver fibrosis. High throughput data from the GEO-database identified similar Myo1c upregulation in mice and human liver fibrosis. Notably, transforming growth factor-ß1 (TGF-ß1) stimulation to hepatic stellate cells (HSCs), the liver pericyte and key cell type responsible for the deposition of extracellular matrix, upregulates Myo1c expression, whereas genetic depletion or pharmacological inhibition of Myo1c blunted TGF-ß-induced fibrogenic responses, resulting in repression of α-smooth muscle actin (α-SMA) and collagen type I α 1 chain (Col1α1) mRNA. Myo1c deletion also decreased fibrogenic processes such as cell proliferation, wound healing response, and contractility when compared with vehicle-treated HSCs. Importantly, phosphorylation of mothers against decapentaplegic homolog 2 (SMAD2) and mothers against decapentaplegic homolog 3 (SMAD3) were significantly blunted upon Myo1c inhibition in GRX cells as well as Myo1c knockout (Myo1c-KO) mouse embryonic fibroblasts (MEFs) upon TGF-ß stimulation. Using the genetic Myo1c-KO mice, we confirmed that Myo1c is critical for fibrogenesis, as Myo1c-KO mice were resistant to carbon tetrachloride (CCl4)-induced liver fibrosis. Histological and immunostaining analysis of liver sections showed that deposition of collagen fibers and α-SMA expression were significantly reduced in Myo1c-KO mice upon liver injury. Collectively, these results demonstrate that Myo1c mediates hepatic fibrogenesis by modulating TGF-ß signaling and suggest that inhibiting this process may have clinical application in treating liver fibrosis.NEW & NOTEWORTHY The incidences of liver fibrosis are growing at a rapid pace and have become one of the leading causes of end-stage liver disease. Although TGF-ß1 is known to play a prominent role in transforming cells to produce excessive extracellular matrix that lead to hepatic fibrosis, the therapies targeting TGF-ß1 have achieved very limited clinical impact. This study highlights motor protein myosin-1c-mediated mechanisms that serve as novel regulators of TGF-ß1 signaling and fibrosis.


Asunto(s)
Fibroblastos/metabolismo , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Miosina Tipo I/metabolismo , Animales , Cadena alfa 1 del Colágeno Tipo I , Fibroblastos/patología , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hígado/patología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Ratones , Miosina Tipo I/genética , Fosforilación , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo
4.
Gastroenterology ; 154(5): 1465-1479.e13, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29305935

RESUMEN

BACKGROUND & AIMS: Cirrhosis results from accumulation of myofibroblasts derived from quiescent hepatic stellate cells (Q-HSCs); it regresses when myofibroblastic HSCs are depleted. Hedgehog signaling promotes transdifferentiation of HSCs by activating Yes-associated protein 1 (YAP1 or YAP) and inducing aerobic glycolysis. However, increased aerobic glycolysis alone cannot meet the high metabolic demands of myofibroblastic HSCs. Determining the metabolic processes of these cells could lead to strategies to prevent progressive liver fibrosis, so we investigated whether glutaminolysis (conversion of glutamine to alpha-ketoglutarate) sustains energy metabolism and permits anabolism when Q-HSCs become myofibroblastic, and whether this is controlled by hedgehog signaling to YAP. METHODS: Primary HSCs were isolated from C57BL/6 or Smoflox/flox mice; we also performed studies with rat and human myofibroblastic HSCs. We measured changes of glutaminolytic genes during culture-induced primary HSC transdifferentiation. Glutaminolysis was disrupted in cells by glutamine deprivation or pathway inhibitors (bis-2-[5-phenylacetamido-1,2,4-thiadiazol-2-yl] ethyl sulfide, CB-839, epigallocatechin gallate, and aminooxyacetic acid), and effects on mitochondrial respiration, cell growth and migration, and fibrogenesis were measured. Hedgehog signaling to YAP was disrupted in cells by adenovirus expression of Cre-recombinase or by small hairpin RNA knockdown of YAP. Hedgehog and YAP activity were inhibited by incubation of cells with cyclopamine or verteporfin, and effects on glutaminolysis were measured. Acute and chronic liver fibrosis were induced in mice by intraperitoneal injection of CCl4 or methionine choline-deficient diet. Some mice were then given injections of bis-2-[5-phenylacetamido-1,2,4-thiadiazol-2-yl] ethyl sulfide to inhibit glutaminolysis, and myofibroblast accumulation was measured. We also performed messenger RNA and immunohistochemical analyses of percutaneous liver biopsies from healthy human and 4 patients with no fibrosis, 6 patients with mild fibrosis, and 3 patients with severe fibrosis. RESULTS: Expression of genes that regulate glutaminolysis increased during transdifferentiation of primary Q-HSCs into myofibroblastic HSCs, and inhibition of glutaminolysis disrupted transdifferentiation. Blocking glutaminolysis in myofibroblastic HSCs suppressed mitochondrial respiration, cell growth and migration, and fibrogenesis; replenishing glutaminolysis metabolites to these cells restored these activities. Knockout of the hedgehog signaling intermediate smoothened or knockdown of YAP inhibited expression of glutaminase, the rate-limiting enzyme in glutaminolysis. Hedgehog and YAP inhibitors blocked glutaminolysis and suppressed myofibroblastic activities in HSCs. In livers of patients and of mice with acute or chronic fibrosis, glutaminolysis was induced in myofibroblastic HSCs. In mice with liver fibrosis, inhibition of glutaminase blocked accumulation of myofibroblasts and fibrosis progression. CONCLUSIONS: Glutaminolysis controls accumulation of myofibroblast HSCs in mice and might be a therapeutic target for cirrhosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Metabolismo Energético , Glutamina/metabolismo , Proteínas Hedgehog/metabolismo , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Miofibroblastos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Estudios de Casos y Controles , Proteínas de Ciclo Celular , Proliferación Celular , Transdiferenciación Celular , Células Cultivadas , Reprogramación Celular , Regulación de la Expresión Génica , Glutaminasa/metabolismo , Proteínas Hedgehog/genética , Células Estrelladas Hepáticas/patología , Humanos , Ácidos Cetoglutáricos/metabolismo , Hígado/patología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Cirrosis Hepática Experimental/genética , Cirrosis Hepática Experimental/metabolismo , Cirrosis Hepática Experimental/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología , Miofibroblastos/patología , Fenotipo , Fosfoproteínas/genética , Interferencia de ARN , Ratas , Transducción de Señal , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Factores de Tiempo , Factores de Transcripción , Transfección , Proteínas Señalizadoras YAP
5.
Lancet Oncol ; 19(5): 694-704, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29628312

RESUMEN

BACKGROUND: Immunotherapy with PD-1 or PD-L1 blockade fails to induce a response in about 80% of patients with unselected non-small cell lung cancer (NSCLC), and many of those who do initially respond then develop resistance to treatment. Agonists that target the shared interleukin-2 (IL-2) and IL-15Rßγ pathway have induced complete and durable responses in some cancers, but no studies have been done to assess the safety or efficacy of these agonists in combination with anti-PD-1 immunotherapy. We aimed to define the safety, tolerability, and activity of this drug combination in patients with NSCLC. METHODS: In this non-randomised, open-label, phase 1b trial, we enrolled patients (aged ≥18 years) with previously treated histologically or cytologically confirmed stage IIIB or IV NSCLC from three academic hospitals in the USA. Key eligibility criteria included measurable disease, eligibility to receive anti-PD-1 immunotherapy, and an Eastern Cooperative Oncology Group performance status of 0 or 1. Patients received the anti-PD-1 monoclonal antibody nivolumab intravenously at 3 mg/kg (then 240 mg when US Food and Drug Administration [FDA]-approved dosing changed) every 14 days (either as new treatment or continued treatment at the time of disease progression) and the IL-15 superagonist ALT-803 subcutaneously once per week on weeks 1-5 of four 6-week cycles for 6 months. ALT-803 was administered at one of four escalating dose concentrations: 6, 10, 15, or 20 µg/kg. The primary endpoint was to define safety and tolerability and to establish a recommended phase 2 dose of ALT-803 in combination with nivolumab. Analyses were per-protocol and included any patients who received at least one dose of study treatment. This trial is registered with ClinicalTrials.gov, number NCT02523469; phase 2 enrolment of patients is ongoing. FINDINGS: Between Jan 18, 2016, and June 28, 2017, 23 patients were enrolled and 21 were treated at four dose levels of ALT-803 in combination with nivolumab. Two patients did not receive treatment because of the development of inter-current illness during enrolment, one patient due to leucopenia and one patient due to pulmonary dysfunction. No dose-limiting toxicities were recorded and the maximum tolerated dose was not reached. The most common adverse events were injection-site reactions (in 19 [90%] of 21 patients) and flu-like symptoms (15 [71%]). The most common grade 3 adverse events, occurring in two patients each, were lymphocytopenia and fatigue. A grade 3 myocardial infarction occurred in one patient. No grade 4 or 5 adverse events were recorded. The recommended phase 2 dose of ALT-803 is 20 µg/kg given once per week subcutaneously in combination with 240 mg intravenous nivolumab every 2 weeks. INTERPRETATION: ALT-803 in combination with nivolumab can be safely administered in an outpatient setting. The promising clinical activity observed with the addition of ALT-803 to the regimen of patients with PD-1 monoclonal antibody relapsed and refractory disease shows evidence of anti-tumour activity for a new class of agents in NSCLC. FUNDING: Altor BioScience (a NantWorks company), National Institutes of Health, and Medical University of South Carolina Hollings Cancer Center.


Asunto(s)
Antineoplásicos Inmunológicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Nivolumab/administración & dosificación , Proteínas/administración & dosificación , Anciano , Antineoplásicos Inmunológicos/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/secundario , Femenino , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Nivolumab/efectos adversos , Proteínas/efectos adversos , Proteínas Recombinantes de Fusión , Factores de Tiempo , Resultado del Tratamiento , Estados Unidos
6.
J Hepatol ; 69(2): 359-367, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29758331

RESUMEN

BACKGROUND & AIMS: Chronic failure of mechanisms that promote effective regeneration of dead hepatocytes causes replacement of functional hepatic parenchyma with fibrous scar tissue, ultimately resulting in cirrhosis. Therefore, defining and optimizing mechanisms that orchestrate effective regeneration might prevent cirrhosis. We hypothesized that effective regeneration of injured livers requires hepatocytes to evade the growth-inhibitory actions of TGFß, since TGFß signaling inhibits mature hepatocyte growth but drives cirrhosis pathogenesis. METHODS: Wild-type mice underwent 70% partial hepatectomy (PH); TGFß expression and signaling were evaluated in intact tissue and primary hepatocytes before, during, and after the period of maximal hepatocyte proliferation that occurs from 24-72 h after PH. To determine the role of Yap1 in regulating TGFß signaling in hepatocytes, studies were repeated after selectively deleting Yap1 from hepatocytes of Yap1flox/flox mice. RESULTS: TGFß expression and hepatocyte nuclear accumulation of pSmad2 and Yap1 increased in parallel with hepatocyte proliferative activity after PH. Proliferative hepatocytes also upregulated Snai1, a pSmad2 target gene that promotes epithelial-to-mesenchymal transition (EMT), suppressed epithelial genes, induced myofibroblast markers, and produced collagen 1α1. Deleting Yap1 from hepatocytes blocked their nuclear accumulation of pSmad2 and EMT-like response, as well as their proliferation. CONCLUSION: Interactions between the TGFß and Hippo-Yap signaling pathways stimulate hepatocytes to undergo an EMT-like response that is necessary for them to grow in a TGFß-enriched microenvironment and regenerate injured livers. LAY SUMMARY: The adult liver has an extraordinary ability to regenerate after injury despite the accumulation of scar-forming factors that normally block the proliferation and reduce the survival of residual liver cells. We discovered that liver cells manage to escape these growth-inhibitory influences by transiently becoming more like fibroblasts themselves. They do this by reactivating programs that are known to drive tissue growth during fetal development and in many cancers. Understanding how the liver can control programs that are involved in scarring and cancer may help in the development of new treatments for cirrhosis and liver cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Hepatocitos/fisiología , Regeneración Hepática/fisiología , Fosfoproteínas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Proteínas de Ciclo Celular , Proliferación Celular , Ratones , Ratones Noqueados , Transducción de Señal , Proteínas Señalizadoras YAP
7.
Biochim Biophys Acta ; 1862(1): 135-44, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26529285

RESUMEN

INTRODUCTION: Liver fibrosis develops when hepatic stellate cells (HSC) are activated into collagen-producing myofibroblasts. In non-alcoholic steatohepatitis (NASH), the adipokine leptin is upregulated, and promotes liver fibrosis by directly activating HSC via the hedgehog pathway. We reported that hedgehog-regulated osteopontin (OPN) plays a key role in promoting liver fibrosis. Herein, we evaluated if OPN mediates leptin-profibrogenic effects in NASH. METHODS: Leptin-deficient (ob/ob) and wild-type (WT) mice were fed control or methionine-choline deficient (MCD) diet. Liver tissues were assessed by Sirius-red, OPN and αSMA IHC, and qRT-PCR for fibrogenic genes. In vitro, HSC with stable OPN (or control) knockdown were treated with recombinant (r)leptin and OPN-neutralizing or sham-aptamers. HSC response to OPN loss was assessed by wound healing assay. OPN-aptamers were also added to precision-cut liver slices (PCLS), and administered to MCD-fed WT (leptin-intact) mice to determine if OPN neutralization abrogated fibrogenesis. RESULTS: MCD-fed WT mice developed NASH-fibrosis, upregulated OPN, and accumulated αSMA+ cells. Conversely, MCD-fed ob/ob mice developed less fibrosis and accumulated fewer αSMA+ and OPN+ cells. In vitro, leptin-treated HSC upregulated OPN, αSMA, collagen 1α1 and TGFß mRNA by nearly 3-fold, but this effect was blunted by OPN loss. Inhibition of PI3K and transduction of dominant negative-Akt abrogated leptin-mediated OPN induction, while constitutive active-Akt upregulated OPN. Finally, OPN neutralization reduced leptin-mediated fibrogenesis in both PCLS and MCD-fed mice. CONCLUSION: OPN overexpression in NASH enhances leptin-mediated fibrogenesis via PI3K/Akt. OPN neutralization significantly reduces NASH fibrosis, reinforcing the potential utility of targeting OPN in the treatment of patients with advanced NASH.


Asunto(s)
Leptina/metabolismo , Cirrosis Hepática/metabolismo , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Osteopontina/metabolismo , Animales , Línea Celular , Células Cultivadas , Eliminación de Gen , Hepatocitos/metabolismo , Hepatocitos/patología , Leptina/genética , Hígado/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Osteopontina/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Regulación hacia Arriba
8.
BMC Cell Biol ; 18(1): 20, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28427343

RESUMEN

BACKGROUND: Obesity is associated with multiple diseases, but it is unclear how obesity promotes progressive tissue damage. Recovery from injury requires repair, an energy-expensive process that is coupled to energy availability at the cellular level. The satiety factor, leptin, is a key component of the sensor that matches cellular energy utilization to available energy supplies. Leptin deficiency signals energy depletion, whereas activating the Hedgehog pathway drives energy-consuming activities. Tissue repair is impaired in mice that are obese due to genetic leptin deficiency. Tissue repair is also blocked and obesity enhanced by inhibiting Hedgehog activity. We evaluated the hypothesis that loss of leptin silences Hedgehog signaling in pericytes, multipotent leptin-target cells that regulate a variety of responses that are often defective in obesity, including tissue repair and adipocyte differentiation. RESULTS: We found that pericytes from liver and white adipose tissue require leptin to maintain expression of the Hedgehog co-receptor, Smoothened, which controls the activities of Hedgehog-regulated Gli transcription factors that orchestrate gene expression programs that dictate pericyte fate. Smoothened suppression prevents liver pericytes from being reprogrammed into myofibroblasts, but stimulates adipose-derived pericytes to become white adipocytes. Progressive Hedgehog pathway decay promotes senescence in leptin-deficient liver pericytes, which, in turn, generate paracrine signals that cause neighboring hepatocytes to become fatty and less proliferative, enhancing vulnerability to liver damage. CONCLUSIONS: Leptin-responsive pericytes evaluate energy availability to inform tissue construction by modulating Hedgehog pathway activity and thus, are at the root of progressive obesity-related tissue pathology. Leptin deficiency inhibits Hedgehog signaling in pericytes to trigger a pericytopathy that promotes both adiposity and obesity-related tissue damage.


Asunto(s)
Células Estrelladas Hepáticas/fisiología , Leptina/genética , Obesidad/fisiopatología , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo/citología , Animales , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Proteínas Hedgehog/fisiología , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/metabolismo , Leptina/deficiencia , Leptina/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Obesos , Miofibroblastos/citología , Miofibroblastos/metabolismo , Obesidad/genética , Comunicación Paracrina/genética , Receptores de Leptina/metabolismo , Receptor Smoothened/agonistas
9.
Hepatology ; 64(1): 232-44, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26970079

RESUMEN

UNLABELLED: Adult liver regeneration requires induction and suppression of proliferative activity in multiple types of liver cells. The mechanisms that orchestrate the global changes in gene expression that are required for proliferative activity to change within individual liver cells, and that coordinate proliferative activity among different types of liver cells, are not well understood. Morphogenic signaling pathways that are active during fetal development, including Hedgehog and Hippo/Yes-associated protein 1 (Yap1), regulate liver regeneration in adulthood. Cirrhosis and liver cancer result when these pathways become dysregulated, but relatively little is known about the mechanisms that coordinate and control morphogenic signaling during effective liver regeneration. We evaluated the hypothesis that the Hedgehog pathway controls Yap1 activation during liver regeneration by studying intact mice and cultured liver cells. In cultured hepatic stellate cells (HSCs), disrupting Hedgehog signaling blocked activation of Yap1, and knocking down Yap1 inhibited induction of both Yap1- and Hedgehog-regulated genes that enable HSC to become myofibroblasts (MFs). In mice, disrupting Hedgehog signaling in MFs inhibited liver regeneration after partial hepactectomy (PH). Reduced proliferative activity in the liver epithelial compartment resulted from loss of stroma-derived paracrine signals that activate Yap1 and the Hedgehog pathway in hepatocytes. This prevented hepatocytes from up-regulating Yap1- and Hedgehog-regulated transcription factors that normally promote their proliferation. CONCLUSIONS: Morphogenic signaling in HSCs is necessary to reprogram hepatocytes to regenerate the liver epithelial compartment post-PH. This discovery identifies novel molecules that might be targeted to correct defective repair during cirrhosis and liver cancer. (Hepatology 2016;64:232-244).


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Hedgehog/metabolismo , Células Estrelladas Hepáticas/metabolismo , Regeneración Hepática , Fosfoproteínas/metabolismo , Animales , Proteínas de Ciclo Celular , Desdiferenciación Celular , Proliferación Celular , Hepatectomía , Hepatocitos/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Comunicación Paracrina , Regulación hacia Arriba , Proteínas Señalizadoras YAP
10.
Gut ; 65(4): 683-92, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25596181

RESUMEN

OBJECTIVE: The ductular reaction (DR) involves mobilisation of reactive-appearing duct-like cells (RDC) along canals of Hering, and myofibroblastic (MF) differentiation of hepatic stellate cells (HSC) in the space of Disse. Perivascular cells in stem cell niches produce pleiotrophin (PTN) to inactivate the PTN receptor, protein tyrosine phosphatase receptor zeta-1 (PTPRZ1), thereby augmenting phosphoprotein-dependent signalling. We hypothesised that the DR is regulated by PTN/PTPRZ1 signalling. DESIGN: PTN-GFP, PTN-knockout (KO), PTPRZ1-KO, and wild type (WT) mice were examined before and after bile duct ligation (BDL) for PTN, PTPRZ1 and the DR. RDC and HSC from WT, PTN-KO, and PTPRZ1-KO mice were also treated with PTN to determine effects on downstream signaling phosphoproteins, gene expression, growth, and migration. Liver biopsies from patients with DRs were also interrogated. RESULTS: Although quiescent HSC and RDC lines expressed PTN and PTPRZ1 mRNAs, neither PTN nor PTPRZ1 protein was demonstrated in healthy liver. BDL induced PTN in MF-HSC and increased PTPRZ1 in MF-HSC and RDC. In WT mice, BDL triggered a DR characterised by periportal accumulation of collagen, RDC and MF-HSC. All aspects of this DR were increased in PTN-KO mice and suppressed in PTPRZ1-KO mice. In vitro studies revealed PTN-dependent accumulation of phosphoproteins that control cell-cell adhesion and migration, with resultant inhibition of cell migration. PTPRZ1-positive cells were prominent in the DRs of patients with ductal plate defects and adult cholestatic diseases. CONCLUSIONS: PTN, and its receptor, PTPRZ1, regulate the DR to liver injury by controlling the migration of resident cells in adult liver progenitor niches.


Asunto(s)
Conductos Biliares/patología , Proteínas Portadoras/fisiología , Movimiento Celular/fisiología , Citocinas/fisiología , Hepatopatías/patología , Animales , Biomarcadores/sangre , Western Blotting , Diferenciación Celular/fisiología , Inmunohistoquímica , Ratones , Ratones Noqueados , Fosfoproteínas/metabolismo , ARN/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Transducción de Señal
11.
Am J Physiol Gastrointest Liver Physiol ; 308(4): G325-34, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25524063

RESUMEN

TNF-like weak inducer of apoptosis (TWEAK) is a growth factor for bipotent liver progenitors that express its receptor, fibroblast growth factor-inducible 14 (Fn14), a TNF receptor superfamily member. Accumulation of Fn14(+) progenitors occurs in severe acute alcoholic steatohepatitis (ASH) and correlates with acute mortality. In patients with severe ASH, inhibition of TNF-α increases acute mortality. The aim of this study was to determine whether deletion of Fn14 improves the outcome of liver injury in alcohol-consuming mice. Wild-type (WT) and Fn14 knockout (KO) mice were fed control high-fat Lieber deCarli diet or high-fat Lieber deCarli diet with 2% alcohol (ETOH) and injected intraperitoneally with CCl4 for 2 wk to induce liver injury. Mice were euthanized 3 or 10 days after CCl4 treatment. Survival was assessed. Liver tissues were analyzed for cell death, inflammation, proliferation, progenitor accumulation, and fibrosis by quantitative RT-PCR, immunoblot, hydroxyproline content, and quantitative immunohistochemistry. During liver injury, Fn14 expression, apoptosis, inflammation, hepatocyte replication, progenitor and myofibroblast accumulation, and fibrosis increased in WT mice fed either diet. Mice fed either diet expressed similar TWEAK/Fn14 levels, but ETOH-fed mice had higher TNF-α expression. The ETOH-fed group developed more apoptosis, inflammation, fibrosis, and regenerative responses. Fn14 deletion did not reduce hepatic TNF-α expression but improved all injury parameters in mice fed the control diet. In ETOH-fed mice, Fn14 deletion inhibited TNF-α induction and increased acute mortality, despite improvement in liver injury. Fn14 mediates wound-healing responses that are necessary to survive acute liver injury during alcohol exposure.


Asunto(s)
Hígado Graso Alcohólico/metabolismo , Hígado/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Enfermedad Aguda , Animales , Apoptosis , Tetracloruro de Carbono , Proliferación Celular , Modelos Animales de Enfermedad , Etanol , Hígado Graso Alcohólico/etiología , Hígado Graso Alcohólico/genética , Hígado Graso Alcohólico/patología , Hidroxiprolina/metabolismo , Mediadores de Inflamación/metabolismo , Hígado/patología , Cirrosis Hepática Alcohólica/etiología , Cirrosis Hepática Alcohólica/metabolismo , Cirrosis Hepática Alcohólica/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores del Factor de Necrosis Tumoral/deficiencia , Receptores del Factor de Necrosis Tumoral/genética , Transducción de Señal , Receptor de TWEAK , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo , Cicatrización de Heridas
12.
Histopathology ; 67(6): 771-82, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25847432

RESUMEN

AIMS: Recent studies have suggested that oesophageal submucosal gland (ESMG) ducts harbour progenitor cells that may contribute to oesophageal metaplasia. Our objective was to determine whether histological differences exist between the ESMGs of individuals with and without oesophageal adenocarcinoma (EAC). METHODS AND RESULTS: We performed histological assessment of 343 unique ESMGs from 30 control patients, 24 patients with treatment-naïve high-grade columnar dysplasia (HGD) or EAC, and 23 non-EAC oesophagectomy cases. A gastrointestinal pathologist assessed haematoxylin and eosin-stained ESMG images by using a scoring system that assigns individual ESMG acini to five histological types (mucous, serous, oncocytic, dilated, or ductal metaplastic). In our model, ductal metaplastic acini were more common in patients with HGD/EAC (12.7%) than in controls (3.5%) (P = 0.006). We also identified greater proportions of acini with dilation (21.9%, P < 0.001) and, to a lesser extent, ductal metaplasia (4.3%, P = 0.001) in non-EAC oesophagectomy cases than in controls. Ductal metaplasia tended to occur in areas of mucosal ulceration or tumour. CONCLUSIONS: We found a clear association between ductal metaplastic ESMG acini and HGD/EAC. Non-EAC cases had dilated acini and some ductal dilation. Because ESMGs and ducts harbour putative progenitor cells, these associations could have significance for understanding the pathogenesis of EAC.


Asunto(s)
Adenocarcinoma/patología , Neoplasias Esofágicas/patología , Esófago/patología , Inflamación/patología , Adenocarcinoma/cirugía , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Esofágicas/cirugía , Esofagectomía , Esófago/cirugía , Femenino , Humanos , Inflamación/cirugía , Masculino , Metaplasia/patología , Metaplasia/cirugía , Persona de Mediana Edad
13.
Hepatology ; 57(5): 1814-25, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23300059

RESUMEN

UNLABELLED: It is unclear why the histology of pediatric and adult nonalcoholic fatty liver disease (NAFLD) sometimes differs. In adults, severity of portal inflammation and fibrosis correlate with Hedgehog pathway activity. Hedgehog (Hh) signaling regulates organogenesis, but is silent in adult livers until injury reinduces Hh ligand production. During adolescence, liver development is completed and children's livers normally lose cells that produce and/or respond to Hh ligands. We postulated that fatty liver injury interferes with this process by increasing Hh ligand production, and theorized that hepatic responses to Hh ligands might differ among children according to age, gender, and/or puberty status. Using unstained liver biopsy slides from 56 children with NAFLD, we performed immunohistochemistry to assess Hh pathway activation and correlated the results with clinical information obtained at biopsy. Fibrosis stage generally correlated with Hh pathway activity, as demonstrated by the numbers of Hh-ligand-producing cells (P < 0.0001) and Hh-responsive (glioma-associated oncogene 2-positive [Gli2]) cells (P = 0.0013). The numbers of Gli2(+) cells also correlated with portal inflammation grade (P = 0.0012). Two distinct zonal patterns of Hh-ligand production, portal/periportal versus lobular, were observed. Higher portal/periportal Hh-ligand production was associated with male gender. Male gender and prepuberty were also associated with ductular proliferation (P < 0.05), increased numbers of portal Gli2(+) cells (P < 0.017) and portal fibrosis. CONCLUSION: The portal/periportal (progenitor) compartment of prepubescent male livers exhibits high Hh pathway activity. This may explain the unique histologic features of pediatric NAFLD because Hh signaling promotes the fibroductular response.


Asunto(s)
Hígado Graso/fisiopatología , Proteínas Hedgehog/fisiología , Hígado/fisiopatología , Transducción de Señal/fisiología , Actinas/metabolismo , Adolescente , Factores de Edad , Biopsia , Niño , Estudios Transversales , Hígado Graso/metabolismo , Femenino , Humanos , Queratina-7/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Enfermedad del Hígado Graso no Alcohólico , Proteínas Nucleares/metabolismo , Sistema Porta/metabolismo , Sistema Porta/patología , Factores Sexuales , Vimentina/metabolismo , Proteína Gli2 con Dedos de Zinc
14.
Hepatology ; 58(5): 1801-13, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23703657

RESUMEN

UNLABELLED: Liver repair involves phenotypic changes in hepatic stellate cells (HSCs) and reactivation of morphogenic signaling pathways that modulate epithelial-to-mesenchymal/mesenchymal-to-epithelial transitions, such as Notch and Hedgehog (Hh). Hh stimulates HSCs to become myofibroblasts (MFs). Recent lineage tracing studies in adult mice with injured livers showed that some MFs became multipotent progenitors to regenerate hepatocytes, cholangiocytes, and HSCs. We studied primary HSC cultures and two different animal models of fibrosis to evaluate the hypothesis that activating the Notch pathway in HSCs stimulates them to become (and remain) MFs through a mechanism that involves an epithelial-to-mesenchymal-like transition and requires cross-talk with the canonical Hh pathway. We found that when cultured HSCs transitioned into MFs, they activated Hh signaling, underwent an epithelial-to-mesenchymal-like transition, and increased Notch signaling. Blocking Notch signaling in MFs/HSCs suppressed Hh activity and caused a mesenchymal-to-epithelial-like transition. Inhibiting the Hh pathway suppressed Notch signaling and also induced a mesenchymal-to-epithelial-like transition. Manipulating Hh and Notch signaling in a mouse multipotent progenitor cell line evoked similar responses. In mice, liver injury increased Notch activity in MFs and Hh-responsive MF progeny (i.e., HSCs and ductular cells). Conditionally disrupting Hh signaling in MFs of bile-duct-ligated mice inhibited Notch signaling and blocked accumulation of both MF and ductular cells. CONCLUSIONS: The Notch and Hedgehog pathways interact to control the fate of key cell types involved in adult liver repair by modulating epithelial-to-mesenchymal-like/mesenchymal-to-epithelial-like transitions.


Asunto(s)
Proteínas Hedgehog/fisiología , Células Estrelladas Hepáticas/fisiología , Receptores Notch/fisiología , Transducción de Señal/fisiología , Animales , Proteínas de Unión al Calcio/metabolismo , Linaje de la Célula , Dipéptidos/farmacología , Genotipo , Células Estrelladas Hepáticas/citología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/fisiología , Fenotipo , Proteínas Serrate-Jagged
15.
Clin Sci (Lond) ; 126(12): 845-55, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24438228

RESUMEN

OPN (osteopontin)) is a Hh (Hedgehog)-regulated cytokine that is up-regulated during chronic liver injury and directly promotes fibrosis. We have reported that Hh signalling enhances viral permissiveness and replication in HCV (hepatitis C virus)-infected cells. Hence we hypothesized that OPN directly promotes HCV replication, and that targeting OPN could be beneficial in HCV. In the present study, we compared the expression of OPN mRNA and protein in HCV (JFH1)-infected Huh7 and Huh7.5 cells, and evaluated whether modulating OPN levels using exogenous OPN ligands (up-regulate OPN) or OPN-specific RNA-aptamers (neutralize OPN) leads to changes in HCV expression. Sera and livers from patients with chronic HCV were analysed to determine whether OPN levels were associated with disease severity or response to therapy. Compared with Huh7 cells, Huh7.5 cells support higher levels of HCV replication (15-fold) and expressed significantly more OPN mRNA (30-fold) and protein. Treating Huh7 cells with OPN ligands led to a dose-related increase in HCV (15-fold) and OPN (8-fold) mRNA. Conversely, treating Huh7.5 cells with OPN-specific RNA aptamers inhibited HCV RNA and protein by >50% and repressed OPN mRNA to basal levels. Liver OPN expression was significantly higher (3-fold) in patients with advanced fibrosis. Serum OPN positively correlated with fibrosis-stage (P=0.009), but negatively correlated with ETBCR (end-of-treatment biochemical response), ETVR (end-of-treatment virological response), SBCR (sustained biochemical response) and SVR (sustained virological response) (P=0.007). The OPN fibrosis score (serum OPN and presence of fibrosis ≥F2) may be a predictor of SVR. In conclusion, OPN is up-regulated in the liver and serum of patients with chronic hepatitis C, and supports increased viral replication. OPN neutralization may be a novel therapeutic strategy in chronic hepatitis C.


Asunto(s)
Hepacivirus/fisiología , Hepatitis C Crónica/fisiopatología , Osteopontina/fisiología , Regulación hacia Arriba , Replicación Viral , Adulto , Secuencia de Bases , Cartilla de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osteopontina/sangre , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Alcohol Clin Exp Res ; 38(3): 787-800, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24164383

RESUMEN

BACKGROUND: Alcohol consumption promotes hepatocellular carcinoma (HCC). The responsible mechanisms are not well understood. Hepatocarcinogenesis increases with age and is enhanced by factors that impose a demand for liver regeneration. Because alcohol is hepatotoxic, habitual alcohol ingestion evokes a recurrent demand for hepatic regeneration. The alcohol-preferring (P) rat model mimics the level of alcohol consumption by humans who habitually abuse alcohol. Previously, we showed that habitual heavy alcohol ingestion amplified age-related hepatocarcinogenesis in P rats, with over 80% of alcohol-consuming P rats developing HCCs after 18 months of alcohol exposure, compared with only 5% of water-drinking controls. METHODS: Herein, we used quantitative real-time PCR and quantitative immunocytochemistry to compare liver tissues from alcohol-consuming P rats and water-fed P rat controls after 6, 12, or 18 months of drinking. We aimed to identify potential mechanisms that might underlie the differences in liver cancer formation and hypothesized that chronic alcohol ingestion would activate Hedgehog (HH), a regenerative signaling pathway that is overactivated in HCC. RESULTS: Chronic alcohol ingestion amplified age-related degenerative changes in hepatocytes, but did not cause appreciable liver inflammation or fibrosis even after 18 months of heavy drinking. HH signaling was also enhanced by alcohol exposure, as evidenced by increased levels of mRNAs encoding HH ligands, HH-regulated transcription factors, and HH target genes. Immunocytochemistry confirmed increased alcohol-related accumulation of HH ligand-producing cells and HH-responsive target cells. HH-related regenerative responses were also induced in alcohol-exposed rats. Three of these processes (i.e., deregulated progenitor expansion, the reverse Warburg effect, and epithelial-to-mesenchymal transitions) are known to promote cancer growth in other tissues. CONCLUSIONS: Alcohol-related changes in Hedgehog signaling and resultant deregulation of liver cell replacement might promote hepatocarcinogenesis.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Depresores del Sistema Nervioso Central/efectos adversos , Etanol/efectos adversos , Proteínas Hedgehog/metabolismo , Neoplasias Hepáticas Experimentales/inducido químicamente , Animales , Transición Epitelial-Mesenquimal , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Distribución Aleatoria , Ratas
17.
J Clin Invest ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38885332

RESUMEN

Most children with medulloblastoma (MB) achieve remission, but some face very aggressive metastatic tumors. Their dismal outcome highlights the critical need to advance therapeutic approaches that benefit such high-risk patients. Minnelide, a clinically relevant analog of the natural product triptolide, has oncostatic activity in both preclinical and early clinical settings. Despite its efficacy and tolerable toxicity, this compound has not been evaluated in MB. Utilizing a bioinformatic dataset that integrates cellular drug response data with gene expression, we predicted that Group 3 (G3) MB, which has a poor five-year survival, would be sensitive to triptolide/Minnelide. We subsequently showed that both triptolide and Minnelide attenuate the viability of G3 MB cells ex vivo. Transcriptomic analyses identified MYC signaling, a pathologically relevant driver of G3 MB, as a downstream target of this class of drugs. We validated this MYC dependency in G3 MB cells and showed that triptolide exerts its efficacy by reducing both MYC transcription and MYC protein stability. Importantly, Minnelide acted on MYC to reduce tumor growth and leptomeningeal spread, which resulted in improved survival of G3 MB animal models. Moreover, Minnelide improved the efficacy of adjuvant chemotherapy, further highlighting its potential for the treatment of MYC-driven G3 MB patients.

18.
Gastroenterology ; 143(5): 1319-1329.e11, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22885334

RESUMEN

BACKGROUND & AIMS: The pathogenesis of cirrhosis, a disabling outcome of defective liver repair, involves deregulated accumulation of myofibroblasts derived from quiescent hepatic stellate cells (HSCs), but the mechanisms that control transdifferentiation of HSCs are poorly understood. We investigated whether the Hedgehog (Hh) pathway controls the fate of HSCs by regulating metabolism. METHODS: Microarray, quantitative polymerase chain reaction, and immunoblot analyses were used to identify metabolic genes that were differentially expressed in quiescent vs myofibroblast HSCs. Glycolysis and lactate production were disrupted in HSCs to determine if metabolism influenced transdifferentiation. Hh signaling and hypoxia-inducible factor 1α (HIF1α) activity were altered to identify factors that alter glycolytic activity. Changes in expression of genes that regulate glycolysis were quantified and localized in biopsy samples from patients with cirrhosis and liver samples from mice following administration of CCl(4) or bile duct ligation. Mice were given systemic inhibitors of Hh to determine if they affect glycolytic activity of the hepatic stroma; Hh signaling was also conditionally disrupted in myofibroblasts to determine the effects of glycolytic activity. RESULTS: Transdifferentiation of cultured, quiescent HSCs into myofibroblasts induced glycolysis and caused lactate accumulation. Increased expression of genes that regulate glycolysis required Hh signaling and involved induction of HIF1α. Inhibitors of Hh signaling, HIF1α, glycolysis, or lactate accumulation converted myofibroblasts to quiescent HSCs. In diseased livers of animals and patients, numbers of glycolytic stromal cells were associated with the severity of fibrosis. Conditional disruption of Hh signaling in myofibroblasts reduced numbers of glycolytic myofibroblasts and liver fibrosis in mice; similar effects were observed following administration of pharmacologic inhibitors of Hh. CONCLUSIONS: Hedgehog signaling controls the fate of HSCs by regulating metabolism. These findings might be applied to diagnosis and treatment of patients with cirrhosis.


Asunto(s)
Transdiferenciación Celular/genética , Regulación de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Células Estrelladas Hepáticas/metabolismo , Miofibroblastos/metabolismo , Transducción de Señal/genética , Actinas/genética , Actinas/metabolismo , Animales , Conductos Biliares , Tetracloruro de Carbono , Células Cultivadas , Perfilación de la Expresión Génica , Glucólisis/genética , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/enzimología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ácido Láctico/metabolismo , Ligadura , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias , Miofibroblastos/enzimología , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , ARN Mensajero/metabolismo , Ratas , Factores de Tiempo
19.
Nutrients ; 15(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37299543

RESUMEN

Short bowel syndrome (SBS) is a condition that results from a reduction in the length of the intestine or its functional capacity. SBS patients can have significant side effects and complications, the etiology of which remains ill-defined. Thus, facilitating intestinal adaptation in SBS remains a major research focus. Emerging data supports the role of the gut microbiome in modulating disease progression. There has been ongoing debate on defining a "healthy" gut microbiome, which has led to many studies analyzing the bacterial composition and shifts that occur in gastrointestinal disease states such as SBS and the resulting systemic effects. In SBS, it has also been found that microbial shifts are highly variable and dependent on many factors, including the anatomical location of bowel resection, length, and structure of the remnant bowel, as well as associated small intestinal bacterial overgrowth (SIBO). Recent data also notes a bidirectional communication that occurs between enteric and central nervous systems called the gut-brain axis (GBA), which is regulated by the gut microbes. Ultimately, the role of the microbiome in disease states such as SBS have many clinical implications and warrant further investigation. The focus of this review is to characterize the role of the gut microbiota in short bowel syndrome and its impact on the GBA, as well as the therapeutic potential of altering the microbiome.


Asunto(s)
Microbioma Gastrointestinal , Síndrome del Intestino Corto , Humanos , Síndrome del Intestino Corto/complicaciones , Microbioma Gastrointestinal/fisiología , Eje Cerebro-Intestino , Intestino Delgado/microbiología , Bacterias , Disbiosis/microbiología
20.
Sci Adv ; 8(29): eabj9138, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35857834

RESUMEN

SRY (sex determining region Y)-box 2 (SOX2)-labeled cells play key roles in chemoresistance and tumor relapse; thus, it is critical to elucidate the mechanisms propagating them. Single-cell transcriptomic analyses of the most common malignant pediatric brain tumor, medulloblastoma (MB), revealed the existence of astrocytic Sox2+ cells expressing sonic hedgehog (SHH) signaling biomarkers. Treatment with vismodegib, an SHH inhibitor that acts on Smoothened (Smo), led to increases in astrocyte-like Sox2+ cells. Using SOX2-enriched MB cultures, we observed that SOX2+ cells required SHH signaling to propagate, and unlike in the proliferative tumor bulk, the SHH pathway was activated in these cells downstream of Smo in an MYC-dependent manner. Functionally different GLI inhibitors depleted vismodegib-resistant SOX2+ cells from MB tissues, reduced their ability to further engraft in vivo, and increased symptom-free survival. Our results emphasize the promise of therapies targeting GLI to deplete SOX2+ cells and provide stable tumor remission.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Neoplasias Cerebelosas/genética , Niño , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Recurrencia Local de Neoplasia , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Proteína con Dedos de Zinc GLI1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA