Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chim Acta ; 1273: 341499, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37423652

RESUMEN

Currently, there is a need for fast and sensitive analytical methods for monitoring metals in water due to the progressive increase in the presence of metal ions in the environment. These metals reach the environment mainly from industrial activity and heavy metals are non-biodegradable. The present work evaluates different polymeric nanocomposites to carry out the simultaneous electrochemical determination of Cu, Cd, and Zn in water samples. Screen-printed carbon electrodes (SPCE) were modified with the nanocomposites, which were obtained by a mixture of graphene, graphite oxide, and polymers, such as polyethyleneimide, gelatin, and chitosan. These polymers have amino groups in their matrix, giving the nanocomposite the ability to retain divalent cations. However, the availability of these groups plays a fundamental role in the retention of these metals. The modified SPCEs were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The electrode that presented the best performance was selected to determine the concentration of metal ions in water samples by square-wave anodic stripping voltammetry. The obtained detection limits were 0.23 µg L-1, 0.53 µg L-1, and 1.52 µg L-1 for Zn(II), Cd(II), and Cu(II), respectively, with a lineal range of 0.1-50 µg L-1. The obtained results made it possible to conclude that the method developed using the SPCE modified with the polymeric nanocomposite presented adequate LODs, reasonable sensitivity, selectivity, and reproducibility. Besides, this platform is an excellent tool for developing devices to simultaneously determine heavy metals in environmental samples.

2.
Talanta ; 257: 124372, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801559

RESUMEN

In this study, we present for the first time a simple and novel method for the fabrication of paper-based electrochemical sensors. The device development was carried out in a single stage with a standard wax printer. Hydrophobic zones were delimited with commercial solid ink, while electrodes were generated using new composite solid inks of graphene oxide/graphite/beeswax (GO/GRA/beeswax) and graphite/beeswax (GRA/beeswax). Subsequently, the electrodes were electrochemically activated by applying an overpotential. Various experimental variables for the GO/GRA/beeswax composite synthesis and electrochemical system obtention were evaluated. The activation process was examined by SEM, FTIR, cyclic voltammetry, electrochemical impedance spectroscopy and contact angle measurement. These studies showed morphological and chemical changes in the electrode active surface. As a result, the activation stage considerably improved the electron transfer on the electrode. The manufactured device was successfully applied for galactose (Gal) determination. This method presented a linear relation in the Gal concentration range from 84 to 1736 µmol L-1, with a LOD of 0.1 µmol L-1. The variation within and between-assay coefficients were 5.3% and 6.8%, respectively. The strategy here exposed for paper-based electrochemical sensors design is an unprecedented alternative system and represents a promising tool for mass production of economic analytical devices.


Asunto(s)
Grafito , Grafito/química , Tinta , Galactosa , Técnicas Electroquímicas/métodos , Electrodos
3.
Carbohydr Polym ; 206: 57-64, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30553359

RESUMEN

Sorption of l- and d-Tyrosine (Tyr) from aqueous solutions on chiral membranes of chitosan (CH) was studied. A high adsorption in the membrane, with a marked enantioselectivity to l-Tyr, was found. Computational calculations carried out by docking and molecular dynamics (MD) showed a difference in the affinity of the enantiomers and two regions of adsorption in the polymer matrix. The interactions of the enantiomers with the polymer matrix were studied by using FTIR, DRx, DSC and TG measurements. These results indicate that adsorption of Tyr reduces the crystallinity of the membrane and generates a rearrangement of the chains, decreasing the intercatenary spacing. Also, it was observed that the hydrated polymorph to anhydrous polymorph ratio has changed during adsorption, that is, water bound to chitosan is also modified. The energy balance of the system hydrogen bonding, desolvation and the conformational changes resulted in a spontaneous and endothermic process.

4.
Talanta ; 195: 699-705, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30625604

RESUMEN

This article describes the development of a new electrochemical platform composed by a polymer mixture and graphene oxide (GO). The working electrode of a screen-printed carbon electrode (SPCE) was modified with nanocomposite constituted by poly-vinyl alcohol (PVA), poly-vinylpyrrolidone (PVP) and GO, which was electrochemically reduced to obtain PVA/PVP/RGO/SPCE. The interactions and morphology of the PVA/PVP/GO nanocomposite were investigated by SEM, FTIR and UV-Vis. SEM images indicated an excellent dispersion of the GO sheets in the polymer matrix. Besides, FTIR and visible UV studies revealed strong interactions between polymer mixture and GO sheets. According to electrochemical studies, the new platform increased the electroactive surface area by a factor of 20.46 compared to the unmodified SPCE. Also, the PVA/PVP/RGO/SPCE had a fast electron kinetics transfer process with a value of ks = 9.6 s-1. The modified electrode was applied to the determination of IgG anti-T. gondii antibodies for the serological diagnosis of toxoplasmosis. The IgG anti-T. gondii antibodies quantification showed a detection limit of 0.012 U mL-1, and the coefficients of variation intra-day and inter-day assays were lower than 4.5% and 6.2%, respectively. The electrochemical platform proved to be a sensitive and easily applicable tool applied to the serological diagnosis of toxoplasmosis. Therefore, the developed nanocomposite represents an excellent alternative for the electrochemical biosensor fabrication.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Técnicas Biosensibles , Técnicas Electroquímicas , Inmunoglobulina G/sangre , Nanocompuestos/química , Toxoplasma/inmunología , Electrodos , Grafito/química , Humanos , Óxidos/química , Alcohol Polivinílico/química , Povidona/química
5.
Talanta ; 200: 186-192, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31036172

RESUMEN

In this work, different paper surface modification strategies were compared to obtain an amine functionalized SBA-15 (N-SBA-15) composite for paper-based device development. The synthesized N-SBA-15 was characterized by N2 adsorption-desorption isotherm, and infrared spectroscopy (FTIR), and it was incorporated to different polymer matrices (κ-carrageenan (CA), polyvinyl alcohol (PVA) and polyethylenimine (PEI)) for the development of the composite modified paper-based device. The retention, interactions, and morphology of the obtained composites were investigated by absorbance measurement, FTIR and scanning electron microscopy (SEM), respectively. To demonstrate the applicability of the modified paper-based device, ascorbic acid (AA) quantification was carried out. Horseradish peroxidase (HRP) was immobilized onto the modified paper surface. HRP in the presence of H2O2 catalyzes the oxidation of 10-acetyl-3,7-dyhidroxyphenoxazine (ADHP) to highly fluorescent resorufin, which was measured by LIF detector. Thus, when AA was added to the solution, it decreases the relative fluorescence signal proportionally to the AA concentration. The linear range from 50 nmol L-1 to 1500 nmol L-1 and a detection limit of 15 nmol L-1 were obtained for AA quantitation. The obtained results allowed us to conclude that N-SBA-15/PEI composite could be considered an excellent choice for the paper-based device modification procedure due to its inherent simplicity, low cost, and sensitivity.


Asunto(s)
Ácido Ascórbico/análisis , Papel , Polímeros/química , Dióxido de Silicio/química , Adsorción , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Peróxido de Hidrógeno/química , Nitrógeno/química , Tamaño de la Partícula , Dióxido de Silicio/síntesis química , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA