RESUMEN
In order to measure the effective diffusion coefficient D of Bevacizumab (Avastin, Genentech) in the vitreous humor, a new technique is developed based on the "contour method" and in vivo optical coherence tomography measurements. After injection of Bevacizumab-fluorescein conjugated compound solution into the rabbit eye, the contours of drug concentration distribution at the subsurface of injection were tracked over time. The 2D contours were extrapolated to 3D contours using reasonable assumptions and a numerically integrated analytical model was developed for the theoretical contours for the irregularly shaped drug distribution in the experimental result. By floating the diffusion coefficient, different theoretical contours were constructed and the least-squares best fit to the experimental contours was performed at each time point to get the best fit solution. The approach generated consistent diffusion coefficient values based on the experiments on four rabbit eyes over a period of 3 h each, which gave D = 1.2 ± 0.6 × 10 - 6 cm 2 / s , and the corresponding theoretical contours matched well with the experimental contours. The quantitative measurement of concentration using optical coherence tomography and fluorescein labeling gives a new approach for the "noncontact" in vivo drug distribution measurement within vitreous.
RESUMEN
We investigated the chemistry of singlet oxygen with a cadmium-sulfur cluster, (Me4N)2[Cd4(SPh)10]. This cluster was used as a model for cadmium-sulfur nanoparticles. Such nanoparticles are often used in conjunction with photosensitizers (for singlet oxygen generation or dye-sensitized solar cells), and hence, it is important to determine if cadmium-sulfur moieties physically quench and/or chemically react with singlet oxygen. We found that (Me4N)2[Cd4(SPh)10] is indeed a very strong quencher of singlet oxygen with total rate constants for 1O2 removal of (5.8 ± 1.3) × 108 M-1 s-1 in acetonitrile and (1.2 ± 0.5) × 108 M-1 s-1 in CD3OD. Physical quenching predominates, but chemical reaction leading to decomposition of the cluster and formation of sulfinate is also significant, with a rate constant of (4.1 ± 0.6) × 106 M-1 s-1 in methanol. Commercially available cadmium-sulfur quantum dots ("lumidots") show similar singlet oxygen quenching rate constants, based on the molar concentration of the quantum dots.
Asunto(s)
Cadmio/química , Procesos Fotoquímicos , Oxígeno Singlete/química , Azufre/química , Oxidación-ReducciónRESUMEN
A systematic study is presented on the physical and photophysical properties of isoelectronic and isostructural Cu, Ag, and Au complexes with a common amide (N-carbazolyl) and two different carbene ligands (i.e., CAAC = (5 R,6 S)-2-(2,6-diisopropylphenyl)-6-isopropyl-3,3,9-trimethyl-2-azaspiro[4.5]decan-2-ylidene, MAC = 1,3-bis(2,6-diisopropylphenyl)-5,5-dimethyl-4-keto-tetrahydropyridylidene). The crystal structures of the (carbene)M(I)(N-carbazolyl) (MCAAC) and (MAC)M(I)(N-carbazolyl) (MMAC) complexes show coplanar carbene and carbzole ligands and C-M-N bond angles of â¼180°. The electrochemical properties and energies for charge transfer (CT) absorption and emission compounds are not significantly affected by the choice of metal ion. All six of the (carbene)M(Cz) complexes examined here display high photoluminescence quantum yields of 0.8-1.0. The compounds have short emission lifetimes (τ = 0.33-2.8 µs) that fall in the order Ag < Au < Cu, with the lifetimes of (carbene)Ag(Cz) roughly a factor of 10 shorter than for (carbene)Cu(Cz) complexes. Detailed temperature-dependent photophysical measurements (5-325 K) were carried out to determine the singlet and triplet emission lifetimes (τfl and τph, respectively) and the energy difference between the singlet and triplet excited state, Δ ES1-T1. The τfl values range between 20 and 85 ns, and the τph values are in the 50-200 µs regime. The emission at room temperature is due exclusively to E-type delayed fluorescence or TADF (i.e., T1âΔS1âS0+hν ). The emission rate at room temperature is fully governed by Δ ES1-T1, with the silver complexes giving Δ ES1-T1 values of 150-180 cm-1 (18-23 meV), whereas the gold and copper complexes give values of 570-590 cm-1 (70-73 meV).
RESUMEN
Subunit vaccines are safer but often poorly immunogenic in comparison to traditional vaccines, and thus, adjuvants and delivery vehicles are needed to enhance the immune response. The complement system is a part of the innate immune system, which plays an important role in innate and adaptive immunity. Therefore, the activation of the complement system could be utilized as a potential strategy for vaccine applications. Herein, cysteamine hydrochloride was grafted onto a methoxy poly(ethylene glycol)-block-poly (allyl glycidyl ether)-block-poly(ε-caprolactone) copolymer to synthesize a triblock polymer mPEG5k-PAGE15(NH2)-PCL5k(TPCAH) with amino groups on the side chain. The positive charge of the amino groups could bind with the negatively charged protein (like ovalbumin (OVA)) to form a stable complex by electrostatic interaction. The triblock copolymer TPCAH we designed can easily self-assemble into polymer nanomicelles, and the size of the nanoparticles is similar to that of the pathogens, which was beneficial to the uptake by lymphocytes. Furthermore, the amino groups modified on the side chain can not only integrate with proteins but also activate the complement system, thereby enhancing the immune response of subunit vaccines. The results showed that the complex TPCAH@OVA could efficiently promote powerful anti-OVA-specific antibody production, enhance CD4+ T- and CD8+ T-cell activation, improve the lymphocyte proliferation efficiency, and increase the secretion of different cytokines. In addition, the abundant amino groups on the surface of TPCAH@OVA could effectively activate the complement system to further enhance adaptive immunity. Overall, these results indicated that the triblock copolymer TPCAH as an adjuvant and carrier can effectively improve the ability of innate and adaptive immune responses to resist pathogens, making it a potential candidate for vaccine applications.
Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Proteínas del Sistema Complemento/inmunología , Nanopartículas/química , Vacunas de Subunidad/farmacología , Inmunidad Adaptativa/inmunología , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteínas del Sistema Complemento/efectos de los fármacos , Cisteamina/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Humanos , Activación de Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Micelas , Ovalbúmina/química , Ovalbúmina/farmacología , Poliésteres/síntesis química , Poliésteres/química , Poliésteres/farmacología , Polietilenglicoles/síntesis química , Polietilenglicoles/química , Polietilenglicoles/farmacología , Vacunas de Subunidad/química , Vacunas de Subunidad/inmunologíaRESUMEN
We investigated the singlet oxygen quenching ability of several derivatives of trans-resveratrol which have been reported to have significant antioxidant ability, including photoprotective activity. We measured the total rate constants of singlet oxygen removal (kT ) by the methylated resveratrol derivative 1,3-dimethoxy-5-[(E)-2-(4-methoxyphenyl)ethenyl]benzene, and the partially methylated resveratrol derivatives 4-((E)-2-(3,5-dimethoxyphenyl)ethenyl)phenol (pterostilbene), 5-[(E)-2-(4-methoxyphenyl)ethenyl]benzene-1,3-diol and (2R,3R)-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-2,3-dihydrochromen-4-one (dihydromyricetin). A protic solvent system results in higher kT values, except for the completely methylated derivative. We also investigated the ability of trans-resveratrol to directly act as a photosensitizer (rather than via secondary photoproducts resulting from other primary photochemical reactions) for the production of singlet oxygen but found that neither resveratrol nor any of its derivatives are able to do so. We then studied the chemical reactions of the methylated derivative with singlet oxygen. The main pathway consists of a [4 + 2] cycloaddition reaction involving the trans-double bond and the para-substituted benzene ring similar to what has been observed for trans-resveratrol. Unlike trans-resveratrol, the primary singlet oxygen product undergoes a second [4 + 2] cycloaddition with singlet oxygen leading to the formation of diendoperoxides. A second reactivity pathway for both trans-resveratrol and the methylated derivative leads to the formation of aldehydes via cleavage of a transient dioxetane.
RESUMEN
Candida albicans, an opportunistic fungal pathogen, causes severe to life-threatening infections in immunocompromised hosts (e.g. HIV patients, burn victims). Conversion of the commensal yeast form to the invasive hyphal form, triggered by environmental cues, initiates such episodes. Although the antifungal activity of nitric oxide (NO) has been established, very few convenient NO-donating systems for treating C. albicans infection have been reported. In this work, a biocompatible NO-donating material that delivers NO upon illumination with visible light has been employed to eradicate C. albicans in a dose-dependent way. Careful studies on the yeast and hyphal forms with this NO donor have revealed that the hyphal form is more susceptible to NO exposure than the yeast variety. Results of this work suggest that materials of this type could find use in thwarting invasion of the hyphal form of the fungus in cases of invasive C. albicans infection.