Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Hepatol Res ; 54(3): 300-314, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37850337

RESUMEN

AIM: To evaluate the use of donor-derived cell-free DNA (dd-cfDNA) in diagnosing graft injuries in Japanese liver transplantation (LTx), including family-related living donors. METHODS: A total of 321 samples from 10 newly operated LTx recipients were collected to monitor the early dynamics of dd-cfDNA levels after LTx. Fifty-five samples from 55 recipients were collected during protocol biopsies (PB), whereas 36 samples from 27 recipients were collected during event biopsies, consisting of 11 biopsy-proven acute rejection (AR), 20 acute dysfunctions without rejection (ADWR), and 5 chronic rejections. The levels of dd-cfDNA were quantified using a next-generation sequencer based on single nucleotide polymorphisms. RESULTS: The dd-cfDNA levels were elevated significantly after LTx, followed by a rapid decline to the baseline in patients without graft injury within 30 days post-LTx. The dd-cfDNA levels were significantly higher in the 11 samples obtained during AR than those obtained during PB (p < 0.0001), which decreased promptly after treatment. The receiver operator characteristic curve analysis of diagnostic ability yielded areas under the curve of 0.975 and 0.897 for AR (rejection activity index [RAI] ≥3) versus PB and versus non-AR (ADWR + PB). The dd-cfDNA levels during AR were elevated earlier and correlated more strongly with the RAI (r = 0.740) than aspartate aminotransferase/alanine aminotransferase. The dd-cfDNA levels were neither associated with graft fibrosis based on histology nor the status of donor-specific antibodies in PB samples. CONCLUSIONS: Donor-derived cell-free DNA serves as a sensitive biomarker for detecting graft injuries in LTx. Further large-scale cohort studies are warranted to optimize its use in differentiating various post-LTx etiologies.

2.
Caries Res ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955172

RESUMEN

INTRODUCTION: The purpose of this study was to investigate the effects of nitrate and nitrite on the pH-lowering activity of human plaque, the nitrite-producing and -degrading activities of human plaque, and their correlation. METHODS: Nitrate and nitrite were added to human plaque suspensions collected from the buccal aspect of maxillary molars of patients visiting a general dental clinic, and changes in pH were measured with and without glucose addition. Nitrite-producing and -degrading activities were evaluated by adding nitrate and nitrite to the plaque suspension and measuring the increase and decrease in nitrite with Griess reagent, respectively. RESULTS: The addition of nitrate inhibited both endogenous and glucose-induced plaque pH lowering. The addition of glucose enhanced the production of nitrite from nitrate by about 3.3-fold. The addition of nitrite also inhibited endogenous plaque pH-lowering, but the addition of glucose promoted nitrite degradation by only about 1.1-fold. Nitrite-producing activity was positively correlated with age, but not with nitrite-degrading activity. CONCLUSION: This study revealed that nitrite was produced from nitrate and inhibited the pH-lowering activity of human plaque, which may contribute to caries control. Both nitrite-producing and -degrading activities occurred in human plaque, but no correlation was found between them. Furthermore, nitrite production was enhanced by glucose metabolism, which may function as a self-regulatory mechanism (resilience) to prevent excessive acidification by glucose metabolism.

3.
Genes Dev ; 30(21): 2376-2390, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881600

RESUMEN

In cytoplasm, the survival of motor neuron (SMN) complex delivers pre-small nuclear RNAs (pre-snRNAs) to the heptameric Sm ring for the assembly of the ring complex on pre-snRNAs at the conserved Sm site [A(U)4-6G]. Gemin5, a WD40 protein component of the SMN complex, is responsible for recognizing pre-snRNAs. In addition, Gemin5 has been reported to specifically bind to the m7G cap. In this study, we show that the WD40 domain of Gemin5 is both necessary and sufficient for binding the Sm site of pre-snRNAs by isothermal titration calorimetry (ITC) and mutagenesis assays. We further determined the crystal structures of the WD40 domain of Gemin5 in complex with the Sm site or m7G cap of pre-snRNA, which reveal that the WD40 domain of Gemin5 recognizes the Sm site and m7G cap of pre-snRNAs via two distinct binding sites by respective base-specific interactions. In addition, we also uncovered a novel role of Gemin5 in escorting the truncated forms of U1 pre-snRNAs for proper disposal. Overall, the elucidated Gemin5 structures will contribute to a better understanding of Gemin5 in small nuclear ribonucleic protein (snRNP) biogenesis as well as, potentially, other cellular activities.


Asunto(s)
Modelos Moleculares , Precursores del ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN/química , Proteínas del Complejo SMN/metabolismo , Sitios de Unión , Línea Celular , Cristalización , Células HEK293 , Humanos , Mutación Puntual , Unión Proteica , Dominios Proteicos/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Precursores del ARN/química , Ribonucleoproteínas Nucleares Pequeñas/biosíntesis , Proteínas del Complejo SMN/genética
4.
Caries Res ; 57(3): 255-264, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37699359

RESUMEN

Green tea-derived catechins, which can be divided into galloylated (epicatechin gallate: ECG, epigallocatechin gallate: EGCG) and non-galloylated (catechin: C, epicatechin: EC, epigallocatechin: EGC) catechins, are considered to be the main contributors to the caries control potential of green tea. In this study, we intended to compare the antimicrobial effects of these representative green tea-derived catechins and their combined effects with fluoride on the acid production and aggregation of Streptococcus mutans. The effects of different catechins on the growth, aggregation and acid production of S. mutans, and the combined effect of catechins and potassium fluoride (2 mm at pH 7.0, 0.3 mm at pH 5.5) on S. mutans acid production were measured by anaerobic culture, turbidity changes due to aggregation, and pH-stat methods. Molecular docking simulations were also performed to investigate the interactions between catechins and membrane-embedded enzyme II complex (EIIC), a component of the phosphoenolpyruvate-dependent phosphotransferase system (sugar uptake-related enzyme). ECG or EGCG at 1 mg/mL significantly inhibited the growth of S. mutans, induced bacterial aggregation, and decreased glucose-induced acid production (p < 0.05). All catechins were able to bind to EIIC in silico, in the following order of affinity: EGCG, ECG, EGC, EC, and C. Furthermore, they enhanced the inhibitory effects of fluoride at pH 5.5 and significantly inhibited S. mutans acid production by 47.5-86.6% (p < 0.05). These results suggest that both galloylated and non-galloylated catechins exhibit antimicrobial activity, although the former type demonstrates stronger activity, and that the caries control effects of green tea may be due to the combined effects of multiple components, such as catechins and fluoride. The detailed mechanisms underlying these phenomena and the in vivo effect need to be explored further.


Asunto(s)
Antiinfecciosos , Catequina , Humanos , Té/química , Catequina/farmacología , Catequina/análisis , Catequina/metabolismo , Streptococcus mutans/metabolismo , Fluoruros/farmacología , Simulación del Acoplamiento Molecular
5.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768316

RESUMEN

Increasing evidence suggests that aerobic glycolysis is related to the progression of oral squamous cell carcinoma (OSCC). Hence, we focused on glycolysis-related gene sets to screen for potential therapeutic targets for OSCC. The expression profiles of OSCC samples and normal controls were obtained from The Cancer Genome Atlas (TCGA). Then, the differentially expressed gene sets were selected from the official GSEA website following extraction of the differentially expressed core genes (DECGs). Subsequently, we tried to build a risk model on the basis of DECGs to predict the prognosis of OSCC patients via Cox regression analysis. Furthermore, crucial glycolysis-related genes were selected to explore their biological roles in OSCC. Two active glycolysis-related pathways were acquired and 66 DECGs were identified. Univariate Cox regression analysis showed that six genes, including HMMR, STC2, DDIT4, DEPDC1, SLC16A3, and AURKA, might be potential prognostic factors. Subsequently, a risk formula consisting of DEPDC1, DDIT4, and SLC16A3 was established on basis of the six molecules. Furthermore, DEPDC1 was proven to be related to advanced stage cancer and lymph node metastasis. Moreover, functional experiments suggested that DEPDC1 promoted the aerobic glycolysis, migration, and invasion of OSCC via the WNT/ß-catenin pathway. The risk score according to glycolysis-related gene expression might be an independent prognostic factor in OSCC. In addition, DEPDC1 was identified as playing a carcinogenic role in OSCC progression, suggesting that DEPDC1 might be a novel biomarker and therapeutic target for OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Activadoras de GTPasa/metabolismo , Neoplasias de Cabeza y Cuello/genética , Neoplasias de la Boca/patología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Vía de Señalización Wnt/genética
6.
Eur J Oral Sci ; 130(5): e12887, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35917355

RESUMEN

The purpose of this study was to develop a chewing gum containing a novel antimicrobial peptide GH12 and evaluate its biocompatibility, antimicrobial activity, and caries-preventive effects in vivo and in vitro. GH12 chewing gum was developed using a conventional method and its extracts were prepared in artificial saliva. GH12 concentration in the extracts was determined by high-performance liquid chromatography; extracts were used for growth curve assay, time-kill assay, crystal violet staining assay, scanning electron microscopy, and Cell Counting Kit-8 assay. A rat caries model was established, and molars were treated topically with extracts for 5 weeks. Weight gain monitoring, hematoxylin-eosin staining, micro-computed tomography, and Keyes scoring were conducted. Significant inhibition of Streptococcus mutans growth and biofilm formation was observed. Extracts displayed low cytotoxicity against human gingival epithelial cells. No significant differences in weight gain or signs of harm to the mucosal tissues in any of the rats were observed. Keyes scores of caries lesions in the GH12 chewing gum group were lower than those of the negative control group. It was concluded that GH12 chewing gum showed good biocompatibility, antimicrobial activity, and caries-preventive effects, exhibiting great potential to prevent dental caries as an adjuvant to regular oral hygiene.


Asunto(s)
Antiinfecciosos , Caries Dental , Animales , Antiinfecciosos/farmacología , Péptidos Antimicrobianos , Goma de Mascar/análisis , Caries Dental/prevención & control , Susceptibilidad a Caries Dentarias , Eosina Amarillenta-(YS)/farmacología , Violeta de Genciana/farmacología , Hematoxilina/farmacología , Humanos , Ratas , Saliva Artificial/farmacología , Streptococcus mutans , Aumento de Peso , Microtomografía por Rayos X
7.
Caries Res ; 56(5-6): 524-534, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36380626

RESUMEN

Combining fluoride and antimicrobial agents enhances regulation of acid and exopolysaccharide production by biofilms. The combination also weakens the acidogenic and aciduric bacteria that contribute to caries, achieving stronger caries-controlling effects with lower concentrations of fluoride. In previous studies, antimicrobial peptide GH12 has been shown to inhibit lactic acid and exopolysaccharide synthesis in various cariogenic biofilm models, and reduce the proportion of acidogenic bacteria and Keyes caries scores in a rat caries model. The current study aimed to elucidate the effect of a combination of low concentrations of sodium fluoride (NaF) and GH12 and to determine the mechanism by which GH12/NaF combination controls caries. The GH12/NaF combination contained 8 mg/L GH12 and 250 ppm NaF. A rat caries model was built, and rat dental plaque was sampled and cultivated on bovine enamel slabs in vitro and subjected to short-term treatment (5 min, 3 times/day). The caries-controlling effects were evaluated using Keyes scoring and transverse microradiography. The results showed that the GH12/NaF combination significantly decreased the onset and development of dental caries, as well as mineral content loss and lesion depth in vitro (p < 0.05). For the caries-controlling mechanisms, 16S rRNA sequencing of in vivo dental plaque revealed that populations of commensal bacteria Rothia spp. and Streptococcus parasanguinis increased in the GH12/NaF group. In contrast, Veillonella, Lactobacillus, and Streptococcus mutans decreased. Furthermore, the GH12/NaF combination significantly reduced biomass, lactic acid, and exopolysaccharides production of in vitro biofilm (p < 0.05). Overall, fluoride and GH12 efficiently arrested caries development and demineralization by regulating the microbiota and suppressing acid and exopolysaccharide production in biofilms.


Asunto(s)
Péptidos Antimicrobianos , Caries Dental , Placa Dental , Animales , Bovinos , Ratas , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/uso terapéutico , Biopelículas , Caries Dental/tratamiento farmacológico , Caries Dental/prevención & control , Caries Dental/microbiología , Susceptibilidad a Caries Dentarias , Placa Dental/tratamiento farmacológico , Placa Dental/microbiología , Fluoruros/farmacología , Ácido Láctico , ARN Ribosómico 16S , Fluoruro de Sodio/farmacología , Streptococcus mutans
8.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35055173

RESUMEN

Metformin is a metabolic disruptor, and its efficacy and effects on metabolic profiles under different oxygen and nutrient conditions remain unclear. Therefore, the present study examined the effects of metformin on cell growth, the metabolic activities and consumption of glucose, glutamine, and pyruvate, and the intracellular ratio of nicotinamide adenine dinucleotide (NAD+) and reduced nicotinamide adenine dinucleotide (NADH) under normoxic (21% O2) and hypoxic (1% O2) conditions. The efficacy of metformin with nutrient removal from culture media was also investigated. The results obtained show that the efficacy of metformin was closely associated with cell types and environmental factors. Acute exposure to metformin had no effect on lactate production from glucose, glutamine, or pyruvate, whereas long-term exposure to metformin increased the consumption of glucose and pyruvate and the production of lactate in the culture media of HeLa and HaCaT cells as well as the metabolic activity of glucose. The NAD+/NADH ratio decreased during growth with metformin regardless of its efficacy. Furthermore, the inhibitory effects of metformin were enhanced in all cell lines following the removal of glucose or pyruvate from culture media. Collectively, the present results reveal that metformin efficacy may be regulated by oxygen conditions and nutrient availability, and indicate the potential of the metabolic switch induced by metformin as combinational therapy.


Asunto(s)
Glucosa/metabolismo , Glutamina/metabolismo , Metabolómica/métodos , Metformina/farmacología , NAD/metabolismo , Ácido Pirúvico/metabolismo , Línea Celular Tumoral , Proliferación Celular , Medios de Cultivo/química , Células HeLa , Humanos , Ácido Láctico/metabolismo , Oxígeno/metabolismo , Hipoxia Tumoral
9.
Nucleic Acids Res ; 47(5): 2487-2505, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30759234

RESUMEN

TDP-43 regulates cellular levels of Cajal bodies (CBs) that provide platforms for the assembly and RNA modifications of small nuclear ribonucleoproteins (snRNPs) involved in pre-mRNA splicing. Alterations in these snRNPs may be linked to pathogenesis of amyotrophic lateral sclerosis. However, specific roles for TDP-43 in CBs remain unknown. Here, we demonstrate that TDP-43 regulates the CB localization of four UG-rich motif-bearing C/D-box-containing small Cajal body-specific RNAs (C/D scaRNAs; i.e. scaRNA2, 7, 9 and 28) through the direct binding to these scaRNAs. TDP-43 enhances binding of a CB-localizing protein, WD40-repeat protein 79 (WDR79), to a subpopulation of scaRNA2 and scaRNA28; the remaining population of the four C/D scaRNAs was localized to CB-like structures even with WDR79 depletion. Depletion of TDP-43, in contrast, shifted the localization of these C/D scaRNAs, mainly into the nucleolus, as well as destabilizing scaRNA2, and reduced the site-specific 2'-O-methylation of U1 and U2 snRNAs, including at 70A in U1 snRNA and, 19G, 25G, 47U and 61C in U2 snRNA. Collectively, we suggest that TDP-43 and WDR79 have separate roles in determining CB localization of subsets of C/D and H/ACA scaRNAs.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Cuerpos Enrollados/genética , Proteínas de Unión al ADN/genética , Proteínas/genética , Esclerosis Amiotrófica Lateral/patología , Nucléolo Celular/genética , Cuerpos Enrollados/metabolismo , Citidina/análogos & derivados , Citidina/genética , Células HeLa , Humanos , Chaperonas Moleculares , ARN Guía de Kinetoplastida/genética , ARN Nuclear Pequeño/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Telomerasa
10.
Nucleic Acids Res ; 47(19): 10357-10372, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31504794

RESUMEN

Activation of ribosomal RNA (rRNA) synthesis is pivotal during cell growth and proliferation, but its aberrant upregulation may promote tumorigenesis. Here, we demonstrate that the candidate oncoprotein, LYAR, enhances ribosomal DNA (rDNA) transcription. Our data reveal that LYAR binds the histone-associated protein BRD2 without involvement of acetyl-lysine-binding bromodomains and recruits BRD2 to the rDNA promoter and transcribed regions via association with upstream binding factor. We show that BRD2 is required for the recruitment of the MYST-type acetyltransferase KAT7 to rDNA loci, resulting in enhanced local acetylation of histone H4. In addition, LYAR binds a complex of BRD4 and KAT7, which is then recruited to rDNA independently of the BRD2-KAT7 complex to accelerate the local acetylation of both H4 and H3. BRD2 also helps recruit BRD4 to rDNA. By contrast, LYAR has no effect on rDNA methylation or the binding of RNA polymerase I subunits to rDNA. These data suggest that LYAR promotes the association of the BRD2-KAT7 and BRD4-KAT7 complexes with transcription-competent rDNA loci but not to transcriptionally silent rDNA loci, thereby increasing rRNA synthesis by altering the local acetylation status of histone H3 and H4.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Histona Acetiltransferasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Acetilación , Carcinogénesis/genética , Cromatina/genética , Metilación de ADN/genética , ADN Ribosómico/genética , Histonas/genética , Humanos , ARN Polimerasa I/genética , ARN Ribosómico/biosíntesis , ARN Ribosómico/genética , Transcripción Genética
11.
Caries Res ; 55(3): 205-214, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34010838

RESUMEN

It has been suggested that green tea-derived epigallocatechin gallate (EGCG), which has antimicrobial properties, might help prevent dental caries. However, the detailed properties of EGCG remain unclear. In this study, the antimicrobial properties of EGCG were evaluated by examining its bactericidal activity, its inhibitory effects against bacterial growth, acid production, acidic end-product formation, and sugar uptake (phosphoenolpyruvate-dependent phosphotransferase system, PEP-PTS activity), and its effects on bacterial aggregation, using monocultured planktonic cells of Streptococcus mutans and non-mutans streptococci. Coincubating S. mutans with EGCG (1 mg/mL) for 4 h had no bactericidal effects, while it decreased the growth and acid production of S. mutans by inhibiting the activity of the PEP-PTS. EGCG (2 mg/mL) caused rapid bacterial cell aggregation and had reduced the optical density of S. mutans cell suspension by 86.7% at pH 7.0 and 90.7% at pH 5.5 after 2 h. EGCG also reduced the acid production of non-mutans streptococci, including S. sanguinis, S. gordonii, and S. salivarius, and promoted the aggregation of these non-mutans streptococci. Furthermore, these antimicrobial effects of short-term EGCG treatment persisted in the presence of saliva. These results suggest that EGCG might have short-term antibacterial effects on caries-associated streptococci in the oral cavity.


Asunto(s)
Catequina , Caries Dental , Biopelículas , Catequina/análogos & derivados , Catequina/farmacología , Caries Dental/prevención & control , Humanos , Streptococcus mutans ,
12.
BMC Oral Health ; 21(1): 286, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34088301

RESUMEN

BACKGROUND: Removal of oral biofilm from the oral mucosa is essential for preventing risk of respiratory and gastrointestinal infection in elderly people. Currently, no device is available which can remove oral biofilm from oral mucosa effectively and safely. Therefore, the effectiveness and safety of the Micro Scale Mist UNIT (MSM-UNIT), a newly developed dental plaque removal device utilizing high speed sprays of fine water droplets, were evaluated for biofilm removal, including the rate and surface roughness for simulated tooth surface and mucous membrane. METHODS: Simulated tooth and oral mucosa coated with an artificial biofilm of Streptococcus mutans were used for evaluation of effectiveness, with uncoated substrates as the controls. The MSM-UNIT and a conventional air ablation device were operated under recommended instructions. The effectiveness was evaluated from the rate of removal of the biofilm, and the safety was evaluated from the damage observed by scanning electron microscope and surface roughness. RESULTS: The biofilm removal rate of the MSM-UNIT was significantly higher than that of AIRFLOW. Little damage was observed in the area treated by the MSM-UNIT. The surface roughness of the MSM-UNIT treated area on simulated tooth surface and oral mucosa showed no significant difference to the control area. In contrast, cracks and powder were observed in the area treated by AIRFLOW. In particular, the surface roughness of the AIRFLOW treated area for Toughsilon was significantly larger than that of the control. CONCLUSIONS: The MSM-UNIT could be used safely and effectively for removing biofilm not only on simulated tooth surfaces but also simulated mucous membrane. The MSM-UNIT has no harmful effect on teeth or oral mucosa, and may be used for comprehensive oral care for patients during nursing care and the perioperative period.


Asunto(s)
Placa Dental , Anciano , Biopelículas , Placa Dental/prevención & control , Humanos , Streptococcus mutans , Propiedades de Superficie
13.
Anal Chem ; 92(16): 11349-11356, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32662983

RESUMEN

Pseudouridine (Ψ) is the only "mass-silent" nucleoside produced by post-transcriptional RNA modification. We developed a mass spectrometry (MS)-based technique coupled with in vivo deuterium (D) labeling of uridines for direct determination of Ψs in cellular RNA and applied it to the comprehensive analysis of post-transcriptional modifications in human ribosomal RNAs. The method utilizes human TK6/mouse FM3A cells deficient in uridine monophosphate synthase using a CRISPR-Cas9 technique to turn off de novo uridine synthesis and fully labels uridines with D at uracil positions 5 and 6 by cultivating the cells in a medium containing uridine-5,6-D2. The pseudouridylation reaction in those cells results in the exchange of the D at the C5 of uracil with hydrogen from solvent, which produces a -1 Da mass shift, thus allowing MS-based determination of RNA Ψs. We present here the experimental details of this method and show that it allows the identification of all Ψs in human major nuclear and nucleolar RNAs, including several previously unknown Ψs. Because the method allows direct determination of Ψs at the femtomole level of RNA, it will serve as a useful tool for structure/function studies of a wide variety of noncoding RNAs.


Asunto(s)
Seudouridina/análisis , Procesamiento Postranscripcional del ARN , ARN Ribosómico/análisis , ARN Ribosómico/metabolismo , ARN Nuclear Pequeño/análisis , ARN Nuclear Pequeño/metabolismo , Animales , Línea Celular , Deuterio/química , Humanos , Marcaje Isotópico , Espectrometría de Masas , Ratones , Complejos Multienzimáticos/química , Orotato Fosforribosiltransferasa/química , Orotidina-5'-Fosfato Descarboxilasa/química , Seudouridina/química , ARN Ribosómico/química , ARN Nuclear Pequeño/química
14.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32769185

RESUMEN

Veillonella species are among the major anaerobes in the oral cavity and are frequently detected in both caries lesions and healthy oral microbiomes. They possess the ability to utilize lactate and convert nitrate (NO3-) into nitrite (NO2-). Recently, interest in NO2- has increased rapidly because of its beneficial effects on oral and general health; i.e., it inhibits the growth and metabolism of oral pathogenic bacteria, such as Streptococcus mutans, and lowers systemic blood pressure. However, there is only limited information about the biochemical characteristics of NO2- production by Veillonella species. We found that NO3- did not inhibit the growth of Veillonella atypica or Veillonella parvula, and it inhibited the growth of Streptococcus mutans only at a high concentration (100 mM). However, NO2- inhibited the growth of Streptococcus mutans at a low concentration (0.5 mM), while a higher concentration of NO2- (20 mM) was needed to inhibit the growth of Veillonella species. NO2- production by Veillonella species was increased by environmental factors (lactate, acidic pH, and anaerobic conditions) and growth conditions (the presence of NO3- or NO2-) and was linked to anaerobic lactate metabolism. A stoichiometric evaluation revealed that NO3- is reduced to NO2- by accepting reducing power derived from the oxidization of lactate. These findings suggest that the biochemical characteristics of NO2- production from NO3- and its linkage with lactate metabolism in oral Veillonella species may play a key role in maintaining good oral and general health.IMPORTANCE The prevalence of dental caries is still high around the world. Dental caries is initiated when the teeth are exposed to acid, such as lactic acid, produced via carbohydrate metabolism by acidogenic microorganisms. Veillonella species, which are among the major oral microorganisms, are considered to be beneficial bacteria due to their ability to convert lactic acid to weaker acids and to produce NO2- from NO3-, which is thought to be good for both oral and general health. Therefore, it is clear that there is a need to elucidate the biochemical characteristics of NO2- production in Veillonella species. The significance of our research is that we have found that lactate metabolism is linked to NO2- production by Veillonella species in the environment found in the oral cavity. This study suggests that Veillonella species are potential candidates for maintaining oral and general health.


Asunto(s)
Lactatos/metabolismo , Boca/microbiología , Nitritos/metabolismo , Streptococcus mutans/crecimiento & desarrollo , Veillonella/metabolismo , Caries Dental/metabolismo , Streptococcus mutans/efectos de los fármacos , Veillonella/crecimiento & desarrollo
15.
Nucleic Acids Res ; 46(18): 9289-9298, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30202881

RESUMEN

During ribosome biogenesis, ribosomal RNAs acquire various chemical modifications that ensure the fidelity of translation, and dysregulation of the modification processes can cause proteome changes as observed in cancer and inherited human disorders. Here, we report the complete chemical modifications of all RNAs of the human 80S ribosome as determined with quantitative mass spectrometry. We assigned 228 sites with 14 different post-transcriptional modifications, most of which are located in functional regions of the ribosome. All modifications detected are typical of eukaryotic ribosomal RNAs, and no human-specific modifications were observed, in contrast to a recently reported cryo-electron microscopy analysis. While human ribosomal RNAs appeared to have little polymorphism regarding the post-transcriptional modifications, we found that pseudouridylation at two specific sites in 28S ribosomal RNA are significantly reduced in ribosomes of patients with familial dyskeratosis congenita, a genetic disease caused by a point mutation in the pseudouridine synthase gene DKC1. The landscape of the entire epitranscriptomic ribosomal RNA modifications provides a firm basis for understanding ribosome function and dysfunction associated with human disease.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN Ribosómico 28S/genética , ARN/genética , Ribosomas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Transformada , Microscopía por Crioelectrón , Disqueratosis Congénita/genética , Células HeLa , Humanos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Biosíntesis de Proteínas , Seudouridina/metabolismo , ARN/química , ARN/metabolismo , ARN Ribosómico 28S/química , ARN Ribosómico 28S/metabolismo , Ribosomas/metabolismo , Ribosomas/ultraestructura
16.
Proteomics ; 19(8): e1700453, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30865381

RESUMEN

Exosomes are important bidirectional cell-cell communicators in normal and pathological physiology. Although exosomal surface membrane proteins (surfaceome) enable target cell recognition and are an attractive source of disease marker, they are poorly understood. Here, a comprehensive surfaceome analysis of exosomes secreted by the colorectal cancer cell line SW480 is described. Sodium carbonate extraction/Triton X-114 phase separation and mild proteolysis (proteinase K, PK) of intact exosomes is used in combination with label-free quantitative mass spectrometry to identify 1025 exosomal proteins of which 208 are predicted to be integral membrane proteins (IMPs) according to TOPCONS and GRAVY scores. Interrogation of UniProt database-annotated proteins reveals 124 predicted peripherally-associated membrane proteins (PMPs). Surprisingly, 108 RNA-binding proteins (RBPs)/RNA nucleoproteins (RNPs) are found in the carbonate/Triton X-114 insoluble fraction. Mild PK treatment of SW480-GFP labeled exosomes reveal 58 proteolytically cleaved IMPs and 14 exoplasmic PMPs (e.g., CLU/GANAB/LGALS3BP). Interestingly, 18 RBPs/RNPs (e.g., EIF3L/RPL6) appear bound to the outer exosome surface since they are sensitive to PK proteolysis. The finding that outer surface-localized miRNA Let-7a-5p is RNase A-resistant, but degraded by a combination of RNase A/PK treatment suggests exosomal miRNA species also reside on the outer surface of exosomes bound to RBPs/RNPs.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Endopeptidasa K/metabolismo , Exosomas/metabolismo , Proteínas de la Membrana/metabolismo , Nucleoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Humanos , Microscopía Electrónica de Transmisión , Proteolisis , Proteómica/métodos
17.
Anal Chem ; 91(24): 15634-15643, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31725277

RESUMEN

RNA post-transcriptional modifications are common in all kingdoms of life and are predominantly affiliated with methylations at various nucleobase positions. Methylations occur frequently at specific sites on the RNA nucleobases and appear to regulate site-specific intermolecular/intramolecular interactions. Herein, we present a method that utilizes liquid chromatography-mass spectrometry (LC-MS) to identify positional monomethylated RNA nucleoside isomers. The method produces profiles of in-source fragmentation and subsequent tandem mass spectrometry (MS2) (pseudo-MS3) of RNase-digested fragments of an RNA and distinguishes between positional methylated nucleobase isomers by comparing their intranucleobase fragment ion profiles with signature profiles derived from authentic isomers. For method validation, we independently determined the positions of all known monomethylated nucleoside isomers in the Escherichia coli 16S/23S rRNAs. As proof of concept, we further applied this technology to fully characterize the base-modified nucleoside positional isomers, in rRNAs derived from Leishmania donovani, a human blood parasite afflicting millions around the globe. The method described herein will be highly beneficial for the delineation of RNA modification profiles in various cellular RNAs, and as it only requires a subpicomole amount of RNA, it could also be used for the structure-function studies of RNA populations represented in minute amounts in the cell.


Asunto(s)
Escherichia coli/genética , Leishmania/genética , Nucleósidos/análisis , ARN Ribosómico 18S/análisis , ARN Ribosómico/análisis , Humanos , Metilación , Nucleósidos/química , Procesamiento Postranscripcional del ARN , ARN Ribosómico/química , ARN Ribosómico 18S/química
18.
Biosci Biotechnol Biochem ; 83(11): 2034-2048, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31282289

RESUMEN

Protein-protein interactions (PPIs) lead the formation of protein complexes that perform biochemical reactions that maintain the living state of the living cell. Although therapeutic drugs should influence the formation of protein complexes in addition to PPI network, the methodology analyzing such influences remain to be developed. Here, we demonstrate that a new approach combining HPLC (high performance liquid chromatography) for separating protein complexes, and the SILAC (stable isotope labeling using amino acids in cell culture) method for relative protein quantification, enable us to identify the protein complexes influenced by a drug. We applied this approach to the analysis of thalidomide action on HepG2 cells, assessed the identified proteins by clustering data analyses, and assigned 135 novel protein complexes affected by the drug. We propose that this approach is applicable to elucidating the mechanisms of actions of other therapeutic drugs on the PPI network, and the formation of protein complexes.


Asunto(s)
Aminoácidos/química , Evaluación Preclínica de Medicamentos/métodos , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteínas/química , Proteínas/metabolismo , Proteómica , Células Hep G2 , Humanos , Marcaje Isotópico , Talidomida/farmacología
19.
Nucleic Acids Res ; 45(6): 3437-3447, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-27899605

RESUMEN

Ribosome biogenesis occurs successively in the nucleolus, nucleoplasm, and cytoplasm. Maturation of the ribosomal small subunit is completed in the cytoplasm by incorporation of a particular class of ribosomal proteins and final cleavage of 18S-E pre-rRNA (18S-E). Here, we show that poly(A)-specific ribonuclease (PARN) participates in steps leading to 18S-E maturation in human cells. We found PARN as a novel component of the pre-40S particle pulled down with the pre-ribosome factor LTV1 or Bystin. Reverse pull-down analysis revealed that PARN is a constitutive component of the Bystin-associated pre-40S particle. Knockdown of PARN or exogenous expression of an enzyme-dead PARN mutant (D28A) accumulated 18S-E in both the cytoplasm and nucleus. Moreover, expression of D28A accumulated 18S-E in Bystin-associated pre-40S particles, suggesting that the enzymatic activity of PARN is necessary for the release of 18S-E from Bystin-associated pre-40S particles. Finally, RNase H-based fragmentation analysis and 3΄-sequence analysis of 18S-E species present in cells expressing wild-type PARN or D28A suggested that PARN degrades the extended regions encompassing nucleotides 5-44 at the 3΄ end of mature 18S rRNA. Our results reveal a novel role for PARN in ribosome biogenesis in human cells.


Asunto(s)
Exorribonucleasas/fisiología , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico 18S/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Moléculas de Adhesión Celular/análisis , Exorribonucleasas/análisis , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Células HeLa , Humanos , Mutación , Proteínas Ribosómicas/análisis , Subunidades Ribosómicas Pequeñas de Eucariotas/química
20.
Tohoku J Exp Med ; 249(1): 75-83, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31564686

RESUMEN

Acetaldehyde is a potential carcinogen for esophageal cancer, and some oral microorganisms produce acetaldehyde from ethanol or glucose. In this prospective study, we examined the influence of professional oral care on acetaldehyde levels in mouth air of esophageal cancer patients. Acetaldehyde concentrations in mouth air and breath were measured by a portable gas chromatograph, and acetaldehyde production from oral microbiota was also evaluated. Samples were taken from 21 esophageal cancer patients (median age 68 years) and 20 age-matched healthy volunteers (control group) before and after oral care. Post-operative samples were also taken from 17 patients who had undergone surgery. All samples (mouth air, breath, and saliva) were collected 2 to 3 hours after lunch. Oral microbial samples were prepared from saliva. Genotype analysis of alcohol dehydrogenase 1B (ADH1B) and aldehyde dehydrogenase-2 (ALDH2) genes revealed no significant differences in the genotypes between the two groups. In the control group, acetaldehyde levels in mouth air showed no significant changes after oral care, while the amount of microbial acetaldehyde production from ethanol was significantly decreased. By contrast, among the patients, acetaldehyde levels in mouth air were significantly decreased after oral care and after operation, while the amount of microbial acetaldehyde production from ethanol showed no significant changes. Moreover, microbial acetaldehyde production from glucose was significantly decreased after operation. Overall, oral health was poorer in the patient group. In conclusion, professional oral care for esophageal cancer patients is effective for reducing acetaldehyde levels in mouth air due to the reduction of microbial count.


Asunto(s)
Acetaldehído/análisis , Carcinógenos/análisis , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/cirugía , Boca/química , Salud Bucal , Anciano , Bacterias/aislamiento & purificación , Pruebas Respiratorias , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Atención Perioperativa , Estudios Prospectivos , Saliva/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA