Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Neurosci ; 25(3): 295-305, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241804

RESUMEN

Microglial function declines during aging. The interaction of microglia with the gut microbiota has been well characterized during development and adulthood but not in aging. Here, we compared microglial transcriptomes from young-adult and aged mice housed under germ-free and specific pathogen-free conditions and found that the microbiota influenced aging associated-changes in microglial gene expression. The absence of gut microbiota diminished oxidative stress and ameliorated mitochondrial dysfunction in microglia from the brains of aged mice. Unbiased metabolomic analyses of serum and brain tissue revealed the accumulation of N6-carboxymethyllysine (CML) in the microglia of the aging brain. CML mediated a burst of reactive oxygen species and impeded mitochondrial activity and ATP reservoirs in microglia. We validated the age-dependent rise in CML levels in the sera and brains of humans. Finally, a microbiota-dependent increase in intestinal permeability in aged mice mediated the elevated levels of CML. This study adds insight into how specific features of microglia from aged mice are regulated by the gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Microglía , Animales , Lisina/análogos & derivados , Lisina/metabolismo , Ratones , Microglía/metabolismo , Estrés Oxidativo
2.
Nat Aging ; 1(12): 1127-1136, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-37117525

RESUMEN

Understanding the physiological origins of age-related cognitive decline is of critical importance given the rising age of the world's population1. Previous work in animal models has established a strong link between cognitive performance and the microbiota2-5, and it is known that the microbiome undergoes profound remodeling in older adults6. Despite growing evidence for the association between age-related cognitive decline and changes in the gut microbiome, the mechanisms underlying such interactions between the brain and the gut are poorly understood. Here, using fecal microbiota transplantation (FMT), we demonstrate that age-related remodeling of the gut microbiota leads to decline in cognitive function in mice and that this impairment can be rescued by transplantation of microbiota from young animals. Moreover, using a metabolomic approach, we found elevated concentrations of δ-valerobetaine, a gut microbiota-derived metabolite, in the blood and brain of aged mice and older adults. We then demonstrated that δ-valerobetaine is deleterious to learning and memory processes in mice. At the neuronal level, we showed that δ-valerobetaine modulates inhibitory synaptic transmission and neuronal network activity. Finally, we identified specific bacterial taxa that significantly correlate with δ-valerobetaine levels in the brain. Based on our findings, we propose that δ-valerobetaine contributes to microbiota-driven brain aging and that the associated mechanisms represent a promising target for countering age-related cognitive decline.


Asunto(s)
Disfunción Cognitiva , Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Microbiota/fisiología , Microbioma Gastrointestinal/fisiología , Cognición/fisiología , Disfunción Cognitiva/metabolismo , Encéfalo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA