Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ecol Appl ; 33(1): e2719, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36380453

RESUMEN

Wild and semidomesticated reindeer are one of the key species in Arctic and subarctic areas, and their population dynamics are closely tied to winter conditions. Difficult snow conditions have been found to decrease the calving success and survivability of reindeer, but the economic effects of variation in winter conditions on reindeer husbandry have not been studied. In this study, we combine state-of-the-art economic-ecological modeling with the analysis of annual reindeer management reports from Finland. These contain local knowledge of herding communities. We quantify the occurrence probabilities of different types of winters from annual management reports and analyze the effects of this variation in winter conditions on reindeer husbandry using an age- and sex-structured bioeconomic reindeer-lichen model. Our results show that difficult winters decrease the net revenues of reindeer husbandry. However, they also protect lichen pastures from grazing, thereby increasing future net revenues. Nonetheless, our solutions show that the variability of winter conditions overall decrease the net income of herders compared to constant winter conditions. Low lichen biomass appears to make reindeer management more sensitive to the effects of difficult winter conditions. We also found that it is economically sensible to use supplementary feeding during difficult winters, but the net revenues still decrease compared to average winters because of the high feeding costs. Overall, our analysis suggests that the increasing variability of winter conditions due to climate change will decrease net revenues in reindeer husbandry. This decrease will still occur even if the most extreme effects of climate change do not occur. This study shows that combining a state-of-the-art bioeconomic model and practitioner knowledge can bring compatible insights, ideas, results, and a bottom-up perspective to the discussion.


Asunto(s)
Cambio Climático , Reno , Animales , Finlandia , Líquenes , Estaciones del Año , Nieve , Crianza de Animales Domésticos/economía , Crianza de Animales Domésticos/normas
2.
Glob Chang Biol ; 22(1): 264-70, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26348787

RESUMEN

Four marine fish species are among the most important on the world market: cod, salmon, tuna, and sea bass. While the supply of North American and European markets for two of these species - Atlantic salmon and European sea bass - mainly comes from fish farming, Atlantic cod and tunas are mainly caught from wild stocks. We address the question what will be the status of these wild stocks in the midterm future, in the year 2048, to be specific. Whereas the effects of climate change and ecological driving forces on fish stocks have already gained much attention, our prime interest is in studying the effects of changing economic drivers, as well as the impact of variable management effectiveness. Using a process-based ecological-economic multispecies optimization model, we assess the future stock status under different scenarios of change. We simulate (i) technological progress in fishing, (ii) increasing demand for fish, and (iii) increasing supply of farmed fish, as well as the interplay of these driving forces under different scenarios of (limited) fishery management effectiveness. We find that economic change has a substantial effect on fish populations. Increasing aquaculture production can dampen the fishing pressure on wild stocks, but this effect is likely to be overwhelmed by increasing demand and technological progress, both increasing fishing pressure. The only solution to avoid collapse of the majority of stocks is institutional change to improve management effectiveness significantly above the current state. We conclude that full recognition of economic drivers of change will be needed to successfully develop an integrated ecosystem management and to sustain the wild fish stocks until 2048 and beyond.


Asunto(s)
Acuicultura/economía , Acuicultura/métodos , Conservación de los Recursos Naturales , Explotaciones Pesqueras/economía , Explotaciones Pesqueras/métodos , Peces , Animales , Modelos Económicos , Dinámica Poblacional
3.
Ambio ; 41(7): 720-37, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22581386

RESUMEN

Since WWII, forest management in Fennoscandia has primarily been based on even-aged stand management, clear cut harvesting and thinning from below. As an alternative, uneven-aged management, based on selection cutting of individual trees or small groups of trees, has been proposed. In this review we discuss the theoretical aspects of ecology and economics of the two management approaches. We also review peer-reviewed studies from boreal Fennoscandia, which have aimed at comparing the outcomes of uneven-aged and the conventional even-aged forest management. According to a common view the main obstacle of practicing uneven-aged forestry is its low economic performance. However, the reviewed studies did not offer any straightforward support for this view and several studies have found uneven-aged management to be fully competitive with existing even-aged management. Studies on the ecological aspects indicated that selection cuttings maintain mature or late-successional forest characteristics and species assemblages better than even-aged management, at least at the stand scale and in the short term. We conclude that although the number of relevant studies has increased in recent years, the ecological and economic performance of alternative management methods still remains poorly examined, especially for those stands with multiple tree species and also at wider spatial and temporal scales. For future research we advocate a strategy that fully takes into consideration the interdisciplinary nature of forest management and is better connected to social goals and latest theoretical and methodological developments in ecology and economics.


Asunto(s)
Conservación de los Recursos Naturales , Árboles , Animales , Biodiversidad
4.
Ecol Evol ; 7(20): 8282-8302, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29075449

RESUMEN

Ungulate grazing and trampling strongly affect pastures and ecosystems throughout the world. Ecological population models are used for studying these systems and determining the guidelines for sustainable and economically viable management. However, the effect of trampling and other resource wastage is either not taken into account or quantified with data in earlier models. Also, the ability of models to describe the herbivore impact on pastures is usually not validated. We used a detailed model and data to study the level of winter- and summertime lichen wastage by reindeer and the effects of wastage on population sizes and management. We also validated the model with respect to its ability of predicting changes in lichen biomass and compared the actual management in herding districts with model results. The modeling efficiency value (0.75) and visual comparison between the model predictions and data showed that the model was able to describe the changes in lichen pastures caused by reindeer grazing and trampling. At the current lichen biomass levels in the northernmost Finland, the lichen wastage varied from 0 to 1 times the lichen intake during winter and from 6 to 10 times the intake during summer. With a higher value for wastage, reindeer numbers and net revenues were lower in the economically optimal solutions. Higher wastage also favored the use of supplementary feeding in the optimal steady state. Actual reindeer numbers in the districts were higher than in the optimal steady-state solutions for the model in 18 herding districts out of 20. Synthesis and applications. We show that a complex model can be used for analyzing ungulate-pasture dynamics and sustainable management if the model is parameterized and validated for the system. Wastage levels caused by trampling and other causes should be quantified with data as they strongly affect the results and management recommendations. Summertime lichen wastage caused by reindeer is higher than expected, which suggests that seasonal pasture rotation should be used to prevent the heavy trampling of winter lichen pastures during summer. In the present situation, reindeer numbers in northernmost Finland are in most cases higher than in the management solutions given by the model.

5.
PLoS One ; 9(9): e107811, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25268117

RESUMEN

Modern resource management faces trade-offs in the provision of various ecosystem goods and services to humanity. For fisheries management to develop into an ecosystem-based approach, the goal is not only to maximize economic profits, but to consider equally important conservation and social equity goals. We introduce such a triple-bottom line approach to the management of multi-species fisheries using the Baltic Sea as a case study. We apply a coupled ecological-economic optimization model to address the actual fisheries management challenge of trading-off the recovery of collapsed cod stocks versus the health of ecologically important forage fish populations. Management strategies based on profit maximization would rebuild the cod stock to high levels but may cause the risk of stock collapse for forage species with low market value, such as Baltic sprat (Fig. 1A). Economically efficient conservation efforts to protect sprat would be borne almost exclusively by the forage fishery as sprat fishing effort and profits would strongly be reduced. Unless compensation is paid, this would challenge equity between fishing sectors (Fig. 1B). Optimizing equity while respecting sprat biomass precautionary levels would reduce potential profits of the overall Baltic fishery, but may offer an acceptable balance between overall profits, species conservation and social equity (Fig. 1C). Our case study shows a practical example of how an ecosystem-based fisheries management will be able to offer society options to solve common conflicts between different resource uses. Adding equity considerations to the traditional trade-off between economy and ecology will greatly enhance credibility and hence compliance to management decisions, a further footstep towards healthy fish stocks and sustainable fisheries in the world ocean.


Asunto(s)
Explotaciones Pesqueras , Gadus morhua , Animales , Conservación de los Recursos Naturales , Ecosistema , Europa (Continente) , Humanos , Modelos Económicos , Dinámica Poblacional , Medio Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA