Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Reprod Dev ; 63(2): 167-174, 2017 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-28190810

RESUMEN

The fertilized oocyte begins cleavage, leading to zygotic gene activation (ZGA), which re-activates the resting genome to acquire totipotency. In this process, genomic function is regulated by the dynamic structural conversion in the nucleus. Indeed, a considerable number of genes that are essential for embryonic development are located near the pericentromeric regions, wherein the heterochromatin is formed. These genes are repressed transcriptionally in somatic cells. Three-dimensional fluorescence in situ hybridization (3D-FISH) enables the visualization of the intranuclear spatial arrangement, such as gene loci, chromosomal domains, and chromosome territories (CTs). However, the 3D-FISH approach in mammalian embryos has been limited to certain repeated sequences because of its unfavorable properties. In this study, we developed an easy-to-use chamber device (EASI-FISH chamber) for 3D-FISH in early embryos, and visualized, for the first time, the spatial arrangements of pericentromeric regions, the ZGA-activated gene (Zscan4) loci, and CTs (chromosome 7), simultaneously during the early cleavage stage of mouse embryos by 3D-FISH. As a result, it was revealed that morphological changes of the pericentromeric regions and CTs, and relocation of the Zscan4 loci in CTs, occurred in the 1- to 4-cell stage embryos, which was different from those in somatic cells. This convenient and reproducible 3D-FISH technique for mammalian embryos represents a valuable tool that will provide insights into the nuclear dynamics of development.


Asunto(s)
Núcleo Celular/genética , Embrión de Mamíferos , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Hibridación Fluorescente in Situ/métodos , Animales , Femenino , Ratones , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA