Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 23(7): 100791, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38797438

RESUMEN

Within a cell, proteins have distinct and highly variable half-lives. As a result, the molecular ages of proteins can range from seconds to years. How the age of a protein influences its environmental interactions is a largely unexplored area of biology. To investigate the age-selectivity of cellular pathways, we developed a methodology termed "proteome birthdating" that barcodes proteins based on their time of synthesis. We demonstrate that this approach provides accurate measurements of protein turnover kinetics from a single biological sample encoding multiple labeling time-points. As a first application of the birthdated proteome, we investigated the age distribution of the human ubiquitinome. Our results indicate that the vast majority of ubiquitinated proteins in a cell consist of newly synthesized proteins and that these young proteins constitute the bulk of the degradative flux through the proteasome. Rapidly ubiquitinated nascent proteins are enriched in cytosolic subunits of large protein complexes. Conversely, proteins destined for the secretory pathway and vesicular transport have older ubiquitinated populations. Our data also identify a smaller subset of older ubiquitinated cellular proteins that do not appear to be targeted to the proteasome for rapid degradation. Together, our data provide an age census of the human ubiquitinome and establish proteome birthdating as a robust methodology for investigating the protein age-selectivity of diverse cellular pathways.

2.
Proc Natl Acad Sci U S A ; 120(33): e2303167120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37552756

RESUMEN

The folding of most proteins occurs during the course of their translation while their tRNA-bound C termini are embedded in the ribosome. How the close proximity of nascent proteins to the ribosome influences their folding thermodynamics remains poorly understood. Here, we have developed a mass spectrometry-based approach for determining the stabilities of nascent polypeptide chains using methionine oxidation as a folding probe. This approach enables quantitative measurement subglobal folding stabilities of ribosome nascent chains within complex protein mixtures and extracts. To validate the methodology, we analyzed the folding thermodynamics of three model proteins (dihydrofolate reductase, chemotaxis protein Y, and DNA polymerase IV) in soluble and ribosome-bound states. The data indicate that the ribosome can significantly alter the stability of nascent polypeptides. Ribosome-induced stability modulations were highly variable among different folding domains and were dependent on localized charge distributions within nascent polypeptides. The results implicated electrostatic interactions between the ribosome surface and nascent polypeptides as the cause of ribosome-induced stability modulations. The study establishes a robust proteomic methodology for analyzing localized stabilities within ribosome-bound nascent polypeptides and sheds light on how the ribosome influences the thermodynamics of protein folding.


Asunto(s)
Biosíntesis de Proteínas , Proteómica , Ribosomas/metabolismo , Péptidos/química , Pliegue de Proteína , Proteínas/metabolismo , Espectrometría de Masas
3.
Mol Cell Proteomics ; 20: 100041, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33639418

RESUMEN

Cells continually degrade and replace damaged proteins. However, the high energetic demand of protein turnover generates reactive oxygen species that compromise the long-term health of the proteome. Thus, the relationship between aging, protein turnover, and energetic demand remains unclear. Here, we used a proteomic approach to measure rates of protein turnover within primary fibroblasts isolated from a number of species with diverse life spans including the longest-lived mammal, the bowhead whale. We show that organismal life span is negatively correlated with turnover rates of highly abundant proteins. In comparison with mice, cells from long-lived naked mole rats have slower rates of protein turnover, lower levels of ATP production, and reduced reactive oxygen species levels. Despite having slower rates of protein turnover, naked mole rat cells tolerate protein misfolding stress more effectively than mouse cells. We suggest that in lieu of a rapid constitutive turnover, long-lived species may have evolved more energetically efficient mechanisms for selective detection and clearance of damaged proteins.


Asunto(s)
Proteoma , Aminoácidos , Animales , Humanos , Cinética , Luz , Longevidad , Preparaciones Farmacéuticas , Proteómica , Radioisótopos , Especificidad de la Especie
4.
Mol Cell Proteomics ; 17(4): 580-591, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29321186

RESUMEN

The constitutive process of protein turnover plays a key role in maintaining cellular homeostasis. Recent technological advances in mass spectrometry have enabled the measurement of protein turnover kinetics across the proteome. However, it is not known if turnover kinetics of individual proteins are highly conserved or if they have evolved to meet the physiological demands of individual species. Here, we conducted systematic analyses of proteome turnover kinetics in primary dermal fibroblasts isolated from eight different rodent species. Our results highlighted two trends in the variability of proteome turnover kinetics across species. First, we observed a decrease in cross-species correlation of protein degradation rates as a function of evolutionary distance. Second, we observed a negative correlation between global protein turnover rates and maximum lifespan of the species. We propose that by reducing the energetic demands of continuous protein turnover, long-lived species may have evolved to lessen the generation of reactive oxygen species and the corresponding oxidative damage over their extended lifespans.


Asunto(s)
Fibroblastos/metabolismo , Proteolisis , Proteoma , Roedores/metabolismo , Animales , Células Cultivadas , Cinética , Longevidad , Especificidad de la Especie
5.
J Cell Biol ; 223(1)2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37966721

RESUMEN

LMNA mutations cause laminopathies that afflict the cardiovascular system and include Hutchinson-Gilford progeria syndrome. The origins of tissue specificity in these diseases are unclear as the lamin A/C proteins are broadly expressed. We show that LMNA transcript levels are not predictive of lamin A/C protein levels across tissues and use quantitative proteomics to discover that tissue context and disease mutation each influence lamin A/C protein's lifetime. Lamin A/C's lifetime is an order of magnitude longer in the aorta, heart, and fat, where laminopathy pathology is apparent, than in the liver and intestine, which are spared from the disease. Lamin A/C is especially insoluble in cardiovascular tissues, which may limit degradation and promote protein stability. Progerin is even more long lived than lamin A/C in the cardiovascular system and accumulates there over time. Progerin accumulation is associated with impaired turnover of hundreds of abundant proteins in progeroid tissues. These findings identify impaired lamin A/C protein turnover as a novel feature of laminopathy syndromes.


Asunto(s)
Lamina Tipo A , Progeria , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Mutación , Progeria/genética , Progeria/patología , Proteómica
6.
J Am Soc Mass Spectrom ; 35(3): 433-440, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38324783

RESUMEN

Post-translational oxidation of methionine residues can destabilize proteins or modify their functions. Although levels of methionine oxidation can provide important information regarding the structural integrity and regulation of proteins, their quantitation is often challenging as analytical procedures in and of themselves can artifactually oxidize methionines. Here, we develop a mass-spectrometry-based method called Methionine Oxidation by Blocking with Alkylation (MObBa) that quantifies methionine oxidation by selectively alkylating and blocking unoxidized methionines. Thus, alkylated methionines can be used as a stable proxy for unoxidized methionines. Using proof of concept experiments, we demonstrate that MObBa can be used to measure methionine oxidation levels within individual synthetic peptides and on proteome-wide scales. MObBa may provide a straightforward experimental strategy for mass spectrometric quantitation of methionine oxidation.


Asunto(s)
Metionina , Racemetionina , Metionina/química , Oxidación-Reducción , Espectrometría de Masas/métodos , Racemetionina/metabolismo , Alquilación , Proteoma/química
7.
bioRxiv ; 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37162946

RESUMEN

Mutations to the LMNA gene cause laminopathies including Hutchinson-Gilford progeria syndrome (HGPS) that severely affect the cardiovascular system. The origins of tissue specificity in these diseases are unclear, as the A-type Lamins are abundant and broadly expressed proteins. We show that A-type Lamin protein and transcript levels are uncorrelated across tissues. As protein-transcript discordance can be caused by variations in protein lifetime, we applied quantitative proteomics to profile protein turnover rates in healthy and progeroid tissues. We discover that tissue context and disease mutation each influence A-type Lamin protein lifetime. Lamin A/C has a weeks-long lifetime in the aorta, heart, and fat, where progeroid pathology is apparent, but a days-long lifetime in the liver and gastrointestinal tract, which are spared from disease. The A-type Lamins are insoluble and densely bundled in cardiovascular tissues, which may present an energetic barrier to degradation and promote long protein lifetime. Progerin is even more long-lived than Lamin A/C in the cardiovascular system and accumulates there over time. Progerin accumulation interferes broadly with protein homeostasis, as hundreds of abundant proteins turn over more slowly in progeroid tissues. These findings indicate that potential gene therapy interventions for HGPS will have significant latency and limited potency in disrupting the long-lived Progerin protein. Finally, we reveal that human disease alleles are significantly over-represented in the long-lived proteome, indicating that long protein lifetime may influence disease pathology and present a significant barrier to gene therapies for numerous human diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA