RESUMEN
BACKGROUND: Executive function, which develops rapidly in childhood, enables problem-solving, focused attention, and planning. Animal models describe executive function decrements associated with ambient air pollution exposure, but epidemiologic studies are limited. METHODS: We examined associations between early childhood air pollution exposure and school-aged executive function in 1235 children from three US pregnancy cohorts in the ECHO-PATHWAYS Consortium. We derived point-based residential exposures to ambient particulate matter ≤2.5 µm in aerodynamic diameter (PM 2.5 ), nitrogen dioxide (NO 2 ), and ozone (O 3 ) at ages 0-4 years from spatiotemporal models with a 2-week resolution. We assessed executive function across three domains, cognitive flexibility, working memory, and inhibitory control, using performance-based measures and calculated a composite score quantifying overall performance. We fitted linear regressions to assess air pollution and child executive function associations, adjusting for sociodemographic characteristics, maternal mental health, and health behaviors, and examined modification by child sex, maternal education, and neighborhood educational opportunity. RESULTS: In the overall sample, we found hypothesized inverse associations in crude but not adjusted models. Modified associations between NO 2 exposure and working memory by neighborhood education opportunity were present ( Pinteraction = 0.05), with inverse associations more pronounced in the "high" and "very high" categories. Associations of interest did not differ by child sex or maternal education. CONCLUSION: This work contributes to the evolving science regarding early-life environmental exposures and child development. There remains a need for continued exploration in future research endeavors, to elucidate the complex interplay between natural environment and social determinants influencing child neurodevelopment.
Asunto(s)
Contaminación del Aire , Exposición a Riesgos Ambientales , Función Ejecutiva , Dióxido de Nitrógeno , Material Particulado , Humanos , Femenino , Masculino , Preescolar , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/análisis , Dióxido de Nitrógeno/análisis , Lactante , Estados Unidos , Exposición a Riesgos Ambientales/efectos adversos , Niño , Estudios de Cohortes , Memoria a Corto Plazo/efectos de los fármacos , Ozono/análisis , Ozono/efectos adversos , Recién Nacido , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Embarazo , Modelos LinealesRESUMEN
BACKGROUND: Studies have linked prenatal maternal psychosocial stress to childhood wheeze/asthma but have rarely investigated factors that may mitigate risks. OBJECTIVE: To investigate associations between prenatal stress and childhood wheeze/asthma, evaluating factors that may modify stress effects. METHODS: Participants included 2056 mother-child dyads from Environmental influences on Child Health Outcomes (ECHO)-PATHWAYS, a consortium of 3 prospective pregnancy cohorts (the Conditions Affecting Neurocognitive Development and Learning in Early Childhood study, The Infant Development and Environment Study, and a subset of the Global Alliance to Prevent Prematurity and Stillbirth study) from 6 cities. Maternal stressful life events experienced during pregnancy (PSLEs) were reported using the Pregnancy Risk Assessment Monitoring System Stressful Life Events questionnaire. Parents reported child wheeze/asthma outcomes at age 4 to 6 years using standardized questionnaires. We defined outcomes as ever asthma, current wheeze, current asthma, and strict asthma. We used modified Poisson regression with robust standard errors (SEs) to estimate risk ratios (RRs) and 95% CI per 1-unit increase in PSLE, adjusting for confounders. We evaluated effect modification by child sex, maternal history of asthma, maternal childhood traumatic life events, neighborhood-level resources, and breastfeeding. RESULTS: Overall, we observed significantly elevated risk for current wheeze with increasing PSLE (RR, 1.09 [95% CI, 1.03-1.14]), but not for other outcomes. We observed significant effect modification by child sex for strict asthma (P interaction = .03), in which risks were elevated in boys (RR, 1.10 [95% CI, 1.02-1.19]) but not in girls. For all other outcomes, risks were significantly elevated in boys and not in girls, although there was no statistically significant evidence of effect modification. We observed no evidence of effect modification by other factors (P interactions > .05). CONCLUSION: Risk of adverse childhood respiratory outcomes is higher with increasing maternal PSLEs, particularly in boys.
Asunto(s)
Asma , Efectos Tardíos de la Exposición Prenatal , Ruidos Respiratorios , Estrés Psicológico , Humanos , Femenino , Embarazo , Asma/epidemiología , Asma/psicología , Efectos Tardíos de la Exposición Prenatal/epidemiología , Masculino , Preescolar , Niño , Estrés Psicológico/epidemiología , Adulto , Encuestas y Cuestionarios , Estudios Prospectivos , Factores de RiesgoRESUMEN
Inequities in urban greenspace have been identified, though patterns by race and socioeconomic status vary across US settings. We estimated the magnitude of the relationship between a broad mixture of neighborhood-level factors and residential greenspace using weighted quantile sum (WQS) regression, and compared predictive models of greenspace using only neighborhood-level, only individual-level, or multi-level predictors. Greenspace measures included the Normalized Difference Vegetation Index (NDVI), tree canopy, and proximity of the nearest park, for residential locations in Shelby County, Tennessee of children in the CANDLE cohort. Neighborhood measures include socioeconomic and education resources, as well as racial composition and racial residential segregation. In this sample of 1012 mother-child dyads, neighborhood factors were associated with higher NDVI and tree canopy (0.021 unit higher NDVI [95% CI: 0.014, 0.028] per quintile increase in WQS index); homeownership rate, proximity of and enrollment at early childhood education centers, and racial composition, were highly weighted in the WQS index. In models constrained in the opposite direction (0.028 unit lower NDVI [95% CI: - 0.036, - 0.020]), high school graduation rate and teacher experience were highly weighted. In prediction models, adding individual-level predictors to the suite of neighborhood characteristics did not meaningfully improve prediction accuracy for greenspace measures. Our findings highlight disparities in greenspace for families by neighborhood socioeconomic and early education factors, and by race, suggesting several neighborhood indicators for consideration both as potential confounders in studies of greenspace and pediatric health as well as in the development of policies and programs to improve equity in greenspace access.
Asunto(s)
Parques Recreativos , Características de la Residencia , Humanos , Tennessee , Femenino , Masculino , Niño , Características de la Residencia/estadística & datos numéricos , Parques Recreativos/estadística & datos numéricos , Características del Vecindario , Factores Socioeconómicos , Preescolar , Adulto , Planificación AmbientalRESUMEN
BACKGROUND: Ozone (O3) exposure interrupts normal lung development in animal models. Epidemiologic evidence further suggests impairment with higher long-term O3 exposure across early and middle childhood, although study findings to date are mixed and few have investigated vulnerable subgroups. METHODS: Participants from the CANDLE study, a pregnancy cohort in Shelby County, TN, in the ECHO-PATHWAYS Consortium, were included if children were born at gestational age >32 weeks, completed a spirometry exam at age 8-9, and had a valid residential history from birth to age 8. We estimated lifetime average ambient O3 exposure based on each child's residential history from birth to age 8, using a validated fine-resolution spatiotemporal model. Spirometry was performed at the age 8-9 year study visit to assess Forced Expiratory Volume in the first second (FEV1) and Forced Vital Capacity (FVC) as primary outcomes; z-scores were calculated using sex-and-age-specific reference equations. Linear regression with robust variance estimators was used to examine associations between O3 exposure and continuous lung function z-scores, adjusted for child, sociodemographic, and home environmental factors. Potential susceptible subgroups were explored using a product term in the regression model to assess effect modification by child sex, history of bronchiolitis in infancy, and allergic sensitization. RESULTS: In our sample (n = 648), O3 exposure averaged from birth to age 8 was modest (mean 26.6 [SD 1.1] ppb). No adverse associations between long-term postnatal O3 exposure were observed with either FEV1 (ß = 0.12, 95% CI: -0.04, 0.29) or FVC (ß = 0.03, 95% CI: -0.13, 0.19). No effect modification by child sex, history of bronchiolitis in infancy, or allergic sensitization was detected for associations with 8-year average O3. CONCLUSIONS: In this sample with low O3 concentrations, we did not observe adverse associations between O3 exposures averaged from birth to age 8 and lung function in middle childhood.
Asunto(s)
Contaminantes Atmosféricos , Bronquiolitis , Ozono , Femenino , Embarazo , Humanos , Niño , Lactante , Contaminantes Atmosféricos/análisis , Pulmón , Capacidad Vital , Ozono/toxicidad , Ozono/análisis , Volumen Espiratorio Forzado , Exposición a Riesgos AmbientalesRESUMEN
BACKGROUND: Reported associations between particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5) and cognitive outcomes remain mixed. Differences in exposure estimation method may contribute to this heterogeneity. OBJECTIVES: To assess agreement between PM2.5 exposure concentrations across 11 exposure estimation methods and to compare resulting associations between PM2.5 and cognitive or MRI outcomes. METHODS: We used Visit 5 (2011-2013) cognitive testing and brain MRI data from the Atherosclerosis Risk in Communities (ARIC) Study. We derived address-linked average 2000-2007 PM2.5 exposure concentrations in areas immediately surrounding the four ARIC recruitment sites (Forsyth County, NC; Jackson, MS; suburbs of Minneapolis, MN; Washington County, MD) using 11 estimation methods. We assessed agreement between method-specific PM2.5 concentrations using descriptive statistics and plots, overall and by site. We used adjusted linear regression to estimate associations of method-specific PM2.5 exposure estimates with cognitive scores (n = 4678) and MRI outcomes (n = 1518) stratified by study site and combined site-specific estimates using meta-analyses to derive overall estimates. We explored the potential impact of unmeasured confounding by spatially patterned factors. RESULTS: Exposure estimates from most methods had high agreement across sites, but low agreement within sites. Within-site exposure variation was limited for some methods. Consistently null findings for the PM2.5-cognitive outcome associations regardless of method precluded empirical conclusions about the potential impact of method on study findings in contexts where positive associations are observed. Not accounting for study site led to consistent, adverse associations, regardless of exposure estimation method, suggesting the potential for substantial bias due to residual confounding by spatially patterned factors. DISCUSSION: PM2.5 estimation methods agreed across sites but not within sites. Choice of estimation method may impact findings when participants are concentrated in small geographic areas. Understanding unmeasured confounding by factors that are spatially patterned may be particularly important in studies of air pollution and cognitive or brain health.
Asunto(s)
Contaminantes Atmosféricos , Encéfalo , Cognición , Exposición a Riesgos Ambientales , Imagen por Resonancia Magnética , Material Particulado , Material Particulado/análisis , Humanos , Masculino , Persona de Mediana Edad , Femenino , Cognición/efectos de los fármacos , Contaminantes Atmosféricos/análisis , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Anciano , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisisRESUMEN
Spontaneous abortion (SAB), defined as a pregnancy loss before 20 weeks of gestation, affects up to 30% of conceptions, yet few modifiable risk factors have been identified. We estimated the effect of ambient air pollution exposure on SAB incidence in Pregnancy Study Online (PRESTO), a preconception cohort study of North American couples who were trying to conceive. Participants completed questionnaires at baseline, every 8 weeks during preconception follow-up, and in early and late pregnancy. We analyzed data on 4643 United States (U.S.) participants and 851 Canadian participants who enrolled during 2013-2019 and conceived during 12 months of follow-up. We used country-specific national spatiotemporal models to estimate concentrations of particulate matter <2.5 µm (PM2.5), nitrogen dioxide (NO2), and ozone (O3) during the preconception and prenatal periods at each participant's residential address. On follow-up and pregnancy questionnaires, participants reported information on pregnancy status, including SAB incidence and timing. We fit Cox proportional hazards regression models with gestational weeks as the time scale to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association of time-varying prenatal concentrations of PM2.5, NO2, and O3 with rate of SAB, adjusting for individual- and neighborhood-level factors. Nineteen percent of pregnancies ended in SAB. Greater PM2.5 concentrations were associated with a higher incidence of SAB in Canada, but not in the U.S. (HRs for a 5 µg/m3 increase = 1.29, 95% CI: 0.99, 1.68 and 0.94, 95% CI: 0.83, 1.08, respectively). NO2 and O3 concentrations were not appreciably associated with SAB incidence. Results did not vary substantially by gestational weeks or season at risk. In summary, we found little evidence for an effect of residential ambient PM2.5, NO2, and O3 concentrations on SAB incidence in the U.S., but a moderate positive association of PM2.5 with SAB incidence in Canada.
Asunto(s)
Aborto Espontáneo , Contaminantes Atmosféricos , Contaminación del Aire , Femenino , Humanos , Embarazo , Estados Unidos/epidemiología , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Estudios de Cohortes , Dióxido de Nitrógeno/toxicidad , Dióxido de Nitrógeno/análisis , Aborto Espontáneo/inducido químicamente , Aborto Espontáneo/epidemiología , Canadá/epidemiología , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/toxicidad , Material Particulado/análisis , Exposición a Riesgos Ambientales/análisisRESUMEN
BACKGROUND: Green space exposures may promote child mental health and well-being across multiple domains and stages of development. The aim of this study was to investigate associations between residential green space exposures and child mental and behavioral health at age 4-6 years. METHODS: Children's internalizing and externalizing behaviors in the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) cohort in Shelby County, Tennessee, were parent-reported on the Child Behavior Checklist (CBCL). We examined three exposures-residential surrounding greenness calculated as the Normalized Difference Vegetation Index (NDVI), tree cover, and park proximity-averaged across the residential history for the year prior to outcome assessment. Linear regression models were adjusted for individual, household, and neighborhood-level confounders across multiple domains. Effect modification by neighborhood socioeconomic conditions was explored using multiplicative interaction terms. RESULTS: Children were on average 4.2 years (range 3.8-6.0) at outcome assessment. Among CANDLE mothers, 65% self-identified as Black, 29% as White, and 6% as another or multiple races; 41% had at least a college degree. Higher residential surrounding greenness was associated with lower internalizing behavior scores (-0.66 per 0.1 unit higher NDVI; 95% CI: -1.26, -0.07) in fully-adjusted models. The association between tree cover and internalizing behavior was in the hypothesized direction but confidence intervals included the null (-0.29 per 10% higher tree cover; 95% CI: -0.62, 0.04). No associations were observed between park proximity and internalizing behavior. We did not find any associations with externalizing behaviors or the attention problems subscale. Estimates were larger in neighborhoods with lower socioeconomic opportunity, but interaction terms were not statistically significant. CONCLUSIONS: Our findings add to the accumulating evidence of the importance of residential green space for the prevention of internalizing problems among young children. This research suggests the prioritization of urban green spaces as a resource for child mental health.
Asunto(s)
Madres , Parques Recreativos , Niño , Femenino , Humanos , Preescolar , Ohio , Tennessee/epidemiologíaRESUMEN
BACKGROUND AND AIM: Studies suggest prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) may influence wheezing or asthma in preschool-aged children. However, the impact of prenatal PAH exposure on asthma and wheeze in middle childhood remain unclear. We investigated these associations in socio-demographically diverse participants from the ECHO PATHWAYS multi-cohort consortium. METHODS: We included 1,081 birth parent-child dyads across five U.S. cities. Maternal urinary mono-hydroxylated PAH metabolite concentrations (OH-PAH) were measured during mid-pregnancy. Asthma at age 8-9 years and wheezing trajectory across childhood were characterized by caregiver reported asthma diagnosis and asthma/wheeze symptoms. We used logistic and multinomial regression to estimate odds ratios of asthma and childhood wheezing trajectories associated with five individual OH-PAHs, adjusting for urine specific gravity, various maternal and child characteristics, study site, prenatal and postnatal smoke exposure, and birth year and season in single metabolite and mutually adjusted models. We used multiplicative interaction terms to evaluate effect modification by child sex and explored OH-PAH mixture effects through Weighted Quantile Sum regression. RESULTS: The prevalence of asthma in the study population was 10%. We found limited evidence of adverse associations between pregnancy OH-PAH concentrations and asthma or wheezing trajectories. We observed adverse associations between 1/9-hydroxyphenanthrene and asthma and persistent wheeze among girls, and evidence of inverse associations with asthma for 1-hydroxynathpthalene, which was stronger among boys, though tests for effect modification by child sex were not statistically significant. CONCLUSIONS: In a large, multi-site cohort, we did not find strong evidence of an association between prenatal exposure to PAHs and child asthma at age 8-9 years, though some adverse associations were observed among girls.
Asunto(s)
Asma , Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Efectos Tardíos de la Exposición Prenatal , Niño , Embarazo , Masculino , Femenino , Preescolar , Humanos , Estudios Longitudinales , Hidrocarburos Policíclicos Aromáticos/efectos adversos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/epidemiología , Ruidos Respiratorios , Asma/inducido químicamente , Asma/epidemiologíaRESUMEN
Less than two-thirds of US adolescents are up-to-date with HPV vaccination. While mothers engaged in preventive care are more likely to seek preventive care for their children, current studies on associations between maternal cervical cancer screening (CCS) and adolescent HPV vaccination are needed. We assessed associations between maternal preventive service utilization and adolescent HPV vaccination using electronic health record data from a healthcare system in Washington State. We included adolescents (11-17 years) and their mothers with ≥ 1 primary care visit between 2018 and 2020. Outcomes were HPV vaccine initiation and completion. The primary exposure was maternal adherence to guideline-recommended CCS. Secondary exposures were maternal breast cancer screening adherence (for mothers ≥ 52 years) and ≥ 1 wellness visit ≤ 2 years. We used Generalized Estimating Equations to estimate prevalence ratios, and explore effect modification by adolescent sex, adolescent provider characteristics, and maternal language interpreter use. Of 4121 adolescents, 66% had a CCS-adherent mother, 82% initiated HPV vaccination, and 49% completed the series. CCS adherence was associated with higher initiation (adjusted prevalence ratio (APR):1.10, 95%CI:1.06-1.13) and completion (APR:1.16, 95%CI:1.08-1.23). Associations were stronger for male vs. female adolescents, adolescents who had a primary care provider in family practice vs. pediatrics, and adolescents who had the same primary care provider as their mother vs. not. Recent maternal wellness visit was also associated with higher initiation (APR:1.04, 95%CI:1.01-1.07) and completion (APR:1.12, 95%CI:1.05-1.20). Results suggest that delivering healthcare through a family-centered approach and engaging mothers in broad preventive care could increase adolescent HPV vaccination coverage.
Asunto(s)
Detección Precoz del Cáncer , Madres , Vacunas contra Papillomavirus , Neoplasias del Cuello Uterino , Humanos , Adolescente , Femenino , Vacunas contra Papillomavirus/administración & dosificación , Neoplasias del Cuello Uterino/prevención & control , Detección Precoz del Cáncer/estadística & datos numéricos , Madres/estadística & datos numéricos , Madres/psicología , Niño , Washingtón , Masculino , Adulto , Persona de Mediana Edad , Infecciones por Papillomavirus/prevención & control , Cooperación del Paciente/estadística & datos numéricos , Vacunación/estadística & datos numéricosRESUMEN
BACKGROUND: Ambient air pollution, including traffic-related air pollution (TRAP), increases cardiovascular disease risk, possibly through vascular alterations. Limited information exists about in-vehicle TRAP exposure and vascular changes. OBJECTIVE: To determine via particle filtration the effect of on-roadway TRAP exposure on blood pressure and retinal vasculature. DESIGN: Randomized crossover trial. (ClinicalTrials.gov: NCT05454930). SETTING: In-vehicle scripted commutes driven through traffic in Seattle, Washington, during 2014 to 2016. PARTICIPANTS: Normotensive persons aged 22 to 45 years (n = 16). INTERVENTION: On 2 days, on-road air was entrained into the vehicle. On another day, the vehicle was equipped with high-efficiency particulate air (HEPA) filtration. Participants were blinded to the exposure and were randomly assigned to the sequence. MEASUREMENTS: Fourteen 3-minute periods of blood pressure were recorded before, during, and up to 24 hours after a drive. Image-based central retinal arteriolar equivalents (CRAEs) were measured before and after. Brachial artery diameter and gene expression were also measured and will be reported separately. RESULTS: Mean age was 29.7 years, predrive systolic blood pressure was 122.7 mm Hg, predrive diastolic blood pressure was 70.8 mm Hg, and drive duration was 122.3 minutes (IQR, 4 minutes). Filtration reduced particle count by 86%. Among persons with complete data (n = 13), at 1 hour, mean diastolic blood pressure, adjusted for predrive levels, order, and carryover, was 4.7 mm Hg higher (95% CI, 0.9 to 8.4 mm Hg) for unfiltered drives compared with filtered drives, and mean adjusted systolic blood pressure was 4.5 mm Hg higher (CI, -1.2 to 10.2 mm Hg). At 24 hours, adjusted mean diastolic blood pressure (unfiltered) was 3.8 mm Hg higher (CI, 0.02 to 7.5 mm Hg) and adjusted mean systolic blood pressure was 1.1 mm Hg higher (CI, -4.6 to 6.8 mm Hg). Adjusted mean CRAE (unfiltered) was 2.7 µm wider (CI, -1.5 to 6.8 µm). LIMITATIONS: Imprecise estimates due to small sample size; seasonal imbalance by exposure order. CONCLUSION: Filtration of TRAP may mitigate its adverse effects on blood pressure rapidly and at 24 hours. Validation is required in larger samples and different settings. PRIMARY FUNDING SOURCE: U.S. Environmental Protection Agency and National Institutes of Health.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Adulto , Presión Sanguínea , Contaminantes Atmosféricos/efectos adversos , Material Particulado/efectos adversos , Material Particulado/análisis , Estudios Cruzados , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisisRESUMEN
BACKGROUND: Infants experiencing bronchiolitis are at increased risk for asthma, but few studies have identified modifiable risk factors. We assessed whether early life air pollution influenced child asthma and wheeze at age 4-6 years among children with a history of bronchiolitis in the first postnatal year. METHODS: Children with caregiver-reported physician-diagnosed bronchiolitis were drawn from ECHO-PATHWAYS, a pooled longitudinal cohort from six US cities. We estimated their air pollution exposure from age 1 to 3 years from validated spatiotemporal models of fine particulate matter (PM 2.5 ), nitrogen dioxide (NO 2 ), and ozone (O 3 ). Caregivers reported children's current wheeze and asthma at age 4-6 years. We used modified Poisson regression to estimate relative risks (RR) and 95% confidence intervals (CI), adjusting for child, maternal, and home environmental factors. We assessed effect modification by child sex and maternal history of asthma with interaction models. RESULTS: A total of 224 children had caregiver-reported bronchiolitis. Median (interquartile range) 2-year pollutant concentrations were 9.3 (7.8-9.9) µg/m 3 PM 2.5 , 8.5 (6.4-9.9) ppb NO 2 , and 26.6 (25.6-27.7) ppb O 3 . RRs (CI) for current wheeze per 2-ppb higher O 3 were 1.3 (1.0-1.7) and 1.4 (1.1-1.8) for asthma. NO 2 was inversely associated with wheeze and asthma whereas associations with PM 2.5 were null. We observed interactions between NO 2 and PM 2.5 and maternal history of asthma, with lower risks observed among children with a maternal history of asthma. CONCLUSION: Our results are consistent with the hypothesis that exposure to modest postnatal O 3 concentrations increases the risk of asthma and wheeze among the vulnerable subpopulation of infants experiencing bronchiolitis.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Asma , Bronquiolitis , Niño , Preescolar , Humanos , Lactante , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Asma/epidemiología , Bronquiolitis/epidemiología , Bronquiolitis/inducido químicamente , Bronquiolitis/complicaciones , Exposición a Riesgos Ambientales/efectos adversos , Ozono/efectos adversos , Ozono/análisis , Material Particulado/efectos adversos , Material Particulado/análisisRESUMEN
BACKGROUND: Ambient particulate matter (PM) air pollution is a leading cause of global disability and accounts for an annual 2.9 million deaths globally. PM is established as an important risk factor for cardiovascular disease, however the evidence supporting a link specifically between long-term exposure to ambient PM and incident stroke is less clear. We sought to evaluate the association of long-term exposure to different size fractions of ambient PM with incident stroke (overall and by etiologic subtypes) and cerebrovascular deaths within the Women's Health Initiative, a large prospective study of older women in the US. METHODS: We studied 155,410 postmenopausal women without previous cerebrovascular disease enrolled into the study between 1993 and 1998, with follow-up through 2010. We assessed geocoded participant address-specific concentrations of ambient PM (fine [PM2.5], respirable [PM10] and coarse [PM10-2.5]), as well as nitrogen dioxide [NO2] using spatiotemporal models. We classified hospitalization events into ischemic, hemorrhagic, or other/unclassified stroke. Cerebrovascular mortality was defined as death from any stroke etiology. We used Cox proportional hazard models to calculate hazard ratios (HR) and 95% confidence intervals (CI), adjusting for individual and neighborhood-level characteristics. RESULTS: During a median follow-up time of 15 years, participants experienced 4,556 cerebrovascular events. The hazard ratio for all cerebrovascular events was 2.14 (95% CI: 1.87, 2.44) comparing the top versus bottom quartiles of PM2.5. Similarly, there was a statistically significant increase in events comparing the top versus bottom quartiles of PM10 and NO2 (HR: 1.17; 95% CI: 1.03, 1.33 and HR:1.26; 95% CI: 1.12, 1.42). The strength of association did not vary substantially by stroke etiology. There was little evidence of an association between PMcoarse and incident cerebrovascular events. CONCLUSIONS: Long-term exposure to fine (PM2.5) and respirable (PM10) particulate matter as well as NO2 was associated with a significant increase of cerebrovascular events among postmenopausal women. Strength of the associations were consistent by stroke etiology.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Accidente Cerebrovascular , Humanos , Femenino , Anciano , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Estudios Prospectivos , Dióxido de Nitrógeno , Contaminación del Aire/análisis , Salud de la Mujer , Exposición a Riesgos Ambientales/análisisRESUMEN
BACKGROUND: Epidemiological study findings are inconsistent regarding associations between prenatal polycyclic aromatic hydrocarbon (PAH) exposures and childhood behavior. This study examined associations of prenatal PAH exposure with behavior at age 4-6 years in a large, diverse, multi-region prospective cohort. Secondary aims included examination of PAH mixtures and effect modification by child sex, breastfeeding, and child neighborhood opportunity. METHODS: The ECHO PATHWAYS Consortium pooled 1118 mother-child dyads from three prospective pregnancy cohorts in six U.S. cities. Seven PAH metabolites were measured in prenatal urine. Child behavior was assessed at age 4-6 using the Total Problems score from the Child Behavior Checklist (CBCL). Neighborhood opportunity was assessed using the socioeconomic and educational scales of the Child Opportunity Index. Multivariable linear regression was used to estimate associations per 2-fold increase in each PAH metabolite, adjusted for demographic, prenatal, and maternal factors and using interaction terms for effect modifiers. Associations with PAH mixtures were estimated using Weighted Quantile Sum Regression (WQSR). RESULTS: The sample was racially and sociodemographically diverse (38% Black, 49% White, 7% Other; household-adjusted income range $2651-$221,102). In fully adjusted models, each 2-fold increase in 2-hydroxynaphthalene was associated with a lower Total Problems score, contrary to hypotheses (b = -0.80, 95% CI = -1.51, -0.08). Associations were notable in boys (b = -1.10, 95% CI = -2.11, -0.08) and among children breastfed 6+ months (b = -1.31, 95% CI = -2.25, -0.37), although there was no statistically significant evidence for interaction by child sex, breastfeeding, or neighborhood child opportunity. Associations were null for other PAH metabolites; there was no evidence of associations with PAH mixtures from WQSR. CONCLUSION: In this large, well-characterized, prospective study of mother-child pairs, prenatal PAH exposure was not associated with child behavior problems. Future studies characterizing the magnitude of prenatal PAH exposure and studies in older childhood are needed.
Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Efectos Tardíos de la Exposición Prenatal , Problema de Conducta , Embarazo , Masculino , Femenino , Preescolar , Humanos , Niño , Anciano , Hidrocarburos Policíclicos Aromáticos/toxicidad , Estudios Prospectivos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/epidemiología , Estudios de CohortesRESUMEN
Most epidemiologic studies fail to capture the impact of spatiotemporal fluctuations in traffic on exposure to traffic-related air pollutants in the near-road population. Using a case-crossover design and the Research LINE source (R-LINE) dispersion model with spatiotemporally resolved highway traffic data, we quantified associations between primary pollutants generated by highway traffic-particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5), oxides of nitrogen (NOx), and black carbon (BC)-and daily nonaccidental, respiratory, cardiovascular, and cerebrovascular mortality among persons who had resided within 1 km (0.6 mile) of major highways in the Puget Sound area of Washington State between 2009 and 2013. We estimated these associations using conditional logistic regression, adjusting for time-varying covariates. Although highly resolved modeled concentrations of PM2.5, NOx, and BC from highway traffic in the hours before death were used, we found no evidence of an association between mortality and the preceding 24-hour average PM2.5 exposure (odds ratio = 0.99, 95% confidence interval: 0.96, 1.02) or exposure during shorter averaging periods. This work did not support the hypothesis that mortality risk was meaningfully higher with greater exposures to PM2.5, NOx, and BC from highways in near-road populations, though we did incorporate a novel approach to estimate exposure to traffic-generated air pollution based on detailed traffic congestion data.
Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Mortalidad/tendencias , Emisiones de Vehículos/análisis , Anciano , Anciano de 80 o más Años , Carbono/análisis , Causas de Muerte , Estudios Cruzados , Monitoreo del Ambiente , Humanos , Persona de Mediana Edad , Óxidos de Nitrógeno/análisis , Material Particulado , Factores Sociodemográficos , Análisis Espacio-Temporal , Factores de Tiempo , WashingtónRESUMEN
BACKGROUND: PM2.5 have been associated with weight change in animal models and non-pregnant populations. Evidence of associations between PM2.5 and gestational weight gain (GWG), an important determinant of course and outcomes of pregnancy, and subsequent birth outcomes is limited. METHODS: The study was conducted among a subset of participants from the Omega Study, a prospective pregnancy cohort. Exposure to PM2.5 (µg/m3) was ascertained for participants (N = 855) based on their residential address using a validated national spatiotemporal model. Adjusted multivariable linear regression models were used to estimate associations of trimester-specific and pregnancy-month PM2.5 exposures with early (<20 weeks gestation), late (≥20 weeks gestation), and total GWG and infant birth weight. Stratified models and product terms were used to examine whether pre-pregnancy BMI (ppBMI) and infant sex modified the associations. RESULTS: Average monthly PM2.5 exposure during the first, second, and third trimesters were 7.3 µg/m3, 7.9 µg/m3, and 7.7 µg/m3, respectively. Higher third trimester PM2.5 exposure was associated with higher late (0.40 kg per 5 µg/m (McDowell et al., 2018); 95%CI: 0.12, 0.67) and total (0.35 kg; 95%CI: 0.01, 0.70) GWG among participants with normal ppBMI. Higher second month PM2.5 exposure was associated with lower early (-0.70 kg; 95%CI: 1.22, -0.18), late (-0.84 kg; 95% CI: 1.54, -0.14), and total (-1.70 kg; 95%CI: 2.57, -0.82) GWG among participants with overweight/obese ppBMI. Product terms between PM2.5 and ppBMI were significant for second month PM2.5 exposure and early (p-value = 0.01) and total GWG (p-value<0.01). Higher third trimester PM2.5 exposure was associated with higher birth weight, though higher fourth month PM2.5 exposure was associated with lower birth weight, particularly among those with normal ppBMI and male infants. CONCLUSIONS: Associations of PM2.5 with GWG vary by exposure window and ppBMI, while associations of PM2.5 with birth weight potentially vary by exposure window, ppBMI and infant sex. Further exploration of associations between PM2.5 and maternal/child health outcomes are needed.
Asunto(s)
Ganancia de Peso Gestacional , Peso al Nacer , Femenino , Humanos , Masculino , Material Particulado/toxicidad , Embarazo , Trimestres del Embarazo , Estudios ProspectivosRESUMEN
BACKGROUND: Maternal exposure to air pollution has been associated with birth outcomes; however, few studies examined biologically critical exposure windows shorter than trimesters or potential effect modifiers. OBJECTIVES: To examine associations of prenatal fine particulate matter (PM2.5), by trimester and in biologically critical windows, with birth outcomes and assess potential effect modifiers. METHODS: This study used two pregnancy cohorts (CANDLE and TIDES; N = 2099) in the ECHO PATHWAYS Consortium. PM2.5 was estimated at the maternal residence using a fine-scale spatiotemporal model, averaged over pregnancy, trimesters, and critical windows (0-2 weeks, 10-12 weeks, and last month of pregnancy). Outcomes were preterm birth (PTB, <37 completed weeks of gestation), small-for-gestational-age (SGA), and continuous birthweight. We fit multivariable adjusted linear regression models for birthweight and Poisson regression models (relative risk, RR) for PTB and SGA. Effect modification by socioeconomic factors (maternal education, household income, neighborhood deprivation) and infant sex were examined using interaction terms. RESULTS: Overall, 9% of births were PTB, 10.4% were SGA, and mean term birthweight was 3268 g (SD = 558.6). There was no association of PM2.5 concentration with PTB or SGA. Lower birthweight was associated with higher PM2.5 averaged over pregnancy (ß -114.2, 95%CI -183.2, -45.3), during second (ß -52.9, 95%CI -94.7, -11.2) and third (ß -45.5, 95%CI -85.9, -5.0) trimesters, and the month prior to delivery (ß -30.5, 95%CI -57.6, -3.3). Associations of PM2.5 with likelihood of SGA and lower birthweight were stronger among male infants (p-interaction ≤0.05) and in those with lower household income (p-interaction = 0.09). CONCLUSIONS: Findings from this multi city U.S. birth cohort study support previous reports of inverse associations of birthweight with higher PM2.5 exposure during pregnancy. Findings also suggest possible modification of this association by infant sex and household income.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Nacimiento Prematuro , Efectos Tardíos de la Exposición Prenatal , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Peso al Nacer , Estudios de Cohortes , Femenino , Retardo del Crecimiento Fetal , Humanos , Recién Nacido , Masculino , Exposición Materna/efectos adversos , Material Particulado/análisis , Material Particulado/toxicidad , Embarazo , Nacimiento Prematuro/inducido químicamente , Nacimiento Prematuro/epidemiología , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Factores SocioeconómicosRESUMEN
INTRODUCTION: Carriage of high-risk APOL1 genetic variants is associated with increased risks for kidney diseases in people of African descent. Less is known about the variants' associations with blood pressure or potential moderators. METHODS: We investigated these associations in a pregnancy cohort of 556 women and 493 children identified as African American. Participants with two APOL1 risk alleles were defined as having the high-risk genotype. Blood pressure in both populations was measured at the child's 4-6 years visit. We fit multivariate linear and Poisson regressions and further adjusted for population stratification to estimate the APOL1-blood pressure associations. We also examined the associations modified by air pollution exposures (particulate matter ≤2.5 µ m in aerodynamic diameter [PM2.5] and nitrogen dioxide) and explored other moderators such as health conditions and behaviors. RESULTS: Neither APOL1 risk alleles nor risk genotypes had a main effect on blood pressure in mothers or children. However, each 2-µg/m3 increase of four-year average PM2.5 was associated with a 16.3 (95%CI: 5.7, 26.9) mmHg higher diastolic blood pressure in mothers with the APOL1 high-risk genotype, while the estimated effect was much smaller in mothers with the low-risk genotype (i.e., 2.9 [95%CI: -3.1, 8.8] mmHg; Pinteraction = 0.01). Additionally, the associations of APOL1 risk alleles and the high-risk genotype with high blood pressure (i.e., SBP and/or DBP ≥ 90th percentile) were stronger in girls vs. boys (Pinteraction = 0.02 and 0.005, respectively). CONCLUSION: This study sheds light on the distribution of high blood pressure by APOL1 genetic variants and informs regulatory policy to protect vulnerable population subgroups.
Asunto(s)
Contaminación del Aire , Apolipoproteína L1 , Hipertensión , Negro o Afroamericano/genética , Contaminación del Aire/efectos adversos , Apolipoproteína L1/genética , Presión Sanguínea/genética , Niño , Preescolar , Femenino , Genotipo , Humanos , Hipertensión/epidemiología , Masculino , Madres , Material Particulado/efectos adversos , EmbarazoRESUMEN
Existing regulatory pollutant monitoring networks rely on a small number of centrally located measurement sites that are purposefully sited away from major emission sources. While informative of general air quality trends regionally, these networks often do not fully capture the local variability of air pollution exposure within a community. Recent technological advancements have reduced the cost of sensors, allowing air quality monitoring campaigns with high spatial resolution. The 100×100 black carbon (BC) monitoring network deployed 100 low-cost BC sensors across the 15 km2 West Oakland, CA community for 100 days in the summer of 2017, producing a nearly continuous site-specific time series of BC concentrations which we aggregated to one-hour averages. Leveraging this dataset, we employed a hierarchical spatio-temporal model to accurately predict local spatio-temporal concentration patterns throughout West Oakland, at locations without monitors (average cross-validated hourly temporal R 2=0.60). Using our model, we identified spatially varying temporal pollution patterns associated with small-scale geographic features and proximity to local sources. In a sub-sampling analysis, we demonstrated that fine scale predictions of nearly comparable accuracy can be obtained with our modeling approach by using ~30% of the 100×100 BC network supplemented by a shorter-term high-density campaign.
RESUMEN
Ecologic models of influenza burden may be confounded by other exposures that share winter seasonality. We evaluated the effects of air pollution and other environmental exposures in ecologic models estimating influenza-associated hospitalizations. We linked hospitalization data, viral surveillance, and environmental data, including temperature, relative humidity, dew point, and fine particulate matter for 3 counties in Washington, USA, for 2001-2012. We used negative binomial regression models to estimate the incidence of influenza-associated respiratory and circulatory (RC) hospitalizations and to assess the effect of adjusting for environmental exposures on RC hospitalization estimates. The modeled overall incidence rate of influenza-associated RC hospitalizations was 31/100,000 person-years. The environmental parameters were statistically associated with RC hospitalizations but did not appreciably affect the event rate estimates. Modeled influenza-associated RC hospitalization rates were similar to published estimates, and inclusion of environmental covariates in the model did not have a clinically important effect on severe influenza estimates.
Asunto(s)
Contaminación del Aire , Gripe Humana , Infecciones por Virus Sincitial Respiratorio , Contaminación del Aire/efectos adversos , Exposición a Riesgos Ambientales , Hospitalización , Humanos , Gripe Humana/epidemiología , Washingtón/epidemiologíaRESUMEN
Urban concentrations of black carbon (BC) and other primary pollutants vary on small spatial scales (<100m). Mobile air pollution measurements can provide information on fine-scale spatial variation, thereby informing exposure assessment and mitigation efforts. However, the temporal sparsity of these measurements presents a challenge for estimating representative long-term concentrations. We evaluate the capabilities of mobile monitoring in the represention of time-stable spatial patterns by comparing against a large set of continuous fixed-site measurements from a sampling campaign in West Oakland, California. Custom-built, low-cost aerosol black carbon detectors (ABCDs) provided 100 days of continuous measurements at 97 near-road and 3 background fixed sites during summer 2017; two concurrently operated mobile laboratories collected over 300 h of in-motion measurements using a photoacoustic extinctiometer. The spatial coverage from mobile monitoring reveals patterns missed by the fixed-site network. Time-integrated measurements from mobile lab visits to fixed-site monitors reveal modest correlation (spatial R2 = 0.51) with medians of full daytime fixed-site measurements. Aggregation of mobile monitoring data in space and time can mitigate high levels of uncertainty associated with measurements at precise locations or points in time. However, concentrations estimated by mobile monitoring show a loss of spatial fidelity at spatial aggregations greater than 100 m.