Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Endocr Rev ; 27(4): 356-70, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16638909

RESUMEN

Type 1 and type 2 diabetes both result from inadequate production of insulin by the beta-cells of the pancreatic islet. Accordingly, strategies that lead to increased pancreatic beta-cell mass, as well as retained or enhanced function of islets, would be desirable for the treatment of diabetes. Although pancreatic beta-cells have long been viewed as terminally differentiated and irreversibly arrested, evidence now indicates that beta-cells can and do replicate, that this replication can be enhanced by a variety of maneuvers, and that beta-cell replication plays a quantitatively significant role in maintaining pancreatic beta-cell mass and function. Because beta-cells have been viewed as being unable to proliferate, the science of beta-cell replication is undeveloped. In the past several years, however, this has begun to change at a rapid pace, and many laboratories are now focused on elucidating the molecular details of the control of cell cycle in the beta-cell. In this review, we review the molecular details of cell cycle control as they relate to the pancreatic beta-cell. Our hope is that this review can serve as a common basis and also a roadmap for those interested in developing novel strategies for enhancing beta-cell replication and improving insulin production in animal models as well as in human pancreatic beta-cells.


Asunto(s)
Ciclo Celular/fisiología , Células Secretoras de Insulina/fisiología , Animales , Antígenos Virales de Tumores/fisiología , Quinasas Ciclina-Dependientes/fisiología , Ciclinas/fisiología , Factores de Transcripción E2F/fisiología , Humanos , Células Secretoras de Insulina/citología , Proteínas Proto-Oncogénicas/fisiología , Proteínas Proto-Oncogénicas c-mdm2/fisiología , Transducción de Señal , Proteínas Supresoras de Tumor/fisiología
2.
Cell Metab ; 29(3): 638-652.e5, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30581122

RESUMEN

Small-molecule inhibitors of dual-specificity tyrosine-regulated kinase 1A (DYRK1A) induce human beta cells to proliferate, generating a labeling index of 1.5%-3%. Here, we demonstrate that combined pharmacologic inhibition of DYRK1A and transforming growth factor beta superfamily (TGFßSF)/SMAD signaling generates remarkable further synergistic increases in human beta cell proliferation (average labeling index, 5%-8%, and as high as 15%-18%), and increases in both mouse and human beta cell numbers. This synergy reflects activation of cyclins and cdks by DYRK1A inhibition, accompanied by simultaneous reductions in key cell-cycle inhibitors (CDKN1C and CDKN1A). The latter results from interference with the basal Trithorax- and SMAD-mediated transactivation of CDKN1C and CDKN1A. Notably, combined DYRK1A and TGFß inhibition allows preservation of beta cell differentiated function. These beneficial effects extend from normal human beta cells and stem cell-derived human beta cells to those from people with type 2 diabetes, and occur both in vitro and in vivo.


Asunto(s)
Diabetes Mellitus Tipo 2 , Harmina/farmacología , Células Secretoras de Insulina , Inhibidores de la Monoaminooxidasa/farmacología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Adolescente , Adulto , Anciano , Animales , Línea Celular , Proliferación Celular , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Femenino , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteína de la Leucemia Mieloide-Linfoide/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Smad/antagonistas & inhibidores , Células Madre , Adulto Joven , Quinasas DyrK
3.
Circ Res ; 99(9): 933-42, 2006 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-17023675

RESUMEN

Parathyroid hormone-related protein (PTHrP) is present in vascular smooth muscle (VSM), is markedly upregulated in response to arterial injury, is essential for normal VSM proliferation, and also markedly accentuates neointima formation following rat carotid angioplasty. PTHrP contains a nuclear localization signal (NLS) through which it enters the nucleus and leads to marked increases in retinoblastoma protein (pRb) phosphorylation and cell cycle progression. Our goal was to define key cell cycle molecules upstream of pRb that mediate cell cycle acceleration induced by PTHrP. The cyclin D/cdk-4,-6 system and its upstream regulators, the inhibitory kinases (INKs), are not appreciably influenced by PTHrP. In striking contrast, cyclin E/cdk-2 kinase activity is markedly increased by PTHrP, and this is a result of a specific, marked, PTHrP-induced proteasomal degradation of p27(kip1). Adenoviral restoration of p27(kip1) fully reverses PTHrP-induced cell cycle progression, indicating that PTHrP mediates its cell cycle acceleration in VSM via p27(kip1). In confirmation, adenoviral delivery of PTHrP to murine primary vascular smooth muscle cells (VSMCs) significantly decreases p27(kip1) expression and accelerates cell cycle progression. p27(kip1) is well known to be a central cell cycle regulatory molecule involved in both normal and pathological VSM proliferation and is a target of widely used drug-eluting stents. The current observations define a novel "PTHrP/p27(kip1) pathway" in the arterial wall and suggest that this pathway is important in normal arterial biology and a potential target for therapeutic manipulation of the arterial response to injury.


Asunto(s)
Arterias/metabolismo , Ciclo Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Músculo Liso Vascular/metabolismo , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Animales , Arterias/citología , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proliferación Celular , Células Cultivadas , Regulación hacia Abajo , Fase G1 , Ratones , Músculo Liso Vascular/citología , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteoma/metabolismo , Ratas , Fase S , Transducción de Señal
4.
Nat Commun ; 8(1): 767, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28974674

RESUMEN

Although diabetes results in part from a deficiency of normal pancreatic beta cells, inducing human beta cells to regenerate is difficult. Reasoning that insulinomas hold the "genomic recipe" for beta cell expansion, we surveyed 38 human insulinomas to obtain insights into therapeutic pathways for beta cell regeneration. An integrative analysis of whole-exome and RNA-sequencing data was employed to extensively characterize the genomic and molecular landscape of insulinomas relative to normal beta cells. Here, we show at the pathway level that the majority of the insulinomas display mutations, copy number variants and/or dysregulation of epigenetic modifying genes, most prominently in the polycomb and trithorax families. Importantly, these processes are coupled to co-expression network modules associated with cell proliferation, revealing candidates for inducing beta cell regeneration. Validation of key computational predictions supports the concept that understanding the molecular complexity of insulinoma may be a valuable approach to diabetes drug discovery.Diabetes results in part from a deficiency of functional pancreatic beta cells. Here, the authors study the genomic and epigenetic landscapes of human insulinomas to gain insight into possible pathways for therapeutic beta cell regeneration, highlighting epigenetic genes and pathways.


Asunto(s)
Proliferación Celular/genética , Diabetes Mellitus Tipo 1/terapia , Células Secretoras de Insulina/metabolismo , Insulinoma/genética , Neoplasias Pancreáticas/genética , Regeneración/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Diabetes Mellitus Tipo 1/metabolismo , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Insulinoma/metabolismo , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/metabolismo
5.
Diabetes ; 54(6): 1664-75, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15919787

RESUMEN

Akt is an important intracellular mediator of beta-cell growth and survival in rodents. However, whether constitutive activation of Akt in human beta-cells enhances the survival and function of transplanted islets is unknown. In the current study, we examined the efficacy of constitutive activation of Akt in improving human islet transplant outcomes using a marginal mass model in diabetic severe combined immunodeficient (SCID) mice. Human islets transduced with adenoviruses encoding constitutively active Akt1 (Adv-CA-Akt) displayed increased total and phosphorylated Akt and Akt kinase activity compared with control islets. Expression of CA-Akt in human islets induced a significant increase in beta-cell replication and a significant decrease in beta-cell death induced by serum and glucose deprivation or chronic hyperglycemia. Two control groups of islets (1,500 uninfected or adenovirus LacZ [Adv-LacZ]-transduced human islet equivalents [IEQs]) transplanted under the kidney capsule of streptozotocin-induced diabetic SCID mice were insufficient to correct hyperglycemia. Importantly and in marked contrast to these controls, 1,500 Adv-CA-Akt-transduced IEQs were capable of restoring euglycemia in diabetic SCID mice. Moreover, blood glucose normalization persisted for at least 6 months. Human plasma insulin at day 54 after transplant was 10-fold higher in Adv-CA-Akt islet recipients (2.4 +/- 0.4 ng/ml) compared with those receiving Adv-LacZ islets (0.25 +/- 0.08 ng/ml) (P < 0.05). In summary, expression of CA-Akt in human islets improves islet transplant outcomes in a subcapsular renal graft model in SCID mice. Akt is an attractive target for future strategies aimed at reducing the number of islets required for successful islet transplantation in humans.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Trasplante de Islotes Pancreáticos/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas/fisiología , Adenoviridae , Animales , Muerte Celular , Proliferación Celular , Diabetes Mellitus Experimental/terapia , Expresión Génica , Técnicas de Transferencia de Gen , Humanos , Islotes Pancreáticos/fisiología , Ratones , Ratones SCID , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-akt , Factores de Tiempo , Trasplante Heterólogo
6.
Circulation ; 110(2): 177-85, 2004 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-15210588

RESUMEN

BACKGROUND: Parathyroid hormone-related protein (PTHrP), a normal product of arterial vascular smooth muscle (VSM), contains a nuclear localization signal (NLS) and at least 2 translational initiation sites, one that generates a conventional signal peptide and one that disrupts the signal peptide. These unusual features allow PTHrP either to be secreted in a paracrine/autocrine fashion, and thereby to inhibit arterial smooth muscle proliferation, or to be retained within the cytosol and to translocate into the nucleus, thereby serving as an intracrine stimulator of smooth muscle proliferation. METHODS AND RESULTS: Here, we demonstrate 2 important findings. First, PTHrP dramatically increases the percentage of VSM cells in the S and in G2/M phases of the cell cycle. These effects require critical serine and threonine residues at positions Ser119, Ser130, Thr132, and Ser138 in the carboxy-terminus of PTHrP and are associated with the phosphorylation of the key cell cycle checkpoint regulator retinoblastoma protein, pRb. Second, because PTHrP devoid of the NLS serves as an inhibitor of VSM proliferation, we hypothesized that local delivery of NLS-deleted PTHrP to the arterial wall at the time of angioplasty might prevent neointimal hyperplasia. As hypothesized, using a rat carotid angioplasty model, adenoviral delivery of NLS-deleted PTHrP completely abolished the development of the neointima after angioplasty. CONCLUSIONS: PTHrP interacts with key cell cycle regulatory pathways within the arterial wall. Moreover, NLS-deleted PTHrP delivered to the arterial wall at the time of angioplasty seems to have promise as an agent that could reduce or eliminate the neointimal response to angioplasty.


Asunto(s)
Proteína Relacionada con la Hormona Paratiroidea/fisiología , Proteína de Retinoblastoma/fisiología , Adenoviridae/genética , Angioplastia de Balón/efectos adversos , Animales , Aorta Torácica , Traumatismos de las Arterias Carótidas/terapia , Arteria Carótida Común , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , División Celular , Línea Celular/citología , Línea Celular/efectos de los fármacos , ADN Complementario/genética , Terapia Genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/uso terapéutico , Masculino , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Proteína Relacionada con la Hormona Paratiroidea/química , Proteína Relacionada con la Hormona Paratiroidea/genética , Fragmentos de Péptidos/fisiología , Fosforilación , Fosfoserina/análisis , Fosfotreonina/análisis , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Transfección
7.
Diabetes ; 53(1): 149-59, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14693709

RESUMEN

The major regulator of the gap-1/synthesis phase (G(1)/S) cell cycle checkpoint is the retinoblastoma protein (pRb), and this is regulated in part by the activities of cyclin-dependent kinase (cdk)-4 and the D cyclins. Surprisingly, given the potential importance of beta-cell replication for islet replacement therapy, pRb presence, phosphorylation status, and function have not been explored in beta-cells. Here, adenoviruses expressing cdk-4 and cyclin D(1) were used to explore rat and human pRb phosphorylation and beta-cell cycle control. pRb is present in rat and human islets, and overexpression of cyclin D(1)/cdk-4 led to strikingly enhanced pRb phosphorylation in both species. Combined overexpression of both cdk-4 and cyclin D(1) caused a threefold increase in [(3)H]thymidine incorporation. This increase in proliferation was confirmed independently using insulin and bromodeoxyuridine immunohistochemistry, where human beta-cell replication rates were increased 10-fold. Cdk-4 or cyclin D(1) overexpression did not adversely effect beta-cell differentiation or function. The key cell cycle regulatory protein, pRb, can be harnessed to advantage using cyclin D(1)/cdk-4 for the induction of human and rodent beta-cell replication, enhancing replication without adversely affecting function or differentiation. This approach will allow detailed molecular study of the cellular mechanisms regulating the cell cycle in beta-cells, beta-cell lines, and stem cell-derived beta-cells.


Asunto(s)
Adenoviridae/genética , Ciclina D1/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Proteínas Proto-Oncogénicas , Proteína de Retinoblastoma/metabolismo , Animales , Secuencia de Bases , División Celular , Células Cultivadas , Ciclina D1/genética , Quinasa 4 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes/genética , Cartilla de ADN , Humanos , Cinética , Fosforilación , Ratas , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
8.
Diabetes ; 51(10): 3003-13, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12351440

RESUMEN

Pancreatic beta-cell survival is critical in the setting of diabetes as well as in islet transplantation. Transgenic mice overexpressing parathyroid hormone-related protein (PTHrP) targeted to beta-cells using the rat insulin II promoter (RIP) display hyperinsulinemia, hypoglycemia, and islet hyperplasia, without a concomitant increase in beta-cell proliferation rate or enlargement of individual beta-cell size. Thus, the mechanism for increased beta-cell mass is unknown. In this study, we demonstrated that beta-cells of transgenic mice are resistant to the cytotoxic effects of streptozotocin (STZ) in vivo, as documented by a sixfold reduction in the rate of STZ-induced beta-cell death in RIP-PTHrP mice relative to their normal siblings. The reduced cell death in transgenic mice is due neither to their increased islet mass nor to a decrease in their sensing of STZ, but rather results from PTHrP-induced resistance to beta-cell death. This is also demonstrated in vitro by markedly reduced cell death rates observed in beta-cells of transgenic mice compared with normal mice when cultured in the absence of serum and glucose or in the presence of STZ. Finally, we demonstrated that NH(2)-terminal PTHrP inhibits beta-cell death. These findings support the concept that PTHrP overexpression increases islet mass in transgenic mice through inhibition of beta-cell death.


Asunto(s)
Muerte Celular/fisiología , Islotes Pancreáticos/citología , Hormonas Peptídicas/genética , Factores de Edad , Animales , Antibióticos Antineoplásicos/toxicidad , Células Cultivadas , Expresión Génica/fisiología , Transportador de Glucosa de Tipo 2 , Inmunidad Innata , Etiquetado Corte-Fin in Situ , Técnicas In Vitro , Insulina/genética , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/fisiología , Ratones , Ratones Transgénicos , Proteínas de Transporte de Monosacáridos/genética , Proteína Relacionada con la Hormona Paratiroidea , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN Mensajero/análisis , Estreptozocina/toxicidad , Proteína bcl-X
9.
Diabetes ; 64(10): 3485-98, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26159177

RESUMEN

ß-Cell regeneration is a key goal of diabetes research. Progression through the cell cycle is associated with retinoblastoma protein (pRb) inactivation via sequential phosphorylation by the "early" cyclins and cyclin-dependent kinases (cdks) (d-cyclins cdk4/6) and the "late" cyclins and cdks (cyclin A/E and cdk1/2). In ß-cells, activation of either early or late G1/S cyclins and/or cdks is an efficient approach to induce cycle entry, but it is unknown whether the combined expression of early and late cyclins and cdks might have synergistic or additive effects. Thus, we explored whether a combination of both early and late cyclins and cdks might more effectively drive human ß-cell cell cycle entry than either group alone. We also sought to determine whether authentic replication with the expansion of adult human ß-cells could be demonstrated. Late cyclins and cdks do not traffic in response to the induction of replication by early cyclins and cdks in human ß-cells but are capable of nuclear translocation when overexpressed. Early plus late cyclins and cdks, acting via pRb phosphorylation on distinct residues, complementarily induce greater proliferation in human ß-cells than either group alone. Importantly, the combination of early and late cyclins and cdks clearly increased human ß-cell numbers in vitro. These findings provide additional insight into human ß-cell expansion. They also provide a novel tool for assessing ß-cell expansion in vitro.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Células Secretoras de Insulina/metabolismo , Envejecimiento , Animales , Proliferación Celular/fisiología , Quinasas Ciclina-Dependientes/genética , Ciclinas/genética , Regulación de la Expresión Génica/fisiología , Glucosa/farmacología , Humanos , Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Fosforilación , Ratas , Ratas Sprague-Dawley , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo
10.
Diabetes ; 64(11): 3784-97, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26159175

RESUMEN

Pregnancy in rodents is associated with a two- to threefold increase in ß-cell mass, which is attributable to large increases in ß-cell proliferation, complimented by increases in ß-cell size, survival, and function and mediated mainly by the lactogenic hormones prolactin (PRL) and placental lactogens. In humans, however, ß-cell mass does not increase as dramatically during pregnancy, and PRL fails to activate proliferation in human islets in vitro. To determine why, we explored the human PRL-prolactin receptor (hPRLR)-Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5)-cyclin-cdk signaling cascade in human ß-cells. Surprisingly, adult human ß-cells express little or no PRLR. As expected, restoration of the hPRLR in human ß-cells rescued JAK2-STAT5 signaling in response to PRL. However, rescuing hPRLR-STAT5 signaling nevertheless failed to confer proliferative ability on adult human ß-cells in response to PRL. Surprisingly, mouse (but not human) Stat5a overexpression led to upregulation of cyclins D1-3 and cdk4, as well as their nuclear translocation, all of which are associated with ß-cell cycle entry. Collectively, the findings show that human ß-cells fail to proliferate in response to PRL for multiple reasons, one of which is a paucity of functional PRL receptors, and that murine Stat5 overexpression is able to bypass these impediments.


Asunto(s)
Proliferación Celular/fisiología , Células Secretoras de Insulina/metabolismo , Prolactina/farmacología , Receptores de Prolactina/metabolismo , Factor de Transcripción STAT5/metabolismo , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Ciclina D/genética , Ciclina D/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Fosforilación/efectos de los fármacos , Receptores de Prolactina/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Regulación hacia Arriba
11.
Endocrinology ; 145(2): 467-74, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14551233

RESUMEN

Islet transplantation for diabetes is limited by the availability of human islet donors. Hepatocyte growth factor (HGF) is a potent beta-cell mitogen and survival factor and improves islet transplant outcomes in a murine model. However, the murine model employs renal subcapsular transplant and immunodeficient mice, features not representative of human islet transplantation protocols. Therefore, we have developed a more rigorous, marginal-mass rat islet transplant model that more closely resembles human islet transplantation protocols: islet donors are allogeneic Lewis islets; recipients are normal Sprague Dawley rats; islets are delivered intraportally; and immunosuppression is accomplished using the same immunosuppressants employed by the Edmonton group. We demonstrate that 1) surprisingly, the Edmonton immunosuppression regimen induces marked insulin resistance and beta-cell toxicity in rats, 2) adenovirus does not adversely affect islet transplant outcomes, 3) the Edmonton immunosuppressants may delay or block rejection of adenovirally transduced islets, and more importantly, 4) pretransplant islet adenoviral gene therapy with HGF markedly improves islet transplant outcomes, 5) this enhanced function persists for months, and 6) HGF enhances islet function and survival even in the setting of immunosuppressant-induced insulin resistance and beta-cell toxicity. This approach may enhance islet transplantation outcomes in humans.


Asunto(s)
Terapia Genética , Factor de Crecimiento de Hepatocito/genética , Inmunosupresores/administración & dosificación , Trasplante de Islotes Pancreáticos/métodos , Vena Porta , Adenoviridae/genética , Animales , Expresión Génica , Vectores Genéticos , Glucocorticoides/administración & dosificación , Glucocorticoides/efectos adversos , Supervivencia de Injerto , Inmunosupresores/efectos adversos , Insulina/sangre , Resistencia a la Insulina , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratas , Ratas Endogámicas Lew , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección , Trasplante Homólogo
12.
Diabetes ; 62(7): 2450-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23493570

RESUMEN

Expansion of pancreatic ß-cells is a key goal of diabetes research, yet induction of adult human ß-cell replication has proven frustratingly difficult. In part, this reflects a lack of understanding of cell cycle control in the human ß-cell. Here, we provide a comprehensive immunocytochemical "atlas" of G1/S control molecules in the human ß-cell. This atlas reveals that the majority of these molecules, previously known to be present in islets, are actually present in the ß-cell. More importantly, and in contrast to anticipated results, the human ß-cell G1/S atlas reveals that almost all of the critical G1/S cell cycle control molecules are located in the cytoplasm of the quiescent human ß-cell. Indeed, the only nuclear G1/S molecules are the cell cycle inhibitors, pRb, p57, and variably, p21: none of the cyclins or cdks necessary to drive human ß-cell proliferation are present in the nuclear compartment. This observation may provide an explanation for the refractoriness of human ß-cells to proliferation. Thus, in addition to known obstacles to human ß-cell proliferation, restriction of G1/S molecules to the cytoplasm of the human ß-cell represents an unanticipated obstacle to therapeutic human ß-cell expansion.


Asunto(s)
Ciclo Celular/fisiología , Núcleo Celular/metabolismo , Proliferación Celular , Células Secretoras de Insulina/fisiología , Adolescente , Adulto , Niño , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Persona de Mediana Edad , Fracciones Subcelulares
13.
Diabetes ; 62(7): 2460-70, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23493571

RESUMEN

Harnessing control of human ß-cell proliferation has proven frustratingly difficult. Most G1/S control molecules, generally presumed to be nuclear proteins in the human ß-cell, are in fact constrained to the cytoplasm. Here, we asked whether G1/S molecules might traffic into and out of the cytoplasmic compartment in association with activation of cell cycle progression. Cdk6 and cyclin D3 were used to drive human ß-cell proliferation and promptly translocated into the nucleus in association with proliferation. In contrast, the cell cycle inhibitors p15, p18, and p19 did not alter their location, remaining cytoplasmic. Conversely, p16, p21, and p27 increased their nuclear frequency. In contrast once again, p57 decreased its nuclear frequency. Whereas proliferating ß-cells contained nuclear cyclin D3 and cdk6, proliferation generally did not occur in ß-cells that contained nuclear cell cycle inhibitors, except p21. Dynamic cytoplasmic-nuclear trafficking of cdk6 was confirmed using green fluorescent protein-tagged cdk6 and live cell imaging. Thus, we provide novel working models describing the control of cell cycle progression in the human ß-cell. In addition to known obstacles to ß-cell proliferation, cytoplasmic-to-nuclear trafficking of G1/S molecules may represent an obstacle as well as a therapeutic opportunity for human ß-cell expansion.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Fase G1/fisiología , Células Secretoras de Insulina/metabolismo , Fase S/fisiología , Adolescente , Adulto , Animales , Proteínas de Ciclo Celular/genética , División Celular , Línea Celular Tumoral , Núcleo Celular/genética , Proliferación Celular , Niño , Citoplasma/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley
14.
Diabetes ; 61(2): 418-24, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22210317

RESUMEN

Induction of proliferation in adult human ß-cells is challenging. It can be accomplished by introduction of cell cycle molecules such as cyclin-dependent kinase 6 (cdk6) and cyclin D1, but their continuous overexpression raises oncogenic concerns. We attempted to mimic normal, transient, perinatal human ß-cell proliferation by delivering these molecules in a regulated and reversible manner. Adult cadaveric islets were transduced with doxycycline (Dox)-inducible adenoviruses expressing cdk6 or cyclin D1. End points were cdk6/cyclin D1 expression and human ß-cell proliferation, survival, and function. Increasing doses of Dox led to marked dose- and time-related increases in cdk6 and cyclin D1, accompanied by a 20-fold increase in ß-cell proliferation. Notably, Dox withdrawal resulted in a reversal of both cdk6 and cyclin D1 expression as well as ß-cell proliferation. Re-exposure to Dox reinduced both cdk/cyclin expression and proliferation. ß-Cell function and survival were not adversely affected. The adenoviral tetracycline (tet)-on system has not been used previously to drive human ß-cell proliferation. Human ß-cells can be induced to proliferate or arrest in a regulated, reversible manner, temporally and quantitatively mimicking the transient perinatal physiological proliferation that occurs in human ß-cells.


Asunto(s)
Células Secretoras de Insulina/fisiología , Adenoviridae/genética , Adulto , Proliferación Celular/efectos de los fármacos , Ciclina D1/genética , Ciclina D1/fisiología , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/fisiología , Doxiciclina/farmacología , Humanos
15.
Endocrinology ; 153(2): 861-72, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22210745

RESUMEN

Parathyroid hormone-related protein (PTHrP) contains a classical bipartite nuclear localization signal. Nuclear PTHrP induces proliferation of arterial vascular smooth muscle cells (VSMC). In the arterial wall, PTHrP is markedly up-regulated in response to angioplasty and promotes arterial restenosis. PTHrP overexpression exacerbates arterial restenosis, and knockout of the PTHrP gene results in decreased VSMC proliferation in vivo. In arterial VSMC, expression of the cell cycle inhibitor, p27, rapidly decreases after angioplasty, and replacement of p27 markedly reduces neointima development. We have shown that PTHrP overexpression in VSMC leads to p27 down-regulation, mostly through increased proteosomal degradation. Here, we determined the molecular mechanisms through which PTHrP targets p27 for degradation. S-phase kinase-associated protein 2 (skp2) and c-myc, two critical regulators of p27 expression and stability, and neointima formation were up-regulated in PTHrP overexpression in VSMC. Normalization of skp2 or c-myc using small interfering RNA restores normal cell cycle and p27 expression in PTHrP overexpression in VSMC. These data indicate that skp2 and c-myc mediate p27 loss and proliferation induced by PTHrP. c-myc promoter activity was increased, and c-myc target genes involved in p27 stability were up-regulated in PTHrP overexpression in VSMC. In primary VSMC, PTHrP overexpression led to increased c-myc and decreased p27. Conversely, knockdown of PTHrP in primary VSMC from PTHrP(flox/flox) mice led to cell cycle arrest, p27 up-regulation, with c-myc and skp2 down-regulation. Collectively, these data describe for the first time the role of PTHrP in the regulation of skp2 and c-myc in VSMC. This novel PTHrP-c-myc-skp2 pathway is a potential target for therapeutic manipulation of the arterial response to injury.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Músculo Liso Vascular/citología , Neointima/metabolismo , Proteína Relacionada con la Hormona Paratiroidea/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Animales , Ciclo Celular , Células Cultivadas , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Regulación de la Expresión Génica , Ratones , Mutación , Neointima/patología , Proteínas Proto-Oncogénicas c-myc/genética , Interferencia de ARN , ARN Interferente Pequeño , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Quinasas Asociadas a Fase-S/genética
16.
Mol Endocrinol ; 26(9): 1590-602, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22798294

RESUMEN

The transcription factor HNF4α (hepatocyte nuclear factor-4α) is required for increased ß-cell proliferation during metabolic stress in vivo. We hypothesized that HNF4α could induce proliferation of human ß-cells. We employed adenoviral-mediated overexpression of an isoform of HNF4α (HNF4α8) alone, or in combination with cyclin-dependent kinase (Cdk)6 and Cyclin D3, in human islets. Heightened HNF4α8 expression led to a 300-fold increase in the number of ß-cells in early S-phase. When we overexpressed HNF4α8 together with Cdk6 and Cyclin D3, ß-cell cycle entry was increased even further. However, the punctate manner of bromodeoxyuridine incorporation into HNF4α(High) ß-cells indicated an uncoupling of the mechanisms that control the concise timing and execution of each cell cycle phase. Indeed, in HNF4α8-induced bromodeoxyuridine(+,punctate) ß-cells we observed signs of dysregulated DNA synthesis, cell cycle arrest, and activation of a double stranded DNA damage-associated cell cycle checkpoint mechanism, leading to the initiation of loss of ß-cell lineage fidelity. However, a substantial proportion of ß-cells stimulated to enter the cell cycle by Cdk6 and Cyclin D3 alone also exhibited a DNA damage response. HNF4α8 is a mitogenic signal in the human ß-cell but is not sufficient for completion of the cell cycle. The DNA damage response is a barrier to efficient ß-cell proliferation in vitro, and we suggest its evaluation in all attempts to stimulate ß-cell replication as an approach to diabetes treatment.


Asunto(s)
Factor Nuclear 4 del Hepatocito/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/citología , Ciclo Celular , División Celular , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Glucosa/farmacología , Factor Nuclear 4 del Hepatocito/genética , Humanos , Etiquetado Corte-Fin in Situ , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
J Biomol Screen ; 17(4): 509-18, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22156222

RESUMEN

A small-molecule inducer of beta-cell proliferation in human islets represents a potential regeneration strategy for treating type 1 diabetes. However, the lack of suitable human beta cell lines makes such a discovery a challenge. Here, we adapted an islet cell culture system to high-throughput screening to identify such small molecules. We prepared microtiter plates containing extracellular matrix from a human bladder carcinoma cell line. Dissociated human islets were seeded onto these plates, cultured for up to 7 days, and assessed for proliferation by simultaneous Ki67 and C-peptide immunofluorescence. Importantly, this environment preserved beta-cell physiological function, as measured by glucose-stimulated insulin secretion. Adenoviral overexpression of cdk-6 and cyclin D(1), known inducers of human beta cell proliferation, was used as a positive control in our assay. This induction was inhibited by cotreatment with rapamycin, an immunosuppressant often used in islet transplantation. We then performed a pilot screen of 1280 compounds, observing some phenotypic effects on cells. This high-throughput human islet cell culture method can be used to assess various aspects of beta-cell biology on a relatively large number of compounds.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Islotes Pancreáticos/citología , Cultivo Primario de Células/métodos , Línea Celular , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas
18.
Diabetes ; 61(8): 2004-15, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22586588

RESUMEN

Glucose stimulates rodent and human ß-cell replication, but the intracellular signaling mechanisms are poorly understood. Carbohydrate response element-binding protein (ChREBP) is a lipogenic glucose-sensing transcription factor with unknown functions in pancreatic ß-cells. We tested the hypothesis that ChREBP is required for glucose-stimulated ß-cell proliferation. The relative expression of ChREBP was determined in liver and ß-cells using quantitative RT-PCR (qRT-PCR), immunoblotting, and immunohistochemistry. Loss- and gain-of-function studies were performed using small interfering RNA and genetic deletion of ChREBP and adenoviral overexpression of ChREBP in rodent and human ß-cells. Proliferation was measured by 5-bromo-2'-deoxyuridine incorporation, [(3)H]thymidine incorporation, and fluorescence-activated cell sorter analysis. In addition, the expression of cell cycle regulatory genes was measured by qRT-PCR and immunoblotting. ChREBP expression was comparable with liver in mouse pancreata and in rat and human islets. Depletion of ChREBP decreased glucose-stimulated proliferation in ß-cells isolated from ChREBP(-/-) mice, in INS-1-derived 832/13 cells, and in primary rat and human ß-cells. Furthermore, depletion of ChREBP decreased the glucose-stimulated expression of cell cycle accelerators. Overexpression of ChREBP amplified glucose-stimulated proliferation in rat and human ß-cells, with concomitant increases in cyclin gene expression. In conclusion, ChREBP mediates glucose-stimulated proliferation in pancreatic ß-cells.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Glucosa/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Proteínas Nucleares/fisiología , Factores de Transcripción/fisiología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/biosíntesis , Proteínas de Ciclo Celular/fisiología , Proliferación Celular/efectos de los fármacos , Humanos , Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , Ratones , Ratas
19.
Mol Endocrinol ; 25(10): 1760-72, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21885567

RESUMEN

Adult human ß-cells replicate slowly. Also, despite the abundance of rodent ß-cell lines, there are no human ß-cell lines for diabetes research or therapy. Prior studies in four commonly studied rodent ß-cell lines revealed that all four lines displayed an unusual, but strongly reproducible, cell cycle signature: an increase in seven G(1)/S molecules, i.e. cyclins A, D3, and E, and cdk1, -2, -4, and -6. Here, we explore the upstream mechanism(s) that drive these cell cycle changes. Using biochemical, pharmacological and molecular approaches, we surveyed potential upstream mitogenic signaling pathways in Ins 1 and RIN cells. We used both underexpression and overexpression to assess effects on rat and human ß-cell proliferation, survival and cell cycle control. Our results indicate that cMyc is: 1) uniquely up-regulated among other candidates; 2) principally responsible for the increase in the seven G(1)/S molecules; and, 3) largely responsible for proliferation in rat ß-cell lines. Importantly, cMyc expression in ß-cell lines, although some 5- to 7-fold higher than normal rat ß-cells, is far below the levels (75- to 150-fold) previously associated with ß-cell death and dedifferentiation. Notably, modest overexpression of cMyc is able to drive proliferation without cell death in normal rat and human ß-cells. We conclude that cMyc is an important driver of replication in the two most commonly employed rat ß-cell lines. These studies reverse the current paradigm in which cMyc overexpression is inevitably associated with ß-cell death and dedifferentiation. The cMyc pathway provides potential approaches, targets, and tools for driving and sustaining human ß-cell replication.


Asunto(s)
Células Secretoras de Insulina/patología , Insulinoma/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Muerte Celular , Línea Celular Tumoral , Proliferación Celular , Fase G1 , Regulación Neoplásica de la Expresión Génica , Humanos , Células Secretoras de Insulina/metabolismo , Insulinoma/genética , Modelos Biológicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Fase S , Transducción de Señal , Regulación hacia Arriba
20.
Diabetes ; 60(10): 2546-59, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21911744

RESUMEN

OBJECTIVE: PKC-ζ activation is a key signaling event for growth factor-induced ß-cell replication in vitro. However, the effect of direct PKC-ζ activation in the ß-cell in vivo is unknown. In this study, we examined the effects of PKC-ζ activation in ß-cell expansion and function in vivo in mice and the mechanisms associated with these effects. RESEARCH DESIGN AND METHODS: We characterized glucose homeostasis and ß-cell phenotype of transgenic (TG) mice with constitutive activation of PKC-ζ in the ß-cell. We also analyzed the expression and regulation of signaling pathways, G1/S cell cycle molecules, and ß-cell functional markers in TG and wild-type mouse islets. RESULTS: TG mice displayed increased plasma insulin, improved glucose tolerance, and enhanced insulin secretion with concomitant upregulation of islet insulin and glucokinase expression. In addition, TG mice displayed increased ß-cell proliferation, size, and mass compared with wild-type littermates. The increase in ß-cell proliferation was associated with upregulation of cyclins D1, D2, D3, and A and downregulation of p21. Phosphorylation of D-cyclins, known to initiate their rapid degradation, was reduced in TG mouse islets. Phosphorylation/inactivation of GSK-3ß and phosphorylation/activation of mTOR, critical regulators of D-cyclin expression and ß-cell proliferation, were enhanced in TG mouse islets, without changes in Akt phosphorylation status. Rapamycin treatment in vivo eliminated the increases in ß-cell proliferation, size, and mass; the upregulation of cyclins Ds and A in TG mice; and the improvement in glucose tolerance-identifying mTOR as a novel downstream mediator of PKC-ζ-induced ß-cell replication and expansion in vivo. CONCLUSIONS PKC:-ζ, through mTOR activation, modifies the expression pattern of ß-cell cycle molecules leading to increased ß-cell replication and mass with a concomitant enhancement in ß-cell function. Approaches to enhance PKC-ζ activity may be of value as a therapeutic strategy for the treatment of diabetes.


Asunto(s)
Intolerancia a la Glucosa/metabolismo , Células Secretoras de Insulina/enzimología , Proteína Quinasa C/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Antibacterianos/farmacología , Glucemia , Regulación de la Expresión Génica/fisiología , Intolerancia a la Glucosa/genética , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Insulina/sangre , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Transgénicos , Fosforilación , Proteína Quinasa C/genética , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA