Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 572(7771): 609-613, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31435016

RESUMEN

Mitochondria provide chemical energy for endoergonic reactions in the form of ATP, and their activity must meet cellular energy requirements, but the mechanisms that link organelle performance to ATP levels are poorly understood. Here we confirm the existence of a protein complex localized in mitochondria that mediates ATP-dependent potassium currents (that is, mitoKATP). We show that-similar to their plasma membrane counterparts-mitoKATP channels are composed of pore-forming and ATP-binding subunits, which we term MITOK and MITOSUR, respectively. In vitro reconstitution of MITOK together with MITOSUR recapitulates the main properties of mitoKATP. Overexpression of MITOK triggers marked organelle swelling, whereas the genetic ablation of this subunit causes instability in the mitochondrial membrane potential, widening of the intracristal space and decreased oxidative phosphorylation. In a mouse model, the loss of MITOK suppresses the cardioprotection that is elicited by pharmacological preconditioning induced by diazoxide. Our results indicate that mitoKATP channels respond to the cellular energetic status by regulating organelle volume and function, and thereby have a key role in mitochondrial physiology and potential effects on several pathological processes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Mitocondrias Cardíacas/metabolismo , Canales de Potasio/metabolismo , Animales , Cardiotónicos/farmacología , Diazóxido/farmacología , Fenómenos Electrofisiológicos , Corazón/efectos de los fármacos , Corazón/fisiología , Precondicionamiento Isquémico Miocárdico , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/fisiología , Tamaño de los Órganos/efectos de los fármacos , Fosforilación Oxidativa , Potasio/metabolismo , Canales de Potasio/química , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
2.
Physiology (Bethesda) ; 38(1): 0, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35998249

RESUMEN

Potassium channels are widespread over all kingdoms and play an important role in the maintenance of cellular ionic homeostasis. Kv1.3 is a voltage-gated potassium channel of the Shaker family with a wide tissue expression and a well-defined pharmacology. In recent decades, experiments mainly based on pharmacological modulation of Kv1.3 have highlighted its crucial contribution to different fundamental processes such as regulation of proliferation, apoptosis, and metabolism. These findings link channel function to various pathologies ranging from autoimmune diseases to obesity and cancer. In the present review, we briefly summarize studies employing Kv1.3 knockout animal models to confirm such roles and discuss the findings in comparison to the results obtained by pharmacological modulation of Kv1.3 in various pathophysiological settings. We also underline how these studies contributed to our understanding of channel function in vivo and propose possible future directions.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Animales , Canales de Potasio
3.
Mol Cell ; 64(4): 760-773, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27818145

RESUMEN

Skeletal muscle is a dynamic organ, characterized by an incredible ability to rapidly increase its rate of energy consumption to sustain activity. Muscle mitochondria provide most of the ATP required for contraction via oxidative phosphorylation. Here we found that skeletal muscle mitochondria express a unique MCU complex containing an alternative splice isoform of MICU1, MICU1.1, characterized by the addition of a micro-exon that is sufficient to greatly modify the properties of the MCU. Indeed, MICU1.1 binds Ca2+ one order of magnitude more efficiently than MICU1 and, when heterodimerized with MICU2, activates MCU current at lower Ca2+ concentrations than MICU1-MICU2 heterodimers. In skeletal muscle in vivo, MICU1.1 is required for sustained mitochondrial Ca2+ uptake and ATP production. These results highlight a novel mechanism of the molecular plasticity of the MCU Ca2+ uptake machinery that allows skeletal muscle mitochondria to be highly responsive to sarcoplasmic [Ca2+] responses.


Asunto(s)
Proteínas de Unión al Calcio/genética , Calcio/metabolismo , Mitocondrias Musculares/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Músculo Esquelético/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/metabolismo , Expresión Génica , Células HEK293 , Células HeLa , Humanos , Transporte Iónico , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Morfolinos/genética , Morfolinos/metabolismo , Especificidad de Órganos , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
4.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256168

RESUMEN

Malignant melanoma is one of the most aggressive and resistant tumor types, with high metastatic properties. Because of the lack of suitable chemotherapeutic agents for treatment, the 5-year survival rate of melanoma patients with regional and distant metastases is lower than 10%. Targeted tumor therapy that provides several promising results might be a good option for the treatment of malignant melanomas. Our goal was to develop novel melanoma-specific peptide-drug conjugates for targeted tumor therapy. Melanocortin-1-receptor (MC1R) is a cell surface receptor responsible for melanogenesis and it is overexpressed on the surface of melanoma cells, providing a good target. Its native ligand, α-MSH (α-melanocyte-stimulating hormone) peptide, or its derivatives, might be potential homing devices for this purpose. Therefore, we prepared three α-MSH derivative-daunomycin (Dau) conjugates and their in vitro and in vivo antitumor activities were compared. Dau has an autofluorescence property; therefore, it is suitable for preparing conjugates for in vitro (e.g., cellular uptake) and in vivo experiments. Dau was attached to the peptides via a non-cleavable oxime linkage that was applied efficiently in our previous experiments, resulting in conjugates with high tumor growth inhibition activity. The results indicated that the most promising conjugate was the compound in which Dau was connected to the side chain of Lys (Ac-SYSNleEHFRWGK(Dau=Aoa)PV-NH2). The highest cellular uptake by melanoma cells was demonstrated using the compound, with the highest tumor growth inhibition detected both on mouse (38.6% on B16) and human uveal melanoma (55% on OMC-1) cells. The effect of the compound was more pronounced than that of the free drug.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Animales , Ratones , Melanoma/tratamiento farmacológico , alfa-MSH/farmacología , Receptor de Melanocortina Tipo 1 , Agresión
5.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38339141

RESUMEN

Chemotherapy is still one of the main therapeutic approaches in cancer therapy. Nevertheless, its poor selectivity causes severe toxic side effects that, together with the development of drug resistance in tumor cells, results in a limitation for its application. Tumor-targeted drug delivery is a possible choice to overcome these drawbacks. As well as monoclonal antibodies, peptides are promising targeting moieties for drug delivery. However, the development of peptide-drug conjugates (PDCs) is still a big challenge. The main reason is that the conjugates have to be stable in circulation, but the drug or its active metabolite should be released efficiently in the tumor cells. For this purpose, suitable linker systems are needed that connect the drug molecule with the homing peptide. The applied linker systems are commonly categorized as cleavable and non-cleavable linkers. Both the groups possess advantages and disadvantages that are summarized briefly in this manuscript. Moreover, in this review paper, we highlight the benefit of oxime-linked anthracycline-peptide conjugates in the development of PDCs. For instance, straightforward synthesis as well as a conjugation reaction proceed in excellent yields, and the autofluorescence of anthracyclines provides a good tool to select the appropriate homing peptides. Furthermore, we demonstrate that these conjugates can be used properly in in vivo studies. The results indicate that the oxime-linked PDCs are potential candidates for targeted tumor therapy.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Daunorrubicina/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Oximas/uso terapéutico , Péptidos/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Preparaciones Farmacéuticas/metabolismo
6.
Plant J ; 109(4): 1014-1027, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34837294

RESUMEN

Precise measurements of dynamic changes in free Ca2+ concentration in the lumen of the plant endoplasmic reticulum (ER) have been lacking so far, despite increasing evidence for the contribution of this intracellular compartment to Ca2+ homeostasis and signalling in the plant cell. In the present study, we targeted an aequorin chimera with reduced Ca2+ affinity to the ER membrane and facing the ER lumen. To this aim, the cDNA for a low-Ca2+ -affinity aequorin variant (AEQmut) was fused to the nucleotide sequence encoding a non-cleavable N-terminal ER signal peptide (fl2). The correct targeting of fl2-AEQmut was confirmed by immunocytochemical analyses in transgenic Arabidopsis thaliana (Arabidopsis) seedlings. An experimental protocol well-established in animal cells - consisting of ER Ca2+ depletion during photoprotein reconstitution followed by ER Ca2+ refilling - was applied to carry out ER Ca2+ measurements in planta. Rapid and transient increases of the ER luminal Ca2+ concentration ([Ca2+ ]ER ) were recorded in response to different environmental stresses, displaying stimulus-specific Ca2+ signatures. The comparative analysis of ER and chloroplast Ca2+ dynamics indicates a complex interplay of these organelles in shaping cytosolic Ca2+ signals during signal transduction events. Our data highlight significant differences in basal [Ca2+ ]ER and Ca2+ handling by plant ER compared to the animal counterpart. The set-up of an ER-targeted aequorin chimera extends and complements the currently available toolkit of organelle-targeted Ca2+ indicators by adding a reporter that improves our quantitative understanding of Ca2+ homeostasis in the plant endomembrane system.


Asunto(s)
Aequorina/metabolismo , Arabidopsis/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Aequorina/genética , Animales , Arabidopsis/genética , Cloroplastos/metabolismo , Citosol/metabolismo , Homeostasis , Proteínas Luminiscentes/metabolismo , Plantones/metabolismo
7.
Clin Psychol Psychother ; 30(3): 536-547, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36541022

RESUMEN

This study aimed to estimate the frequency of maladaptive daydreaming and to explore the pathological personality traits of probable maladaptive daydreamers. Our sample consisted of 239 psychiatric patients. After screening, 42 persons were probable maladaptive, while 197 participants prove to be normal daydreamers. Two pathological domains and three facets measured by the Personality Inventory for DSM-5 showed a moderate significant correlation with the Maladaptive Daydreaming Scale. The score of nearly every domain and facet was slightly higher among probable maladaptive daydreamers. To quantify the difference between the groups, effect sizes were calculated: Significant difference was found on the domain level in Antagonism, while on the facet level in Hostility, Grandiosity, Attention Seeking, Unusual Beliefs and Experiences, Cognitive and Perceptual Dysregulation. The group of probable maladaptive daydreamers was further examined to identify potential subgroups. Cluster analysis revealed heterogeneity in the severeness and patterns of pathological personality domains. Cluster 1 showed higher mean scores on the PID domains and on the MDS compared to Cluster 2. Clusters 1 and 2 broke further down into two subclusters: Cluster 1a and Cluster 1b differed in their mean scores on the domains of Antagonism and Detachment; the mean scores of Cluster 2a were uniformly low on each domain, while the mean values of Cluster 2b were scattered in a mixed way on the domains. Our results suggest that maladaptive daydreaming might manifest with differently pathological personality profiles in the background. This aspect might worth considering in planning treatment.


Asunto(s)
Trastornos del Humor , Trastornos de la Personalidad , Humanos , Trastornos de la Personalidad/diagnóstico , Trastornos de la Personalidad/psicología , Manual Diagnóstico y Estadístico de los Trastornos Mentales , Inventario de Personalidad , Personalidad
8.
Pflugers Arch ; 474(11): 1147-1157, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36152073

RESUMEN

Lung cancer is one of the leading causes of cancer-related deaths worldwide. The Ca2+-activated K+ channel KCa3.1 contributes to the progression of non-small cell lung cancer (NSCLC). Recently, KCa3.1 channels were found in the inner membrane of mitochondria in different cancer cells. Mitochondria are the main sources for the generation of reactive oxygen species (ROS) that affect the progression of cancer cells. Here, we combined Western blotting, immunofluorescence, and fluorescent live-cell imaging to investigate the expression and function of KCa3.1 channels in the mitochondria of NSCLC cells. Western blotting revealed KCa3.1 expression in mitochondrial lysates from different NSCLC cells. Using immunofluorescence, we demonstrate a co-localization of KCa3.1 channels with mitochondria of NSCLC cells. Measurements of the mitochondrial membrane potential with TMRM reveal a hyperpolarization following the inhibition of KCa3.1 channels with the cell-permeable blocker senicapoc. This is not the case when cells are treated with the cell-impermeable peptidic toxin maurotoxin. The hyperpolarization of the mitochondrial membrane potential is accompanied by an increased generation of ROS in NSCLC cells. Collectively, our results provide firm evidence for the functional expression of KCa3.1 channels in the inner membrane of mitochondria of NSCLC cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
9.
FASEB J ; 35(3): e21362, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33629768

RESUMEN

Friedreich ataxia (FRDA) is a neurodegenerative disease resulting from a severe decrease of frataxin (FXN). Most patients carry a GAA repeat expansion in both alleles of the FXN gene, whereas a small fraction of them are compound heterozygous for the expansion and a point mutation in the other allele. FXN is involved in the mitochondrial biogenesis of the FeS-clusters. Distinctive feature of FRDA patient cells is an impaired cellular respiration, likely due to a deficit of key redox cofactors working as electrons shuttles through the respiratory chain. However, a definite relationship between FXN levels, FeS-clusters assembly dysregulation and bioenergetics failure has not been established. In this work, we performed a comparative analysis of the mitochondrial phenotype of cell lines from FRDA patients, either homozygous for the expansion or compound heterozygotes for the G130V mutation. We found that, in healthy cells, FXN and two key proteins of the FeS-cluster assembly machinery are enriched in mitochondrial cristae, the dynamic subcompartment housing the respiratory chain. On the contrary, FXN widely redistributes to the matrix in FRDA cells with defects in respiratory supercomplexes assembly and altered respiratory function. We propose that this could be relevant for the early mitochondrial defects afflicting FRDA cells and that perturbation of mitochondrial morphodynamics could in turn be critical in terms of disease mechanisms.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/biosíntesis , Metabolismo Energético , Ataxia de Friedreich/metabolismo , Proteínas de Unión a Hierro/fisiología , Membranas Mitocondriales/metabolismo , Línea Celular , Ataxia de Friedreich/patología , Humanos , Proteínas de Unión a Hierro/genética , Membranas Mitocondriales/patología , Frataxina
10.
Mol Pharm ; 19(11): 3700-3729, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36174227

RESUMEN

Central nervous system (CNS) diseases are among the most difficult to treat, mainly because the vast majority of the drugs fail to cross the blood-brain barrier (BBB) or to reach the brain at concentrations adequate to exert a pharmacological activity. The obstacle posed by the BBB has led to the in-depth study of strategies allowing the brain delivery of CNS-active drugs. Among the most promising strategies is the use of peptides addressed to the BBB. Peptides are versatile molecules that can be used to decorate nanoparticles or can be conjugated to drugs, with either a stable link or as pro-drugs. They have been used to deliver to the brain both small molecules and proteins, with applications in diverse therapeutic areas such as brain cancers, neurodegenerative diseases and imaging. Peptides can be generally classified as receptor-targeted, recognizing membrane proteins expressed by the BBB microvessels (e.g., Angiopep2, CDX, and iRGD), "cell-penetrating peptides" (CPPs; e.g. TAT47-57, SynB1/3, and Penetratin), undergoing transcytosis through unspecific mechanisms, or those exploiting a mixed approach. The advantages of peptides have been extensively pointed out, but so far few studies have focused on the potential negative aspects. Indeed, despite having a generally good safety profile, some peptide conjugates may display toxicological characteristics distinct from those of the peptide itself, causing for instance antigenicity, cardiovascular alterations or hemolysis. Other shortcomings are the often brief lifetime in vivo, caused by the presence of peptidases, the vulnerability to endosomal/lysosomal degradation, and the frequently still insufficient attainable increase of brain drug levels, which remain below the therapeutically useful concentrations. The aim of this review is to analyze not only the successful and promising aspects of the use of peptides in brain targeting but also the problems posed by this strategy for drug delivery.


Asunto(s)
Encéfalo , Nanopartículas , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Transcitosis , Nanopartículas/química , Fármacos del Sistema Nervioso Central/metabolismo , Preparaciones Farmacéuticas/metabolismo
11.
Mol Cell ; 53(5): 726-37, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24560927

RESUMEN

Mitochondrial calcium accumulation was recently shown to depend on a complex composed of an inner-membrane channel (MCU and MCUb) and regulatory subunits (MICU1, MCUR1, and EMRE). A fundamental property of MCU is low activity at resting cytosolic Ca(2+) concentrations, preventing deleterious Ca(2+) cycling and organelle overload. Here we demonstrate that these properties are ensured by a regulatory heterodimer composed of two proteins with opposite effects, MICU1 and MICU2, which, both in purified lipid bilayers and in intact cells, stimulate and inhibit MCU activity, respectively. Both MICU1 and MICU2 are regulated by calcium through their EF-hand domains, thus accounting for the sigmoidal response of MCU to [Ca(2+)] in situ and allowing tight physiological control. At low [Ca(2+)], the dominant effect of MICU2 largely shuts down MCU activity; at higher [Ca(2+)], the stimulatory effect of MICU1 allows the prompt response of mitochondria to Ca(2+) signals generated in the cytoplasm.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Aequorina/química , Calcio/química , Citoplasma/metabolismo , Citosol/metabolismo , Dimerización , Disulfuros , Electrofisiología/métodos , Silenciador del Gen , Células HeLa , Humanos , Inmunohistoquímica , Membrana Dobles de Lípidos/química , Mitocondrias/metabolismo , Unión Proteica , ARN Interferente Pequeño/metabolismo , Transducción de Señal
12.
Molecules ; 27(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36235291

RESUMEN

Utilizing McMurry reactions of 4,4'-dihydroxybenzophenone with appropriate carbonyl compounds, a series of 4-Hydroxytamoxifen analogues were synthesized. Their cytotoxic activity was evaluated in vitro on four human malignant cell lines (MCF-7, MDA-MB 231, A2058, HT-29). It was found that some of these novel Tamoxifen analogues show marked cytotoxicity in a dose-dependent manner. The relative ROS-generating capability of the synthetized analogues was evaluated by cyclic voltammetry (CV) and DFT modeling studies. The results of cell-viability assays, CV measurements and DFT calculations suggest that the cytotoxicity of the majority of the novel compounds is mainly elicited by their interactions with cellular targets including estrogen receptors rather than triggered by redox processes. However, three novel compounds could be involved in ROS-production and subsequent formation of quinone-methide preventing proliferation and disrupting the redox balance of the treated cells. Among the cell lines studied, HT-29 proved to be the most susceptible to the treatment with compounds having ROS-generating potency.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Electrones , Femenino , Humanos , Especies Reactivas de Oxígeno/farmacología , Receptores de Estrógenos/metabolismo , Relación Estructura-Actividad , Tamoxifeno/análogos & derivados , Tamoxifeno/metabolismo
13.
Physiol Rev ; 94(2): 519-608, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24692355

RESUMEN

The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.


Asunto(s)
Canales Iónicos/metabolismo , Membranas Mitocondriales/metabolismo , Animales , Humanos , Canales Iónicos/genética , Transporte Iónico
14.
Cell Physiol Biochem ; 55(1): 61-90, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33508184

RESUMEN

Pancreatic cancers are among the most ominous, and among the most studied. Their complexities have provided ample material for a huge investigative effort, which is briefly surveyed in this review. Eradication by surgery has proven extremely difficult, and a successful chemotherapeutic approach is desperately needed. Treatment with "traditional" anticancer drugs, such as benchmark gemcitabine or the current standard-of-care FOLFIRINOX quaternary combination increase the mean overall survival by only a few months and often leads to chemoresistance. Much work is therefore currently devoted to potentiating our pharmacological weapons by accurate targeting and, in particular, by acting on the dense tumoral stroma, a distinctive feature of PDAC accounting for much of the therapeutic difficulty. We give an overview of recent developments, touching on the major aspects of PDAC physiology and biochemistry, currently-used and experimental drugs, and targeting technologies under development. A few papers are discussed in some detail to help provide a sense of how the field is moving.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología
15.
Plant Physiol ; 184(4): 2078-2090, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32978277

RESUMEN

In angiosperms, the NADH dehydrogenase-like (NDH) complex mediates cyclic electron transport around PSI (CET). K+ Efflux Antiporter3 (KEA3) is a putative thylakoid H+/K+ antiporter and allows an increase in membrane potential at the expense of the ∆pH component of the proton motive force. In this study, we discovered that the chlororespiratory reduction2-1 (crr2-1) mutation, which abolished NDH-dependent CET, enhanced the kea3-1 mutant phenotypes in Arabidopsis (Arabidopsis thaliana). The NDH complex pumps protons during CET, further enhancing ∆pH, but its physiological function has not been fully clarified. The observed effect only took place upon exposure to light of 110 µmol photons m-2 s-1 after overnight dark adaptation. We propose two distinct modes of NDH action. In the initial phase, within 1 min after the onset of actinic light, the NDH-dependent CET engages with KEA3 to enhance electron transport efficiency. In the subsequent phase, in which the ∆pH-dependent down-regulation of the electron transport is relaxed, the NDH complex engages with KEA3 to relax the large ∆pH formed during the initial phase. We observed a similar impact of the crr2-1 mutation in the genetic background of the PROTON GRADIENT REGULATION5 overexpression line, in which the size of ∆pH was enhanced. When photosynthesis was induced at 300 µmol photons m-2 s-1, the contribution of KEA3 was negligible in the initial phase and the ∆pH-dependent down-regulation was not relaxed in the second phase. In the crr2-1 kea3-1 double mutant, the induction of CO2 fixation was delayed after overnight dark adaptation.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Adaptación a la Oscuridad/fisiología , NADH Deshidrogenasa/fisiología , Fotosíntesis/fisiología , Antiportadores de Potasio-Hidrógeno/fisiología , Adaptación a la Oscuridad/genética , Variación Genética , Genotipo , Mutación , NADH Deshidrogenasa/genética , Fenotipo , Fotosíntesis/genética , Plantas Modificadas Genéticamente , Antiportadores de Potasio-Hidrógeno/genética
16.
Amino Acids ; 53(7): 1051-1063, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34059947

RESUMEN

Celiac disease (CeD) is a T-cell-dependent enteropathy with autoimmune features where tissue transglutaminase (TG2)-mediated posttranslational modification of gliadin peptides has a decisive role in the pathomechanism. The humoral immune response is reported to target mainly TG2-deamidated γ-gliadin peptides. However, α-gliadin peptides, like p57-68, playing a crucial role in the T-cell response, and p31-43, a major trigger of innate responses, also contain B-cell gliadin epitopes and γ-gliadin like motifs. We aimed to identify if there are anti-gliadin-specific antibodies in CeD patients targeting the p31-43 and p57-68 peptides and to examine whether deamidation of these peptides could increase their antigenicity. We explored TG2-mediated deamidation of the p31-43 and p57-68 peptides, and investigated serum antibody reactivity toward the native and deamidated α and γ-gliadin peptides in children with confirmed CeD and in prospectively followed infants at increased risk for developing CeD. We affinity-purified antibody populations utilizing different single peptide gliadin antigens and tested their binding preferences for cross-reactivity in real-time interaction assays based on bio-layer interferometry. Our results demonstrate that there is serum reactivity toward p31-43 and p57-68 peptides, which is due to cross-reactive γ-gliadin specific antibodies. These γ-gliadin specific antibodies represent the first appearing antibody population in infancy and they dominate the serum reactivity of CeD patients even later on and without preference for deamidation. However, for the homologous epitope sequences in α-gliadins shorter than the core QPEQPFP heptapeptide, deamidation facilitates antibody recognition. These findings reveal the presence of cross-reactive antibodies in CeD patients recognizing the disease-relevant α-gliadins.


Asunto(s)
Autoanticuerpos/inmunología , Enfermedad Celíaca/metabolismo , Gliadina/metabolismo , Fragmentos de Péptidos/metabolismo , Proteína Glutamina Gamma Glutamiltransferasa 2/inmunología , Adolescente , Amidas/química , Autoanticuerpos/metabolismo , Enfermedad Celíaca/inmunología , Niño , Preescolar , Reacciones Cruzadas , Epítopos/inmunología , Gliadina/inmunología , Humanos , Lactante , Fragmentos de Péptidos/inmunología , Proteína Glutamina Gamma Glutamiltransferasa 2/química , Proteína Glutamina Gamma Glutamiltransferasa 2/metabolismo
17.
Amino Acids ; 53(7): 1033-1049, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34032919

RESUMEN

Cell-penetrating peptides (CPPs) are promising delivery vehicles. These short peptides can transport wide range of cargos into cells, although their usage has often limitations. One of them is the endosomatic internalisation and thus the vesicular entrapment. Modifications which increases the direct delivery into the cytosol is highly researched area. Among the oligoarginines the longer ones (n > 6) show efficient internalisation and they are well-known members of CPPs. Herein, we describe the modification of tetra- and hexaarginine with (4-((4-(dimethylamino)phenyl)azo)benzoyl) (Dabcyl) group. This chromophore, which is often used in FRET system increased the internalisation of both peptides, and its effect was more outstanding in case of hexaarginine. The modified hexaarginine may enter into cells more effectively than octaarginine, and showed diffuse distribution besides vesicular transport already at low concentration. The attachment of Dabcyl group not only increases the cellular uptake of the cell-penetrating peptides but it may affect the mechanism of their internalisation. Their conjugates with antitumor drugs were studied on different cells and showed antitumor activity.


Asunto(s)
Antineoplásicos/farmacología , Cationes/química , Péptidos de Penetración Celular/farmacología , Neoplasias/patología , Oligopéptidos/química , Péptidos/química , p-Dimetilaminoazobenceno/análogos & derivados , Antineoplásicos/química , Proliferación Celular , Péptidos de Penetración Celular/química , Humanos , Neoplasias/tratamiento farmacológico , Células Tumorales Cultivadas , p-Dimetilaminoazobenceno/química
18.
Pharmacol Res ; 164: 105385, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33348025

RESUMEN

The neural crest is an important group of cells with pluripotency and migratory ability that is crucially involved in tissue and cell specification during development. Craniofacial shaping, sensory neurons, body asymmetry, and pigmentation are linked to neural crest functionality. Despite its prominent role in embryogenesis, neural crest specification as well as the possible part mitochondria play in such a process remains unclarified. Mitochondria are important organelles not only for respiration, but also for regulation of cell proliferation, differentiation and death. Modulation of mitochondrial fitness and depletion of mitochondrial ATP synthesis has been shown to down-regulate Wnt signaling, both in vitro and in vivo. Since Wnt signaling is one of the crucial players during neural crest induction/specification, we hypothesized a signaling cascade connecting mitochondria to embryonic development and neural crest migration and differentiation. Here, by using pharmacological and genetic modulators of mitochondrial function, we provide evidence that a crosstalk between mitochondrial energy homeostasis and Wnt signaling is important in the development of neural crest-derived tissues. Furthermore, our results highlight the possibility to modulate neural crest cell specification by tuning mitochondrial metabolism via FoxD3, an important transcription factor that is regulated by Wnt. FoxD3 ensures the correct embryonic development and contributes to the maintenance of cell stemness and to the induction of epithelial-to-mesenchymal transition. In summary, our work offers new insights into the molecular mechanism of action of FoxD3 and demonstrates that mitochondrial fitness is linked to the regulation of this important transcription factor via Wnt signaling in the context of neural crest specification.


Asunto(s)
Factores de Transcripción Forkhead , Mitocondrias/metabolismo , Cresta Neural/embriología , Vía de Señalización Wnt , Proteínas de Pez Cebra , Animales , Animales Modificados Genéticamente/embriología , Células Cultivadas , Embrión no Mamífero , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
Pharmacol Res ; 164: 105326, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33338625

RESUMEN

The two-pore potassium channel TASK-3 has been shown to localize to both the plasma membrane and the mitochondrial inner membrane. TASK-3 is highly expressed in melanoma and breast cancer cells and has been proposed to promote tumor formation. Here we investigated whether pharmacological modulation of TASK-3, and specifically of mitochondrial TASK-3 (mitoTASK-3), had any effect on cancer cell survival and mitochondrial physiology. A novel, mitochondriotropic version of the specific TASK-3 inhibitor IN-THPP has been synthesized by addition of a positively charged triphenylphosphonium moiety. While IN-THPP was unable to induce apoptosis, mitoIN-THPP decreased survival of breast cancer cells and efficiently killed melanoma lines, which we show to express mitoTASK-3. Cell death was accompanied by mitochondrial membrane depolarization and fragmentation of the mitochondrial network, suggesting a role of the channel in the maintenance of the correct function of this organelle. In accordance, cells treated with mitoIN-THPP became rapidly depleted of mitochondrial ATP which resulted in activation of the AMP-dependent kinase AMPK. Importantly, cell survival was not affected in mouse embryonic fibroblasts and the effect of mitoIN-THPP was less pronounced in human melanoma cells stably knocked down for TASK-3 expression, indicating a certain degree of selectivity of the drug both for pathological cells and for the channel. In addition, mitoIN-THPP inhibited cancer cell migration to a higher extent than IN-THPP in two melanoma cell lines. In summary, our results point to the importance of mitoTASK-3 for melanoma cell survival and migration.


Asunto(s)
Mitocondrias/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/metabolismo , Pirimidinas/farmacología , Adenosina Trifosfato/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/fisiología , Bloqueadores de los Canales de Potasio/síntesis química , Pirimidinas/síntesis química , Especies Reactivas de Oxígeno/metabolismo
20.
Int J Mol Sci ; 22(4)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562082

RESUMEN

The use of peptide-drug conjugates has generated wide interest as targeted antitumor therapeutics. The anthracycline antibiotic, daunomycin, is a widely used anticancer agent and it is often conjugated to different tumor homing peptides. However, comprehensive analytical characterization of these conjugates via tandem mass spectrometry (MS/MS) is challenging due to the lability of the O-glycosidic bond and the appearance of MS/MS fragment ions with little structural information. Therefore, we aimed to investigate the optimal fragmentation conditions that suppress the prevalent dissociation of the anthracycline drug and provide good sequence coverage. In this study, we comprehensively compared the performance of common fragmentation techniques, such as higher energy collisional dissociation (HCD), electron transfer dissociation (ETD), electron-transfer higher energy collisional dissociation (EThcD) and matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF/TOF) activation methods for the structural identification of synthetic daunomycin-peptide conjugates by high-resolution tandem mass spectrometry. Our results showed that peptide backbone fragmentation was inhibited by applying electron-based dissociation methods to conjugates, most possibly due to the "electron predator" effect of the daunomycin. We found that efficient HCD fragmentation was largely influenced by several factors, such as amino acid sequences, charge states and HCD energy. High energy HCD and MALDI-TOF/TOF combined with collision induced dissociation (CID) mode are the methods of choice to unambiguously assign the sequence, localize different conjugation sites and differentiate conjugate isomers.


Asunto(s)
Daunorrubicina/análogos & derivados , Daunorrubicina/metabolismo , Péptidos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Daunorrubicina/química , Transporte de Electrón , Péptidos/química , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA