Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
EMBO J ; 40(7): e106177, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33694180

RESUMEN

TDP-43 is the major component of pathological inclusions in most ALS patients and in up to 50% of patients with frontotemporal dementia (FTD). Heterozygous missense mutations in TARDBP, the gene encoding TDP-43, are one of the common causes of familial ALS. In this study, we investigate TDP-43 protein behavior in induced pluripotent stem cell (iPSC)-derived motor neurons from three ALS patients with different TARDBP mutations, three healthy controls and an isogenic control. TARDPB mutations induce several TDP-43 changes in spinal motor neurons, including cytoplasmic mislocalization and accumulation of insoluble TDP-43, C-terminal fragments, and phospho-TDP-43. By generating iPSC lines with allele-specific tagging of TDP-43, we find that mutant TDP-43 initiates the observed disease phenotypes and has an altered interactome as indicated by mass spectrometry. Our findings also indicate that TDP-43 proteinopathy results in a defect in mitochondrial transport. Lastly, we show that pharmacological inhibition of histone deacetylase 6 (HDAC6) restores the observed TDP-43 pathologies and the axonal mitochondrial motility, suggesting that HDAC6 inhibition may be an interesting therapeutic target for neurodegenerative disorders linked to TDP-43 pathology.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Transporte Axonal , Proteínas de Unión al ADN/genética , Histona Desacetilasa 6/metabolismo , Neuronas Motoras/metabolismo , Esclerosis Amiotrófica Lateral/genética , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Células Madre Pluripotentes Inducidas/citología , Mitocondrias/metabolismo , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Mutación Missense
2.
Alzheimers Dement ; 14(10): 1261-1280, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30036493

RESUMEN

INTRODUCTION: Tauopathies are neurodegenerative diseases characterized by TAU protein-related pathology, including frontotemporal dementia and Alzheimer's disease among others. Mutant TAU animal models are available, but none of them faithfully recapitulates human pathology and are not suitable for drug screening. METHODS: To create a new in vitro tauopathy model, we generated a footprint-free triple MAPT-mutant human induced pluripotent stem cell line (N279K, P301L, and E10+16 mutations) using clustered regularly interspaced short palindromic repeats-FokI and piggyBac transposase technology. RESULTS: Mutant neurons expressed pathogenic 4R and phosphorylated TAU, endogenously triggered TAU aggregation, and had increased electrophysiological activity. TAU-mutant cells presented deficiencies in neurite outgrowth, aberrant sequence of differentiation to cortical neurons, and a significant activation of stress response pathways. RNA sequencing confirmed stress activation, demonstrated a shift toward GABAergic identity, and an upregulation of neurodegenerative pathways. DISCUSSION: In summary, we generated a novel in vitro human induced pluripotent stem cell TAU-mutant model displaying neurodegenerative disease phenotypes that could be used for disease modeling and drug screening.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Sistemas CRISPR-Cas , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas/patología , Potenciales de la Membrana/fisiología , Mutación , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neurogénesis/fisiología , Proyección Neuronal/fisiología , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Tauopatías/genética , Tauopatías/patología , Transcriptoma , Proteínas tau/genética
3.
Epilepsia ; 57(5): 717-26, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27020476

RESUMEN

OBJECTIVE: Febrile seizures (FS) are fever-associated convulsions, being the most common seizure disorder in early childhood. A subgroup of these children later develops epilepsy characterized by a hyperexcitable neuronal network in the hippocampus. Hippocampal excitability is regulated by the hippocampal dentate gyrus (DG) where postnatal neurogenesis occurs. Experimental FS increase the survival of newborn hippocampal dentate granule cells (DGCs), yet the significance of this neuronal subpopulation to the hippocampal network remains unclear. In the current study, we characterized the temporal maturation and structural integration of these post-FS born DGCs in the DG. METHODS: Experimental FS were induced in 10-day-old rat pups. The next day, retroviral particles coding for enhanced green fluorescent protein (eGFP) were stereotactically injected in the DG to label newborn cells. Histochemical analyses of eGFP expressing DGCs were performed one, 4, and 8 weeks later and consisted of the following: (1) colocalization with neurodevelopmental markers doublecortin, calretinin, and the mature neuronal marker NeuN; (2) quantification of dendritic complexity; and (3) quantification of spine density and morphology. RESULTS: At neither time point were neurodevelopmental markers differently expressed between FS animals and normothermia (NT) controls. One week after treatment, DGCs from FS animals showed dendrites that were 66% longer than those from NT controls. At 4 and 8 weeks, Sholl analysis of the outer 83% of the molecular layer showed 20-25% more intersections in FS animals than in NT controls (p < 0.01). Although overall spine density was not affected, an increase in mushroom-type spines was observed after 8 weeks. SIGNIFICANCE: Experimental FS increase dendritic complexity and the number of mushroom-type spines in post-FS born DGCs, demonstrating a more mature phenotype and suggesting increased incoming excitatory information. The consequences of this hyperconnectivity to signal processing in the DG and the output of the hippocampus remain to be studied.


Asunto(s)
Dendritas/fisiología , Giro Dentado/patología , Neuronas/ultraestructura , Convulsiones Febriles/patología , Factores de Edad , Animales , Animales Recién Nacidos , Calbindina 2/metabolismo , Convulsivantes/toxicidad , Giro Dentado/crecimiento & desarrollo , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Neuronas/patología , Neuropéptidos/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Polimetil Metacrilato/toxicidad , Ratas , Ratas Sprague-Dawley , Convulsiones Febriles/inducido químicamente , Transducción Genética , Transfección
4.
Epilepsia ; 53(11): 1968-77, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23030508

RESUMEN

PURPOSE: Febrile seizures (FS), the most frequent seizure type during childhood, have been linked to temporal lobe epilepsy (TLE) in adulthood. Yet, underlying mechanisms are still largely unknown. Altered γ-aminobutyric acid (GABA)ergic neurotransmission in the dentate gyrus (DG) circuit has been hypothesized to be involved. This study aims at analyzing whether experimental FS change inhibitory synaptic input and postsynaptic GABA(A) R function in dentate granule cells. METHODS: We applied an immature rat model of hyperthermia (HT)-induced FS. GABA(A) R-mediated neurotransmission was studied using whole-cell patch-clamp recordings from dentate granule neurons in hippocampal slices within 6-9 days post-HT. KEY FINDINGS: Frequencies of spontaneous inhibitory postsynaptic currents (sIPSCs) were reduced in HT rats that had experienced seizures, whereas sIPSC amplitudes were enhanced. Whole-cell GABA responses revealed a doubled GABA(A) R sensitivity in dentate granule cells from HT animals, compared to that of normothermic (NT) controls. Analysis of sIPSCs and whole-cell GABA responses showed similar kinetics in postsynaptic GABA(A) Rs of HT and NT rats. quantitative real-time polymerase chain reaction (qPCR) experiments indicated changes in DG GABA(A) R subunit expression, which was most pronounced for the α3 subunit. SIGNIFICANCE: The data support the hypothesis that FS persistently alter neuronal excitability.


Asunto(s)
Giro Dentado/fisiología , Receptores de GABA-A/fisiología , Convulsiones Febriles/fisiopatología , Transmisión Sináptica/fisiología , Factores de Edad , Animales , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Ácido gamma-Aminobutírico/fisiología
5.
Brain Behav ; 12(3): e2505, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35191203

RESUMEN

Prolonged febrile seizures (FS) are a risk factor for the development of hippocampal-associated temporal lobe epilepsy. The dentate gyrus is the major gateway to the hippocampal network and one of the sites in the brain where neurogenesis continues postnatally. Previously, we found that experimental FS increase the survival rate and structural integration of newborn dentate granule cells (DGCs). In addition, mature post-FS born DGCs express an altered receptor panel. Here, we aimed to study if these molecular and structural changes are accompanied by an altered cellular functioning. Experimental FS were induced by hyperthermia in 10-days-old Sprague-Dawley rats. Proliferating progenitor cells were labeled the next day by injecting green fluorescent protein expressing retroviral particles bilaterally in the dentate gyri. Eight weeks later, spontaneous excitatory and inhibitory postsynaptic events (sEPSCs and sIPSCs, respectively) were recorded from labeled DGCs using the whole-cell patch-clamp technique. Experimental FS resulted in a robust decrease of the inter event interval (p < .0001) and a small decrease of the amplitude of sEPSCs (p < .001). Collectively the spontaneous excitatory charge transfer increased (p < .01). Experimental FS also slightly increased the frequency of sIPSCs (p < .05), while the amplitude of these events decreased strongly (p < .0001). The net inhibitory charge transfer remained unchanged. Experimental, early-life FS have a long-term effect on post-FS born DGCs, as they display an increased spontaneous excitatory input when matured. It remains to be established if this presents a mechanism for FS-induced epileptogenesis.


Asunto(s)
Convulsiones Febriles , Estado Epiléptico , Animales , Giro Dentado/metabolismo , Fiebre , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica
6.
Sci Adv ; 7(15)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33837088

RESUMEN

A hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). How this mutation leads to these neurodegenerative diseases remains unclear. Here, we show using patient stem cell-derived motor neurons that the repeat expansion impairs microtubule-based transport, a process critical for neuronal survival. Cargo transport defects are recapitulated by treating neurons from healthy individuals with proline-arginine and glycine-arginine dipeptide repeats (DPRs) produced from the repeat expansion. Both arginine-rich DPRs similarly inhibit axonal trafficking in adult Drosophila neurons in vivo. Physical interaction studies demonstrate that arginine-rich DPRs associate with motor complexes and the unstructured tubulin tails of microtubules. Single-molecule imaging reveals that microtubule-bound arginine-rich DPRs directly impede translocation of purified dynein and kinesin-1 motor complexes. Collectively, our study implicates inhibitory interactions of arginine-rich DPRs with axonal transport machinery in C9orf72-associated ALS/FTD and thereby points to potential therapeutic strategies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Animales , Arginina/genética , Transporte Axonal , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN , Dipéptidos/farmacología , Drosophila/genética , Demencia Frontotemporal/genética , Humanos , Microtúbulos/metabolismo , Neuronas Motoras/metabolismo
7.
Biochem Soc Trans ; 37(Pt 6): 1419-22, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19909289

RESUMEN

Epileptic seizures result in an increased generation of new neurons in the dentate gyrus of the adult mammalian hippocampus. The role of these seizure-induced newborn neurons in the process of epileptogenesis remains largely unknown. Recent work, however, suggests an aberrant incorporation of newborn cells into the existing hippocampal network in such a way that they promote hippocampal hyperexcitability. In the present review, we discuss current knowledge about the possible role of seizure-induced newly generated neurons and the putative involvement of ligand-gated ion channels in the process of epileptogenesis.


Asunto(s)
Epilepsia/fisiopatología , Canales Iónicos/metabolismo , Neurogénesis/fisiología , Animales , Giro Dentado/citología , Giro Dentado/metabolismo , Humanos , Ligandos
8.
Nat Commun ; 10(1): 4147, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31515480

RESUMEN

Energy metabolism has been repeatedly linked to amyotrophic lateral sclerosis (ALS). Yet, motor neuron (MN) metabolism remains poorly studied and it is unknown if ALS MNs differ metabolically from healthy MNs. To address this question, we first performed a metabolic characterization of induced pluripotent stem cells (iPSCs) versus iPSC-derived MNs and subsequently compared MNs from ALS patients carrying FUS mutations to their CRISPR/Cas9-corrected counterparts. We discovered that human iPSCs undergo a lactate oxidation-fuelled prooxidative metabolic switch when they differentiate into functional MNs. Simultaneously, they rewire metabolic routes to import pyruvate into the TCA cycle in an energy substrate specific way. By comparing patient-derived MNs and their isogenic controls, we show that ALS-causing mutations in FUS did not affect glycolytic or mitochondrial energy metabolism of human MNs in vitro. These data show that metabolic dysfunction is not the underlying cause of the ALS-related phenotypes previously observed in these MNs.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Diferenciación Celular , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación/genética , Proteína FUS de Unión a ARN/genética , Estudios de Casos y Controles , Respiración de la Célula , Glucosa/metabolismo , Glucólisis , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ácido Láctico/metabolismo , Análisis de Flujos Metabólicos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Neuronas Motoras/ultraestructura , Proteína FUS de Unión a ARN/metabolismo
9.
Mol Neurobiol ; 50(2): 626-46, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24705860

RESUMEN

Epilepsy is a common neurological disorder characterized by recurrent seizures. These seizures are due to abnormal excessive and synchronous neuronal activity in the brain caused by a disruption of the delicate balance between excitation and inhibition. Neuropeptides can contribute to such misbalance by modulating the effect of classical excitatory and inhibitory neurotransmitters. In this review, we discuss 21 different neuropeptides that have been linked to seizure disorders. These neuropeptides show an aberrant expression and/or release in animal seizure models and/or epilepsy patients. Many of these endogenous peptides, like adrenocorticotropic hormone, angiotensin, cholecystokinin, cortistatin, dynorphin, galanin, ghrelin, neuropeptide Y, neurotensin, somatostatin, and thyrotropin-releasing hormone, are able to suppress seizures in the brain. Other neuropeptides, such as arginine-vasopressine peptide, corticotropin-releasing hormone, enkephalin, ß-endorphin, pituitary adenylate cyclase-activating polypeptide, and tachykinins have proconvulsive properties. For oxytocin and melanin-concentrating hormone both pro- and anticonvulsive effects have been reported, and this seems to be dose or time dependent. All these neuropeptides and their receptors are interesting targets for the development of new antiepileptic drugs. Other neuropeptides such as nesfatin-1 and vasoactive intestinal peptide have been less studied in this field; however, as nesfatin-1 levels change over the course of epilepsy, this can be considered as an interesting marker to diagnose patients who have suffered a recent epileptic seizure.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Modelos Animales de Enfermedad , Epilepsia/tratamiento farmacológico , Neuronas/efectos de los fármacos , Neuropéptidos/efectos de los fármacos , Animales , Humanos
10.
Dev Neurobiol ; 72(12): 1516-27, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22378685

RESUMEN

Febrile seizures (FS) are the most common type of seizures in childhood and are suggested to play a role in the development of temporal lobe epilepsy (TLE). Animal studies demonstrated that experimental FS induce a long-lasting change in hippocampal excitability, resulting in enhanced seizure susceptibility. Hippocampal neurogenesis and altered ion channel expression have both been proposed as mechanisms underlying this decreased seizure threshold. The present study aimed to analyze whether dentate gyrus (DG) cells that were born after FS and matured for 8 weeks display an altered repertoire of ligand-gated ion channels. To this end, we applied an established model, in which FS are elicited in 10-day-old rat pups by hyperthermia (HT). Normothermia littermates served as controls. From postnatal day 11 (P11) to P16, rats were injected with bromodeoxyuridine (BrdU) to label dividing cells immediately following FS. At P66, we evaluated BrdU-labeled DG cells for coexpression with γ-aminobutyric acid-type A receptors (GABA(A)Rs) and N-methyl-D-aspartate receptors (NMDARs). In control animals, 40% of BrdU-labeled cells coexpressed GABA(A)R ß2/3, whereas in rats that had experienced FS, 60% of BrdU-labeled cells also expressed GABA(A)R ß2/3. The number of BrdU-NMDAR NR2A/B coexpressing cells was in both groups about 80% of BrdU-labeled cells. The results demonstrate that developmental seizures cause a long-term increase in GABA(A)R ß2/3 expression in newborn DG cells. This may affect hippocampal physiology.


Asunto(s)
Giro Dentado/metabolismo , Receptores de GABA-A/biosíntesis , Convulsiones Febriles/metabolismo , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Fiebre/complicaciones , Fiebre/metabolismo , Técnica del Anticuerpo Fluorescente , Masculino , Microscopía Confocal , Ratas , Ratas Sprague-Dawley
11.
BMC Res Notes ; 5: 685, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23237195

RESUMEN

BACKGROUND: Quantitative real-time PCR (qPCR) is a commonly used technique to quantify gene expression levels. Validated normalization is essential to obtain reliable qPCR data. In that context, normalizing to multiple reference genes has become the most popular method. However, expression of reference genes may vary per tissue type, developmental stage and in response to experimental treatment. It is therefore imperative to determine stable reference genes for a specific sample set and experimental model. The present study was designed to validate potential reference genes in hippocampal tissue from rats that had experienced early-life febrile seizures (FS). To this end, we applied an established model in which FS were evoked by exposing 10-day old rat pups to heated air. One week later, we determined the expression stability of seven frequently used reference genes in the hippocampal dentate gyrus. RESULTS: Gene expression stability of 18S rRNA, ActB, GusB, Arbp, Tbp, CycA and Rpl13A was tested using geNorm and Normfinder software. The ranking order of reference genes proposed by geNorm was not identical to that suggested by Normfinder. However, both algorithms indicated CycA, Rpl13A and Tbp as the most stable genes, whereas 18S rRNA and ActB were found to be the least stably expressed genes. CONCLUSIONS: Our data demonstrate that the geometric averaging of at least CycA, Rpl13A and Tbp allows reliable interpretation of gene expression data in this experimental set-up. The results also show that ActB and 18S rRNA are not suited as reference genes in this model.


Asunto(s)
Ciclofilina A/genética , Giro Dentado/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Ribosómicas/genética , Convulsiones Febriles/genética , Programas Informáticos , Proteína de Unión a TATA-Box/genética , Aire , Algoritmos , Animales , Animales Recién Nacidos , Expresión Génica , Perfilación de la Expresión Génica , Genes Esenciales , Calor , Masculino , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Estándares de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA