RESUMEN
Coordinated cardiomyocyte contraction drives the mammalian heart to beat and circulate blood. No consensus model of cardiomyocyte geometrical arrangement exists, due to the limited spatial resolution of whole heart imaging methods and the piecemeal nature of studies based on histological sections. By combining microscopy and computer vision, we produced the first-ever three-dimensional cardiomyocyte orientation reconstruction across mouse ventricular walls at the micrometer scale, representing a gain of three orders of magnitude in spatial resolution. We recovered a cardiomyocyte arrangement aligned to the long-axis direction of the outer ventricular walls. This cellular network lies in a thin shell and forms a continuum with longitudinally arranged cardiomyocytes in the inner walls, with a complex geometry at the apex. Our reconstruction methods can be applied at fine spatial scales to further understanding of heart wall electrical function and mechanics, and set the stage for the study of micron-scale fiber remodeling in heart disease.
Asunto(s)
Ventrículos Cardíacos , Miocitos Cardíacos , Animales , Ratones , MamíferosRESUMEN
Astrocytes are increasingly understood to be important regulators of central nervous system (CNS) function in health and disease; yet, we have little quantitative understanding of their complex architecture. While broad categories of astrocytic structures are known, the discrete building blocks that compose them, along with their geometry and organizing principles, are poorly understood. Quantitative investigation of astrocytic complexity is impeded by the absence of high-resolution datasets and robust computational approaches to analyze these intricate cells. To address this, we produced four ultra-high-resolution datasets of mouse cerebral cortex using serial electron microscopy and developed astrocyte-tailored computer vision methods for accurate structural analysis. We unearthed specific anatomical building blocks, structural motifs, connectivity hubs, and hierarchical organizations of astrocytes. Furthermore, we found that astrocytes interact with discrete clusters of synapses and that astrocytic mitochondria are distributed to lie closer to larger clusters of synapses. Our findings provide a geometrically principled, quantitative understanding of astrocytic nanoarchitecture and point to an unexpected level of complexity in how astrocytes interact with CNS microanatomy.