Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Physiol Regul Integr Comp Physiol ; 326(1): R43-R52, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37899753

RESUMEN

Hydrogen peroxide (H2O2) and calcium ions (Ca2+) are functional regulators of skeletal muscle contraction and metabolism. Although H2O2 is one of the activators of the type-1 ryanodine receptor (RyR1) in the Ca2+ release channel, the interdependence between H2O2 and Ca2+ dynamics remains unclear. This study tested the following hypotheses using an in vivo model of mouse tibialis anterior (TA) skeletal muscle. 1) Under resting conditions, elevated cytosolic H2O2 concentration ([H2O2]cyto) leads to a concentration-dependent increase in cytosolic Ca2+ concentration ([Ca2+]cyto) through its effect on RyR1; and 2) in hypoxia (cardiac arrest) and muscle contractions (electrical stimulation), increased [H2O2]cyto induces Ca2+ accumulation. Cytosolic H2O2 (HyPer7) and Ca2+ (Fura-2) dynamics were resolved by TA bioimaging in young C57BL/6J male mice under four conditions: 1) elevated exogenous H2O2; 2) cardiac arrest; 3) twitch (1 Hz, 60 s) contractions; and 4) tetanic (30 s) contractions. Exogenous H2O2 (0.1-100 mM) induced a concentration-dependent increase in [H2O2]cyto (+55% at 0.1 mM; +280% at 100 mM) and an increase in [Ca2+]cyto (+3% at 1.0 mM; +8% at 10 mM). This increase in [Ca2+]cyto was inhibited by pharmacological inhibition of RyR1 by dantrolene. Cardiac arrest-induced hypoxia increased [H2O2]cyto (+33%) and [Ca2+]cyto (+20%) 50 min postcardiac arrest. Compared with the exogenous 1.0 mM H2O2 condition, [H2O2]cyto after tetanic muscle contractions rose less than one-tenth as much, whereas [Ca2+]cyto was 4.7-fold higher. In conclusion, substantial increases in [H2O2]cyto levels evoke only modest Ca2+ accumulation via their effect on the sarcoplasmic reticulum RyR1. On the other hand, contrary to hypoxia secondary to cardiac arrest, increases in [H2O2]cyto from muscle contractions are small, indicating that H2O2 generation is unlikely to be a primary factor driving the significant Ca2+ accumulation after, especially tetanic, muscle contractions.NEW & NOTEWORTHY We developed an in vivo mouse myocyte H2O2 imaging model during exogenous H2O2 loading, ischemic hypoxia induced by cardiac arrest, and muscle contractions. In this study, the interrelationship between cytosolic H2O2 levels and Ca2+ homeostasis during muscle contraction and hypoxic conditions was revealed. These results contribute to the elucidation of the mechanisms of muscle fatigue and exercise adaptation.


Asunto(s)
Paro Cardíaco , Peróxido de Hidrógeno , Masculino , Animales , Ratones , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Contracción Muscular/fisiología , Retículo Sarcoplasmático/metabolismo , Homeostasis , Hipoxia/metabolismo , Paro Cardíaco/metabolismo , Calcio/metabolismo , Fibras Musculares Esqueléticas
2.
J Therm Biol ; 119: 103760, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38048655

RESUMEN

Skeletal muscle generates heat via contraction-dependent (shivering) and independent (nonshivering) mechanisms. While this thermogenic capacity of skeletal muscle undoubtedly contributes to the body temperature homeostasis of animals and impacts various cellular functions, the intracellular temperature and its dynamics in skeletal muscle in vivo remain elusive. We aimed to determine the intracellular temperature and its changes within skeletal muscle in vivo during contraction and following relaxation. In addition, we tested the hypothesis that sarcoplasmic reticulum Ca2+ ATPase (SERCA) generates heat and increases the myocyte temperature during a transitory Ca2+-induced contraction-relaxation cycle. The intact spinotrapezius muscle of anesthetized adult male Wistar rats (n = 18) was exteriorized and loaded with the fluorescent probe Cellular Thermoprobe for Fluorescence Ratio (49.3 µM) by microinjection over 1 s. The fluorescence ratio (i.e., 580 nm/515 nm) was measured in vivo during 1) temperature increases induced by means of an external heater, and 2) Ca2+ injection (3.9 nL, 2.0 mM). The fluorescence ratio increased as a linear function of muscle surface temperature from 25 °C to 40 °C (r2 = 0.97, P < 0.01). Ca2+ injection (3.9 nL, 2.0 mM) significantly increased myocyte intracellular temperature: An effect that was suppressed by SERCA inhibition with cyclopiazonic acid (CPA, Ca2+: 38.3 ± 1.4 °C vs Ca2++CPA: 28.3 ± 2.8 °C, P < 0.01 at 1 min following injection). While muscle shortening occurred immediately after the Ca2+ injection, the increased muscle temperature was maintained during the relaxation phase. In this investigation, we demonstrated a novel model for measuring the intracellular temperature of skeletal muscle in vivo and further that heat generation occurs concomitant principally with SERCA functioning and muscle relaxation.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Ratas , Masculino , Animales , Ratas Wistar , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/farmacología , Termogénesis/fisiología , Calcio
3.
J Cell Physiol ; 238(9): 2103-2119, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37435895

RESUMEN

Skeletal muscle maintenance depends largely on muscle stem cells (satellite cells) that supply myoblasts required for muscle regeneration and growth. The ubiquitin-proteasome system is the major intracellular protein degradation pathway. We previously reported that proteasome dysfunction in skeletal muscle significantly impairs muscle growth and development. Furthermore, the inhibition of aminopeptidase, a proteolytic enzyme that removes amino acids from the termini of peptides derived from proteasomal proteolysis, impairs the proliferation and differentiation ability of C2C12 myoblasts. However, no evidence has been reported on the role of aminopeptidases with different substrate specificities on myogenesis. In this study, therefore, we investigated whether the knockdown of aminopeptidases in differentiating C2C12 myoblasts affects myogenesis. The knockdown of the X-prolyl aminopeptidase 1, aspartyl aminopeptidase, leucyl-cystinyl aminopeptidase, methionyl aminopeptidase 1, methionyl aminopeptidase 2, puromycine-sensitive aminopeptidase, and arginyl aminopeptidase like 1 gene in C2C12 myoblasts resulted in defective myogenic differentiation. Surprisingly, the knockdown of leucine aminopeptidase 3 (LAP3) in C2C12 myoblasts promoted myogenic differentiation. We also found that suppression of LAP3 expression in C2C12 myoblasts resulted in the inhibition of proteasomal proteolysis, decreased intracellular branched-chain amino acid levels, and enhanced mTORC2-mediated AKT phosphorylation (S473). Furthermore, phosphorylated AKT induced the translocation of TFE3 from the nucleus to the cytoplasm, promoting myogenic differentiation through increased expression of myogenin. Overall, our study highlights the association of aminopeptidases with myogenic differentiation.


Asunto(s)
Leucil Aminopeptidasa , Desarrollo de Músculos , Complejo de la Endopetidasa Proteasomal , Proteínas Proto-Oncogénicas c-akt , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Diferenciación Celular/genética , Línea Celular , Metionil Aminopeptidasas/metabolismo , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Ratones , Leucil Aminopeptidasa/metabolismo
4.
Am J Physiol Regul Integr Comp Physiol ; 325(2): R172-R180, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37335015

RESUMEN

Intracellular Ca2+ concentration ([Ca2+]i) is considered important in the regulation of skeletal muscle mass. This study tested the hypothesis that chronic repeated cooling and/or caffeine ingestion would acutely increase [Ca2+]i and hypertrophy muscles potentially in a fiber-type-dependent manner. Control rats and those fed caffeine were subjected to repeated bidiurnal treatments of percutaneous icing, under anesthesia, to reduce the muscle temperature below ∼5°C. The predominantly fast-twitch tibialis anterior (TA) and slow-twitch soleus (SOL) muscles were evaluated after 28 days of intervention. The [Ca2+]i elevating response to icing was enhanced by caffeine loading only in the SOL muscle, with the response present across a significantly higher temperature range than in the TA muscle under caffeine-loading conditions. In both the TA and SOL muscles, myofiber cross-sectional area (CSA) was decreased by chronic caffeine treatment (mean reductions of 10.5% and 20.4%, respectively). However, in the TA, but not the SOL, CSA was restored by icing (+15.4 ± 4.3% vs. noniced, P < 0.01). In the SOL, but not TA, icing + caffeine increased myofiber number (20.5 ± 6.7%, P < 0.05) and satellite cell density (2.5 ± 0.3-fold) in cross sections. These contrasting muscle responses to cooling and caffeine may reflect fiber-type-specific [Ca2+]i responses and/or differential responses to elevated [Ca2+]i.


Asunto(s)
Cafeína , Músculo Esquelético , Ratas , Animales , Cafeína/farmacología , Músculo Esquelético/fisiología , Frío , Aclimatación , Adaptación Fisiológica , Fibras Musculares de Contracción Rápida , Fibras Musculares de Contracción Lenta/fisiología , Contracción Muscular/fisiología
5.
Am J Physiol Regul Integr Comp Physiol ; 322(1): R14-R27, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34755549

RESUMEN

Eccentric contractions (ECC) facilitate cytosolic calcium ion (Ca2+) release from the sarcoplasmic reticulum (SR) and Ca2+ influx from the extracellular space. Ca2+ is a vital signaling messenger that regulates multiple cellular processes via its spatial and temporal concentration ([Ca2+]i) dynamics. We hypothesized that 1) a specific pattern of spatial/temporal intramyocyte Ca2+ dynamics portends muscle damage following ECC and 2) these dynamics would be regulated by the ryanodine receptor (RyR). [Ca2+]i in the tibialis anterior muscles of anesthetized adult Wistar rats was measured by ratiometric (i.e., ratio, R, 340/380 nm excitation) in vivo bioimaging with Fura-2 pre-ECC and at 5 and 24 h post-ECC (5 × 40 contractions). Separate groups of rats received RyR inhibitor dantrolene (DAN; 10 mg/kg ip) immediately post-ECC (+DAN). Muscle damage was evaluated by histological analysis on hematoxylin-eosin stained muscle sections. Compared with control (CONT, no ECC), [Ca2+]i distribution was heterogeneous with increased percent total area of high [Ca2+]i sites (operationally defined as R ≥ 1.39, i.e., ≥1 SD of mean control) 5 h post-ECC (CONT, 14.0 ± 8.0; ECC5h: 52.0 ± 7.4%, P < 0.01). DAN substantially reduced the high [Ca2+]i area 5 h post-ECC (ECC5h + DAN: 6.4 ± 3.1%, P < 0.01) and myocyte damage (ECC24h, 63.2 ± 1.0%; ECC24h + DAN: 29.1 ± 2.2%, P < 0.01). Temporal and spatially amplified [Ca2+]i fluctuations occurred regardless of DAN (ECC vs. ECC + DAN, P > 0.05). These results suggest that the RyR-mediated local high [Ca2+]i itself is related to the magnitude of muscle damage, whereas the [Ca2+]i fluctuation is an RyR-independent phenomenon.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Contracción Muscular , Fibras Musculares de Contracción Rápida/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Autólisis , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Calpaína/metabolismo , Dantroleno/farmacología , Desmina/metabolismo , Cinética , Masculino , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Fibras Musculares de Contracción Rápida/patología , Ratas Wistar
6.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R972-R983, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33949210

RESUMEN

Peripheral artery disease (PAD) in the lower limb compromises oxygen supply due to arterial occlusion. Ischemic skeletal muscle is accompanied by capillary structural deformation. Therefore, using novel microscopy techniques, we tested the hypothesis that endothelial cell swelling temporally and quantitatively corresponds to enhanced microvascular permeability. Hindlimb ischemia was created in male Wistar rat's by iliac artery ligation (AL). The tibialis anterior (TA) muscle microcirculation was imaged using intravenously infused rhodamine B isothiocyanate dextran fluorescent dye via two-photon laser scanning microscopy (TPLSM) and dye extravasation at 3 and 7 days post-AL quantified to assess microvascular permeability. The TA microvascular endothelial ultrastructure was analyzed by transmission electron microscopy (TEM). Compared with control (0.40 ± 0.15 µm3 × 106), using TPLSM, the volumetrically determined interstitial leakage of fluorescent dye measured at 3 (3.0 ± 0.40 µm3 × 106) and 7 (2.5 ± 0.8 µm3 × 106) days was increased (both P < 0.05). Capillary wall thickness was also elevated at 3 (0.21 ± 0.06 µm) and 7 (0.21 ± 0.08 µm) days versus control (0.11 ± 0.03 µm, both P < 0.05). Capillary endothelial cell swelling was temporally and quantitatively associated with elevated vascular permeability in the AL model of PAD but these changes occurred in the absence of elevations in protein levels of vascular endothelial growth factor (VEGF) its receptor (VEGFR2 which decreased by AL-7 day) or matrix metalloproteinase. The temporal coherence of endothelial cell swelling and increased vascular permeability supports a common upstream mediator. TPLSM, in combination with TEM, provides a sensitive and spatially discrete technique to assess the mechanistic bases for, and efficacy of, therapeutic countermeasures to the pernicious sequelae of compromised peripheral arterial function.


Asunto(s)
Permeabilidad Capilar/fisiología , Isquemia/fisiopatología , Microscopía Confocal , Músculo Esquelético/irrigación sanguínea , Animales , Miembro Posterior/fisiopatología , Ligadura/métodos , Microcirculación/fisiología , Microscopía Confocal/métodos , Microvasos/fisiopatología , Neovascularización Fisiológica/fisiología , Ratas Wistar
7.
Am J Physiol Regul Integr Comp Physiol ; 320(2): R129-R137, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33206560

RESUMEN

The effect of cooling on in vivo intracellular calcium ion concentration [Ca2+]i after eccentric contractions (ECs) remains to be determined. We tested the hypothesis that cryotherapy following ECs promotes an increased [Ca2+]i and induces greater muscle damage in two muscles with substantial IIb and IIx fiber populations. The thin spinotrapezius (SPINO) muscles of Wistar rats were used for in vivo [Ca2+]i imaging, and tibialis anterior (TA) muscles provided greater fidelity and repeatability of contractile function measurements. SPINO [Ca2+]i was estimated using fura 2-AM and the magnitude, location, and temporal profile of [Ca2+]i determined as the temperature near the muscle surface post-ECs was decreased from 30°C (control) to 20°C or 10°C. Subsequently, in the TA, the effect of post-ECs cooling to 10°C on muscle contractile performance was determined at 1 and 2 days after ECs. TA muscle samples were examined by hematoxylin and eosin staining to assess damage. In SPINO, reducing the muscle temperature from 30°C to 10°C post-ECs resulted in a 3.7-fold increase in the spread of high [Ca2+]i sites generated by ECs (P < 0.05). These high [Ca2+]i sites demonstrated partial reversibility when rewarmed to 30°C. Dantrolene, a ryanodine receptor Ca2+ release inhibitor, reduced the presence of high [Ca2+] sites at 10°C. In the TA, cooling exacerbated ECs-induced muscle strength deficits via enhanced muscle fiber damage (P < 0.05). By demonstrating that cooling post-ECs potentiates [Ca2+]i derangements, this in vivo approach supports a putative mechanistic basis for how postexercise cryotherapy might augment muscle fiber damage and decrease subsequent exercise performance.


Asunto(s)
Calcio/metabolismo , Frío , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Animales , Masculino , Ratas , Ratas Wistar
8.
Nitric Oxide ; 100-101: 38-44, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32371102

RESUMEN

Females respond to baroreceptor stimulation with enhanced modulation of heart rate (HR) to regulate blood pressure and also express greater reliance on nitric oxide (NO) for vascular control compared to males. Sex differences in muscle oxygenation consequent to central hemodynamic challenge induced by systemic NO synthase (NOS) inhibition are unknown. We tested the hypotheses that systemic NOS inhibition would induce lower contracting skeletal muscle oxygenation in females compared to males. The spinotrapezius of Sprague-Dawley rats (females (♀) = 9, males (♂) = 9) was surgically exposed and contracted by electrical stimulation (180s, 1 Hz, ~6 V) under pentobarbital sodium anesthesia. Oxyphor G4 was injected into the muscle and phosphorescence quenching was used to measure the interstitial PO2 (PO2is, determined by O2 delivery-to-utilization matching) under control (Krebs-Henseleit solution) and after intra-arterial infusion of nitro-l-arginine methyl ester (l-NAME; NOS blockade; 10 mg kg-1). At rest, females showed a greater PO2is increase (ΔPO2is/ΔMAP) and HR (ΔHR/ΔMAP) reduction than males in response to the elevated MAP induced by systemic NOS inhibition (both p < 0.05). Following l-NAME, during the contracting steady-state, females exhibited lower PO2is than males (♂: 17.1 ± 1.4 vs ♀: 10.8 ± 1.4 mmHg, p < 0.05). The rate pressure product was lower in females than males (♂: 482 ± 14 vs ♀: 392 ± 29, p < 0.05) and correlated with the steady-state PO2is (r = 0.66, p < 0.05). These results support that females express greater reductions in HR than males in response to l-NAME-induced elevation of MAP via the baroreceptor reflex and provide new insights on how central hemodynamics affect skeletal muscle oxygenation in a sex-specific manner.


Asunto(s)
Músculo Esquelético/metabolismo , Óxido Nítrico Sintasa/antagonistas & inhibidores , Consumo de Oxígeno/efectos de los fármacos , Oxígeno/metabolismo , Animales , Presión Arterial/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Contracción Muscular/fisiología , NG-Nitroarginina Metil Éster/farmacología , Ratas Sprague-Dawley , Factores Sexuales
9.
Am J Physiol Heart Circ Physiol ; 317(2): H434-H444, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31225988

RESUMEN

Exercise intolerance is a primary symptom of heart failure (HF); however, the specific contribution of central and peripheral factors to this intolerance is not well described. The hyperbolic relationship between exercise intensity and time to exhaustion (speed-duration relationship) defines exercise tolerance but is underused in HF. We tested the hypotheses that critical speed (CS) would be reduced in HF, resting central functional measurements would correlate with CS, and the greatest HF-induced peripheral dysfunction would occur in more oxidative muscle. Multiple treadmill-constant speed runs to exhaustion were used to quantify CS and D' (distance coverable above CS) in healthy control (Con) and HF rats. Central function was determined via left ventricular (LV) Doppler echocardiography [fractional shortening (FS)] and a micromanometer-tipped catheter [LV end-diastolic pressure (LVEDP)]. Peripheral O2 delivery-to-utilization matching was determined via phosphorescence quenching (interstitial Po2, Po2 is) in the soleus and white gastrocnemius during electrically induced twitch contractions (1 Hz, 8V). CS was lower in HF compared with Con (37 ± 1 vs. 44 ± 1 m/min, P < 0.001), but D' was not different (77 ± 8 vs. 69 ± 13 m, P = 0.6). HF reduced FS (23 ± 2 vs. 47 ± 2%, P < 0.001) and increased LVEDP (15 ± 1 vs. 7 ± 1 mmHg, P < 0.001). CS was related to FS (r = 0.72, P = 0.045) and LVEDP (r = -0.75, P = 0.02) only in HF. HF reduced soleus Po2 is at rest and during contractions (both P < 0.01) but had no effect on white gastrocnemius Po2 is (P > 0.05). We show in HF rats that decrements in central cardiac function relate directly with impaired exercise tolerance (i.e., CS) and that this compromised exercise tolerance is likely due to reduced perfusive and diffusive O2 delivery to oxidative muscles.NEW & NOTEWORTHY We show that critical speed (CS), which defines the upper boundary of sustainable activity, can be resolved in heart failure (HF) animals and is diminished compared with controls. Central cardiac function is strongly related with CS in the HF animals, but not controls. Skeletal muscle O2 delivery-to-utilization dysfunction is evident in the more oxidative, but not glycolytic, muscles of HF rats and is explained, in part, by reduced nitric oxide bioavailability.


Asunto(s)
Tolerancia al Ejercicio , Insuficiencia Cardíaca/fisiopatología , Contracción Muscular , Músculo Esquelético/fisiopatología , Volumen Sistólico , Función Ventricular Izquierda , Animales , Cateterismo Cardíaco , Modelos Animales de Enfermedad , Ecocardiografía Doppler , Femenino , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/metabolismo , Infarto del Miocardio/complicaciones , Infarto del Miocardio/fisiopatología , Óxido Nítrico/metabolismo , Oxidación-Reducción , Consumo de Oxígeno , Ratas Sprague-Dawley , Carrera , Factores de Tiempo , Presión Ventricular
10.
Geriatr Gerontol Int ; 23(12): 958-964, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37968438

RESUMEN

AIM: Cytidine monophosphate-N-acetylneuraminic acid (Neu5Ac) hydroxylase (Cmah) is an enzyme, which converts Neu5Ac to the sialic acid Neu5Gc. Neu5Gc is thought to increase inflammatory cytokines, which are, in part, produced in senescent cells of adipose tissues. Cellular senescence in adipose tissues induces whole-body aging and impaired glucose metabolism. Therefore, we hypothesized that Cmah deficiency would prevent cellular senescence in adipose tissues and impaired glucose metabolism. METHODS: Wild-type (WT) and Cmah knockout (KO) mice aged 24-25 months were used. Whole-body metabolism was assessed using a metabolic gas analysis system. We measured blood glucose and insulin concentrations after oral glucose administration. The size of the lipid droplets in the liver was quantified. Markers of cellular senescence and senescence-associated secretory phenotypes were measured in adipose tissues. RESULTS: Cmah KO had significantly increased VO2 and energy expenditure (P < 0.01). Unlike glucose, the insulin concentration after oral glucose administration was significantly lower in the Cmah KO group than in the WT group (P < 0.001). Lipid droplets in the liver were significantly lower in the Cmah KO group than in the WT group (P < 0.05). The markers of cellular senescence and senescence-associated secretory phenotypes in the adipose tissues were significantly lower in the Cmah KO group than in the WT group (P < 0.05). CONCLUSIONS: Cmah deficiency blunted cellular senescence in adipose tissues and improved whole-body glucose metabolism. These characteristics in aged Cmah KO mice might be associated with higher energy expenditure. Geriatr Gerontol Int 2023; 23: 958-964.


Asunto(s)
Insulinas , Ácido N-Acetilneuramínico , Animales , Ratones , Senescencia Celular , Glucosa , Ratones Noqueados , Ácido N-Acetilneuramínico/metabolismo
11.
Physiol Rep ; 9(13): e14921, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34245114

RESUMEN

It is an open question as to whether cooling-induced muscle contraction occurs in the in vivo environment. In this investigation, we tested the hypotheses that a rise in intracellular Ca²âº concentration ([Ca²âº]i) and concomitant muscle contraction could be evoked in vivo by reducing muscle temperature and that this phenomenon would be facilitated or inhibited by specific pharmacological interventions designed to impact Ca²âº-induced Ca²âº-release (CICR). Progressive temperature reductions were imposed on the spinotrapezius muscle of Wistar rats under isoflurane anesthesia by means of cold fluid immersion. The magnitude, location, and temporal profile of [Ca²âº]i were estimated using fura-2 loading. Caffeine (1.25-5.0 mM) and procaine (1.6-25.6 mM) loading were applied in separatum to evaluate response plasticity by promoting or inhibiting CICR, respectively. Lowering the temperature of the muscle surface to ~5°C produced active tension and discrete sites with elevated [Ca²âº]i. This [Ca²âº]i elevation differed in magnitude from fiber to fiber and also from site to site within a fiber. Caffeine at 1.25 and 5.0 mM reduced the magnitude of cooling necessary to elevate [Ca²âº]i (i.e., from ~5°C to ~8 and ~16°C, respectively, both p < 0.05) and tension. Conversely, 25.6 mM procaine lowered the temperature at which [Ca²âº]i elevation and tension were detected to ~2°C (p < 0.05). Herein we demonstrate the spatial and temporal relationship between cooling-induced [Ca²âº]i elevation and muscle contractile force in vivo and the plasticity of these responses with CICR promotion and inhibition.


Asunto(s)
Temperatura Corporal , Calcio/análisis , Músculo Esquelético/química , Animales , Temperatura Corporal/fisiología , Cafeína/farmacología , Calcio/metabolismo , Calcio/fisiología , Masculino , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Procaína/farmacología , Ratas , Ratas Wistar
12.
Physiol Rep ; 9(8): e14803, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33932103

RESUMEN

ATP-sensitive K+ channels (KATP ) have been implicated in the regulation of resting vascular smooth muscle membrane potential and tone. However, whether KATP channels modulate skeletal muscle microvascular hemodynamics at the capillary level (the primary site for blood-myocyte O2 exchange) remains unknown. We tested the hypothesis that KATP channel inhibition would reduce the proportion of capillaries supporting continuous red blood cell (RBC) flow and impair RBC hemodynamics and distribution in perfused capillaries within resting skeletal muscle. RBC flux (fRBC ), velocity (VRBC ), and capillary tube hematocrit (Hctcap ) were assessed via intravital microscopy of the rat spinotrapezius muscle (n = 6) under control (CON) and glibenclamide (GLI; KATP channel antagonist; 10 µM) superfusion conditions. There were no differences in mean arterial pressure (CON:120 ± 5, GLI:124 ± 5 mmHg; p > 0.05) or heart rate (CON:322 ± 32, GLI:337 ± 33 beats/min; p > 0.05) between conditions. The %RBC-flowing capillaries were not altered between conditions (CON:87 ± 2, GLI:85 ± 1%; p > 0.05). In RBC-perfused capillaries, GLI reduced fRBC (CON:20.1 ± 1.8, GLI:14.6 ± 1.3 cells/s; p < 0.05) and VRBC (CON:240 ± 17, GLI:182 ± 17 µm/s; p < 0.05) but not Hctcap (CON:0.26 ± 0.01, GLI:0.26 ± 0.01; p > 0.05). The absence of GLI effects on the %RBC-flowing capillaries and Hctcap indicates preserved muscle O2 diffusing capacity (DO2 m). In contrast, GLI lowered both fRBC and VRBC thus impairing perfusive microvascular O2 transport (Q̇m) and lengthening RBC capillary transit times, respectively. Given the interdependence between diffusive and perfusive O2 conductances (i.e., %O2 extraction∝DO2 m/Q̇m), such GLI alterations are expected to elevate muscle %O2 extraction to sustain a given metabolic rate. These results support that KATP channels regulate capillary hemodynamics and, therefore, microvascular gas exchange in resting skeletal muscle.


Asunto(s)
Hemodinámica , Canales KATP/metabolismo , Microcirculación , Músculo Esquelético/metabolismo , Animales , Gliburida/farmacología , Hematócrito , Canales KATP/antagonistas & inhibidores , Masculino , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/efectos de los fármacos , Consumo de Oxígeno , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Sprague-Dawley
13.
J Appl Physiol (1985) ; 127(3): 828-837, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31369334

RESUMEN

Eccentric (ECC) contraction-induced muscle damage is associated with calcium ion (Ca2+) influx from the extracellular milieu through stretch-activated channels. It remains unknown whether Ca2+ influx consequent to repetitive ECC contractions is nonuniform across different muscle regions. We tested the hypothesis that there are regional differences in Ca2+ entry along the proximal-middle-distal muscle axis. Tibialis anterior (TA) muscles of adult male Wistar rats were exposed by reflecting the overlying skin and fasciae and ECC contractions evoked by peroneal nerve stimulation paired with simultaneous ankle extension (50 times/set, 2 protocols: 1 set and 10 sets). During ECC in the proximal, middle, and distal TA, we determined 1) muscle fiber extension by high-speed camera (200 frames/s) and 2) Ca2+ accumulation by in vivo bioimaging (Ca2+-sensitive probe Fura-2-acetoxymethyl ester). Muscle fiber extension from resting was significantly different among regions (i.e., proximal, 4.0%: < middle, 11.2%: < distal, 17.0%; ECC phase length at 500th contraction). Intracellular Ca2+ accumulation after 1 set of ECC was higher in the distal (1.46 ± 0.04, P < 0.05) than the proximal (1.27 ± 0.04) or middle (1.26 ± 0.05) regions. However, this regional Ca2+ accumulation difference disappeared by 32.5 min after the 1 set protocol when the muscle was quiescent and by contraction set 5 for the 10-set protocol. The initial preferential ECC-induced Ca2+ accumulation observed distally was associated spatially with the greater muscle extension compared with that of the proximal and middle regions. Disappearance of the regional Ca2+ accumulation disparity in quiescent and ECC-contracting muscle might be explained, in part, by axial Ca2+ propagation and account for the uniformity of muscle damage across regions evident 3 days post-ECC.NEW & NOTEWORTHY After 1 set of 50 eccentric (ECC) contractions in the anterior tibialis muscle, intracellular Ca2+ ([Ca2+]i) accumulation evinces substantial regional heterogeneity that is spatially coherent with muscle length changes (i.e., distal [Ca2+]i > middle, proximal). However, irrespective of whether 50 or 500 ECC contractions are performed, this heterogeneity is subsequently abolished, at least in part, by axial intracellular Ca2+ propagation. This Ca2+ homogenization across regions is consistent with the absence of any interregional difference in muscle damage 3 days post-ECC.


Asunto(s)
Calcio/metabolismo , Contracción Muscular , Músculo Esquelético/metabolismo , Animales , Masculino , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA