Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(41): 10387-10391, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30257947

RESUMEN

Following erasure in the blastocyst, the entire genome undergoes de novo methylation at the time of implantation, with CpG islands being protected from this process. This bimodal pattern is then preserved throughout development and the lifetime of the organism. Using mouse embryonic stem cells as a model system, we demonstrate that the binding of an RNA polymerase complex on DNA before de novo methylation is predictive of it being protected from this modification, and tethering experiments demonstrate that the presence of this complex is, in fact, sufficient to prevent methylation at these sites. This protection is most likely mediated by the recruitment of enzyme complexes that methylate histone H3K4 over a local region and, in this way, prevent access to the de novo methylation complex. The topological pattern of H3K4me3 that is formed while the DNA is as yet unmethylated provides a strikingly accurate template for modeling the genome-wide basal methylation pattern of the organism. These results have far-reaching consequences for understanding the relationship between RNA transcription and DNA methylation.


Asunto(s)
Masa Celular Interna del Blastocisto/metabolismo , Metilación de ADN , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Transcripción Genética , Animales , Masa Celular Interna del Blastocisto/citología , Islas de CpG , ARN Polimerasas Dirigidas por ADN/metabolismo , Embrión de Mamíferos/citología , Ratones , Ratones Transgénicos , Factores de Transcripción/metabolismo
2.
Int J Dev Biol ; 61(3-4-5): 285-292, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28621425

RESUMEN

Fragile X syndrome is the most frequent cause of inherited intellectual disability. The primary molecular defect in this disease is the expansion of a CGG repeat in the 5' region of the fragile X mental retardation1 (FMR1) gene, leading to de novo methylation of the promoter and inactivation of this otherwise normal gene, but little is known about how these epigenetic changes occur during development. In order to gain insight into the nature of this process, we have used cell fusion technology to recapitulate the events that occur during early embryogenesis. These experiments suggest that the naturally occurring Fragile XFMR1 5' region undergoes inactivation post implantation in a Dicer/Ago-dependent targeted process which involves local SUV39H-mediated tri-methylation of histone H3K9. It thus appears that Fragile X syndrome may come about through inadvertent siRNA-mediated heterochromatinization.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Regulación del Desarrollo de la Expresión Génica , Regiones no Traducidas 5' , Animales , Diferenciación Celular , Desarrollo Embrionario , Células Madre Embrionarias/metabolismo , Fibroblastos/metabolismo , Heterocromatina/química , Histonas/metabolismo , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Fenotipo , Regiones Promotoras Genéticas , ARN/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
3.
Nat Struct Mol Biol ; 21(1): 110-2, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24336222

RESUMEN

After erasure in the early animal embryo, a new bimodal DNA methylation pattern is regenerated at implantation. We have identified a demethylation pathway in mouse embryonic cells that uses hydroxymethylation (Tet1), deamination (Aid), glycosylation (Mbd4) and excision repair (Gadd45a) genes. Surprisingly, this demethylation system is not necessary for generating the overall bimodal methylation pattern but does appear to be involved in resetting methylation patterns during somatic-cell reprogramming.


Asunto(s)
Metilación de ADN , Células Madre Embrionarias/metabolismo , Aminación , Animales , Reparación del ADN/genética , Ratones
4.
Genes Dev ; 22(10): 1319-24, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18443145

RESUMEN

The human beta-globin genes constitute a large chromosomal domain that is developmentally regulated. In nonerythroid cells, these genes replicate late in S phase, while in erythroid cells, replication is early. The replication origin is packaged with acetylated histones in erythroid cells, yet is associated with deacetylated histones in nonerythroid cells. Recruitment of histone acetylases to this origin brings about a transcription-independent shift to early replication in lymphocytes. In contrast, tethering of a histone deacetylase in erythroblasts causes a shift to late replication. These results suggest that histone modification at the origin serves as a binary switch for controlling replication timing.


Asunto(s)
Momento de Replicación del ADN , Globinas/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Origen de Réplica , Acetilación , Animales , Humanos , Ratones , Ratones Transgénicos , Procesamiento Proteico-Postraduccional/fisiología , Estructura Terciaria de Proteína/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA