Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 150(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014633

RESUMEN

Sall1 and Sall4 (Sall1/4), zinc-finger transcription factors, are expressed in the progenitors of the second heart field (SHF) and in cardiomyocytes during the early stages of mouse development. To understand the function of Sall1/4 in heart development, we generated heart-specific Sall1/4 functionally inhibited mice by forced expression of the truncated form of Sall4 (ΔSall4) in the heart. The ΔSall4-overexpression mice exhibited a hypoplastic right ventricle and outflow tract, both of which were derived from the SHF, and a thinner ventricular wall. We found that the numbers of proliferative SHF progenitors and cardiomyocytes were reduced in ΔSall4-overexpression mice. RNA-sequencing data showed that Sall1/4 act upstream of the cyclin-dependent kinase (CDK) and cyclin genes, and of key transcription factor genes for the development of compact cardiomyocytes, including myocardin (Myocd) and serum response factor (Srf). In addition, ChIP-sequencing and co-immunoprecipitation analyses revealed that Sall4 and Myocd form a transcriptional complex with SRF, and directly bind to the upstream regulatory regions of the CDK and cyclin genes (Cdk1 and Ccnb1). These results suggest that Sall1/4 are critical for the proliferation of cardiac cells via regulation of CDK and cyclin genes that interact with Myocd and SRF.


Asunto(s)
Quinasas Ciclina-Dependientes , Miocitos Cardíacos , Animales , Ratones , Proliferación Celular/genética , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Miocitos Cardíacos/metabolismo , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Factores de Transcripción/metabolismo
2.
Circ J ; 84(12): 2148-2157, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33087629

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is the most common cardiac arrhythmia; however, the current treatment strategies for AF have limited efficacy. Thus, a better understanding of the mechanisms underlying AF is important for future therapeutic strategy. A previous study (Exome-Wide Association Study (ExWAS)) identified a rare variant, rs202011870 (MAF=0.00036, GenomAD), which is highly associated with AF (OR=3.617, P<0.0001). rs202011870 results in the replacement of Leu at 396 with Arg (L396R) in a molecule, Tks5; however, the mechanism of how rs202011870 links to AF is completely unknown.Methods and Results:The association of rs202011870 with AF was examined in 3,378 participants (641 control and 2,737 AF cases) from 4 independent cohorts by using an Invader assay. Consequences of rs202011870 in migration ability, podosome formation, and expression of inflammation-related molecules in macrophages were examined using RAW264.7 cells with a trans-well assay, immunocytochemistry, and qPCR assay. Validation of the association of rs202011870 with AF was successful. In vitro studies showed that RAW264.7 cells with L396R-Tks5 increased trans-well migration ability, and enhanced podosome formation. RAW264.7 cells with L396R-Tks5 also increased the expression of several inflammatory cytokines and inflammation-related molecules. CONCLUSIONS: L396R mutation in Tks5 associated with AF enhances migration of macrophages and their inflammatory features, resulting in enhanced susceptibility to AF.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Fibrilación Atrial , Exoma , Animales , Fibrilación Atrial/genética , Movimiento Celular , Humanos , Inflamación , Ratones , Mutación , Células RAW 264.7
3.
Dev Growth Differ ; 61(1): 114-123, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30549006

RESUMEN

The heart is one of the vital organs and is functionalized for blood circulation from its early development. Some vertebrates have altered their living environment from aquatic to terrestrial life over the course of evolution and obtained circulatory systems well adapted to their lifestyles. The morphology of the heart has been changed together with the acquisition of a sophisticated respiratory organ, the lung. Adaptation to a terrestrial environment requires the coordination of heart and lung development due to the intake of oxygen from the air and the production of the large amount of energy needed for terrestrial life. Therefore, vertebrates developed pulmonary circulation and a septated heart (four-chambered heart) with venous and arterial blood completely separated. In this review, we summarize how vertebrates change the structures and functions of their circulatory systems according to environmental changes.


Asunto(s)
Evolución Biológica , Corazón/anatomía & histología , Corazón/embriología , Animales , Humanos , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo
4.
BMC Genomics ; 19(1): 967, 2018 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-30587117

RESUMEN

BACKGROUND: Heart development is a relatively fragile process in which many transcription factor genes show dose-sensitive characteristics such as haploinsufficiency and lower penetrance. Despite efforts to unravel the genetic mechanism for overcoming the fragility under normal conditions, our understanding still remains in its infancy. Recent studies on the regulatory mechanisms governing gene expression in mammals have revealed that long non-coding RNAs (lncRNAs) are important modulators at the transcriptional and translational levels. Based on the hypothesis that lncRNAs also play important roles in mouse heart development, we attempted to comprehensively identify lncRNAs by comparing the embryonic and adult mouse heart and brain. RESULTS: We have identified spliced lncRNAs that are expressed during development and found that lncRNAs that are expressed in the heart but not in the brain are located close to genes that are important for heart development. Furthermore, we found that many important cardiac transcription factor genes are located in close proximity to lncRNAs. Importantly, many of the lncRNAs are divergently transcribed from the promoter of these genes. Since the lncRNA divergently transcribed from Tbx5 is highly evolutionarily conserved, we focused on and analyzed the transcript. We found that this lncRNA exhibits a different expression pattern than that of Tbx5, and knockdown of this lncRNA leads to embryonic lethality. CONCLUSION: These results suggest that spliced lncRNAs, particularly bidirectional lncRNAs, are essential regulators of mouse heart development, potentially through the regulation of neighboring transcription factor genes.


Asunto(s)
Corazón/crecimiento & desarrollo , Miocardio/metabolismo , ARN Largo no Codificante/genética , Factores de Transcripción/genética , Animales , Sistemas CRISPR-Cas/genética , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Regiones Promotoras Genéticas , ARN Largo no Codificante/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo
5.
J Mol Cell Cardiol ; 92: 158-62, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26876450

RESUMEN

Cardiac progenitor cells (CPCs) are a crucial source of cells in cardiac development and regeneration. However, reported CPCs are heterogeneous, and no gene has been identified to transiently mark undifferentiated CPCs throughout heart development. Here we show that Spalt-like gene 1 (Sall1), a zing-finger transcription factor, is expressed in undifferentiated CPCs giving rise to both left and right ventricles. Sall1 was transiently expressed in precardiac mesoderm contributing to the first heart field (left ventricle precursors) but not in the field itself. Similarly, Sall1 expression was maintained in the second heart field (outflow tract/right ventricle precursors) but not in cardiac cells. In vitro, high levels of Sall1 at mesodermal stages enhanced cardiomyogenesis, whereas its continued expression suppressed cardiac differentiation. Our study demonstrates that Sall1 marks CPCs in an undifferentiated state and regulates cardiac differentiation. These findings provide fundamental insights into CPC maintenance, which can be instrumental for CPC-based regenerative medicine.


Asunto(s)
Diferenciación Celular/genética , Ventrículos Cardíacos/crecimiento & desarrollo , Células Madre/metabolismo , Factores de Transcripción/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Ventrículos Cardíacos/metabolismo , Humanos , Ratones , Miocardio/metabolismo , Factores de Transcripción/biosíntesis , Factores de Transcripción/metabolismo
6.
Dev Growth Differ ; 58(4): 367-82, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27125315

RESUMEN

Some organisms, such as zebrafish, urodele amphibians, and newborn mice, have a capacity for heart regeneration following injury. However, adult mammals fail to regenerate their hearts. To know why newborn mice can regenerate their hearts, we focused on epigenetic factors, which are involved in cell differentiation in many tissues. Baf60c (BRG1/BRM-associated factor 60c), a component of ATP-dependent chromatin-remodeling complexes, has an essential role for cardiomyocyte differentiation at the early heart development. To address the function of Baf60c in postnatal heart homeostasis and regeneration, we examined the detailed expression/localization patterns of Baf60c in both mice and axolotls. In the mouse heart development, Baf60c was highly expressed in the entire heart at the early stages, but gradually downregulated at the postnatal stages. During heart regeneration in neonatal mice and axolotls, Baf60c expression was strongly upregulated after resection. Interestingly, the timing of Baf60c upregulation after resection was consistent with the temporal dynamics of cardiomyocyte proliferation. Moreover, knockdown of Baf60c downregulated proliferation of neonatal mouse cardiomyocytes. These data suggested that Baf60c plays an important role in cardiomyocyte proliferation in heart development and regeneration. This is the first study indicating that Baf60c contributes to the heart regeneration in vertebrates.


Asunto(s)
Proteínas Anfibias/biosíntesis , Proteínas Cromosómicas no Histona/biosíntesis , Regulación de la Expresión Génica , Corazón/fisiología , Proteínas Musculares/biosíntesis , Regeneración/fisiología , Ambystoma mexicanum , Animales , Proliferación Celular/fisiología , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Miocitos Cardíacos/metabolismo
7.
Proc Natl Acad Sci U S A ; 110(48): 19438-43, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218595

RESUMEN

To date, only the five most posterior groups of Hox genes, Hox9-Hox13, have demonstrated loss-of-function roles in limb patterning. Individual paralog groups control proximodistal patterning of the limb skeletal elements. Hox9 genes also initiate the onset of Hand2 expression in the posterior forelimb compartment, and collectively, the posterior HoxA/D genes maintain posterior Sonic Hedgehog (Shh) expression. Here we show that an anterior Hox paralog group, Hox5, is required for forelimb anterior patterning. Deletion of all three Hox5 genes (Hoxa5, Hoxb5, and Hoxc5) leads to anterior forelimb defects resulting from derepression of Shh expression. The phenotype requires the loss of all three Hox5 genes, demonstrating the high level of redundancy in this Hox paralogous group. Further analyses reveal that Hox5 interacts with promyelocytic leukemia zinc finger biochemically and genetically to restrict Shh expression. These findings, along with previous reports showing that point mutations in the Shh limb enhancer lead to similar anterior limb defects, highlight the importance of Shh repression for proper patterning of the vertebrate limb.


Asunto(s)
Miembro Anterior/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Organogénesis/fisiología , Factores de Transcripción/metabolismo , Animales , Miembro Anterior/metabolismo , Células HEK293 , Humanos , Hibridación in Situ , Ratones , Proteína de la Leucemia Promielocítica con Dedos de Zinc , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Nature ; 459(7247): 708-11, 2009 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-19396158

RESUMEN

Heart disease is the leading cause of mortality and morbidity in the western world. The heart has little regenerative capacity after damage, leading to much interest in understanding the factors required to produce new cardiac myocytes. Despite a robust understanding of the molecular networks regulating cardiac differentiation, no single transcription factor or combination of factors has been shown to activate the cardiac gene program de novo in mammalian cells or tissues. Here we define the minimal requirements for transdifferentiation of mouse mesoderm to cardiac myocytes. We show that two cardiac transcription factors, Gata4 and Tbx5, and a cardiac-specific subunit of BAF chromatin-remodelling complexes, Baf60c (also called Smarcd3), can direct ectopic differentiation of mouse mesoderm into beating cardiomyocytes, including the normally non-cardiogenic posterior mesoderm and the extraembryonic mesoderm of the amnion. Gata4 with Baf60c initiated ectopic cardiac gene expression. Addition of Tbx5 allowed differentiation into contracting cardiomyocytes and repression of non-cardiac mesodermal genes. Baf60c was essential for the ectopic cardiogenic activity of Gata4 and Tbx5, partly by permitting binding of Gata4 to cardiac genes, indicating a novel instructive role for BAF complexes in tissue-specific regulation. The combined function of these factors establishes a robust mechanism for controlling cellular differentiation, and may allow reprogramming of new cardiomyocytes for regenerative purposes.


Asunto(s)
Diferenciación Celular , Corazón/embriología , Mesodermo/embriología , Miocitos Cardíacos/citología , Animales , Transdiferenciación Celular , Proteínas Cromosómicas no Histona , Embrión de Mamíferos , Factor de Transcripción GATA4/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/citología , Ratones , Proteínas Musculares , Miocitos Cardíacos/metabolismo , Proteínas de Dominio T Box/metabolismo
9.
Nature ; 461(7260): 95-8, 2009 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-19727199

RESUMEN

The emergence of terrestrial life witnessed the need for more sophisticated circulatory systems. This has evolved in birds, mammals and crocodilians into complete septation of the heart into left and right sides, allowing separate pulmonary and systemic circulatory systems, a key requirement for the evolution of endothermy. However, the evolution of the amniote heart is poorly understood. Reptilian hearts have been the subject of debate in the context of the evolution of cardiac septation: do they possess a single ventricular chamber or two incompletely septated ventricles? Here we examine heart development in the red-eared slider turtle, Trachemys scripta elegans (a chelonian), and the green anole, Anolis carolinensis (a squamate), focusing on gene expression in the developing ventricles. Both reptiles initially form a ventricular chamber that homogenously expresses the T-box transcription factor gene Tbx5. In contrast, in birds and mammals, Tbx5 is restricted to left ventricle precursors. In later stages, Tbx5 expression in the turtle (but not anole) heart is gradually restricted to a distinct left ventricle, forming a left-right gradient. This suggests that Tbx5 expression was refined during evolution to pattern the ventricles. In support of this hypothesis, we show that loss of Tbx5 in the mouse ventricle results in a single chamber lacking distinct identity, indicating a requirement for Tbx5 in septation. Importantly, misexpression of Tbx5 throughout the developing myocardium to mimic the reptilian expression pattern also results in a single mispatterned ventricular chamber lacking septation. Thus ventricular septation is established by a steep and correctly positioned Tbx5 gradient. Our findings provide a molecular mechanism for the evolution of the amniote ventricle, and support the concept that altered expression of developmental regulators is a key mechanism of vertebrate evolution.


Asunto(s)
Evolución Molecular , Corazón/embriología , Lagartos/embriología , Tortugas/embriología , Animales , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Corazón/anatomía & histología , Lagartos/anatomía & histología , Lagartos/genética , Ratones , Organogénesis , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Tortugas/anatomía & histología , Tortugas/genética
10.
Nat Genet ; 38(2): 175-83, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16380715

RESUMEN

Human mutations in TBX5, a gene encoding a T-box transcription factor, and SALL4, a gene encoding a zinc-finger transcription factor, cause similar upper limb and heart defects. Here we show that Tbx5 regulates Sall4 expression in the developing mouse forelimb and heart; mice heterozygous for a gene trap allele of Sall4 show limb and heart defects that model human disease. Tbx5 and Sall4 interact both positively and negatively to finely regulate patterning and morphogenesis of the anterior forelimb and heart. Thus, a positive and negative feed-forward circuit between Tbx5 and Sall4 ensures precise patterning of embryonic limb and heart and provides a unifying mechanism for heart/hand syndromes.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Unión al ADN/metabolismo , Extremidades/embriología , Miembro Anterior/metabolismo , Corazón/embriología , Miocardio/metabolismo , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo , Animales , Factor Natriurético Atrial , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Factor 10 de Crecimiento de Fibroblastos/genética , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas , Deformidades Congénitas de las Extremidades , Ratones , Mutación/genética , Péptido Natriurético Tipo-C/genética , Péptido Natriurético Tipo-C/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Dominio T Box/antagonistas & inhibidores , Proteínas de Dominio T Box/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Activación Transcripcional
11.
Elife ; 122023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37605519

RESUMEN

Coronary arteries are a critical part of the vascular system and provide nourishment to the heart. In humans, even minor defects in coronary arteries can be lethal, emphasizing their importance for survival. However, some teleosts survive without coronary arteries, suggesting that there may have been some evolutionary changes in the morphology and function of coronary arteries in the tetrapod lineage. Here, we propose that the true ventricular coronary arteries were newly established during amniote evolution through remodeling of the ancestral coronary vasculature. In mouse (Mus musculus) and Japanese quail (Coturnix japonica) embryos, the coronary arteries unique to amniotes are established by the reconstitution of transient vascular plexuses: aortic subepicardial vessels (ASVs) in the outflow tract and the primitive coronary plexus on the ventricle. In contrast, amphibians (Hyla japonica, Lithobates catesbeianus, Xenopus laevis, and Cynops pyrrhogaster) retain the ASV-like vasculature as truncal coronary arteries throughout their lives and have no primitive coronary plexus. The anatomy and development of zebrafish (Danio rerio) and chondrichthyans suggest that their hypobranchial arteries are ASV-like structures serving as the root of the coronary vasculature throughout their lives. Thus, the ventricular coronary artery of adult amniotes is a novel structure that has acquired a new remodeling process, while the ASVs, which occur transiently during embryonic development, are remnants of the ancestral coronary vessels. This evolutionary change may be related to the modification of branchial arteries, indicating considerable morphological changes underlying the physiological transition during amniote evolution.


Coronary arteries are tasked with supplying the heart with oxygenated blood and nutrients. Any blockage or developmental problem in these blood vessels can have severe and sometimes lethal consequences. Due to their importance for health, researchers have extensively studied how coronary arteries form in humans and mice; a more limited range of studies have also looked at their equivalent in zebrafish. However, little is known about these structures develop in animals such as birds, amphibians, or other groups of fish. This makes it difficult to retrace the evolutionary processes that have given rise to the coronary arteries we are familiar with in mammals. To address this knowledge gap, Mizukami et al. set out to compare blood vessel development around the heart of mammals, birds, amphibians, and fish. To do this, they performed detailed anatomical studies of blood vessel structure at different stages of development in mice as well as quail, frogs and newts, zebrafish and sharks. In both mice and quail, small arterial subepicardial vessels (or ASVs) emerged early in development around the heart; these subsequently reorganised and remodelled themselves to give rise to the 'true' coronary arteries characteristic of the mature heart. Frogs and newts also developed similar ASV-like structures; however, unlike their mammalian and bird equivalents, these vessels did not reorganise, instead being retained into adulthood. In fish, blood vessel development resembled that of amphibians, suggesting that the coronary artery-like structures seen in some fish are an 'ancestral' form of ASVs, rather than the equivalent of the mature coronary arteries in mammals and birds. This work sheds light on the evolutionary processes shaping essential structures in the heart. In the future, Mizukami et al. hope that this knowledge will help develop a greater range of experimental animal models for studying heart disease and potential treatments.


Asunto(s)
Vasos Coronarios , Coturnix , Adulto , Femenino , Embarazo , Humanos , Animales , Ratones , Coturnix/genética , Pez Cebra , Corazón , Aorta
12.
Proc Natl Acad Sci U S A ; 106(23): 9280-5, 2009 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-19470456

RESUMEN

A number of nuclear complexes modify chromatin structure and operate as functional units. However, the in vivo role of each component within the complexes is not known. ATP-dependent chromatin remodeling complexes form several types of protein complexes, which reorganize chromatin structure cooperatively with histone modifiers. Williams syndrome transcription factor (WSTF) was biochemically identified as a major subunit, along with 2 distinct complexes: WINAC, a SWI/SNF-type complex, and WICH, an ISWI-type complex. Here, WSTF(-/-) mice were generated to investigate its function in chromatin remodeling in vivo. Loss of WSTF expression resulted in neonatal lethality, and all WSTF(-/-) neonates and approximately 10% of WSTF(+/-) neonates suffered cardiovascular abnormalities resembling those found in autosomal-dominant Williams syndrome patients. Developmental analysis of WSTF(-/-) embryos revealed that Gja5 gene regulation is aberrant from E9.5, conceivably because of inappropriate chromatin reorganization around the promoter regions where essential cardiac transcription factors are recruited. In vitro analysis in WSTF(-/-) mouse embryonic fibroblast (MEF) cells also showed impaired transactivation functions of cardiac transcription activators on the Gja5 promoter, but the effects were reversed by overexpression of WINAC components. Likewise in WSTF(-/-) MEF cells, recruitment of Snf2h, an ISWI ATPase, to PCNA and cell survival after DNA damage were both defective, but were ameliorated by overexpression of WICH components. Thus, the present study provides evidence that WSTF is shared and is a functionally indispensable subunit of the WICH complex for DNA repair and the WINAC complex for transcriptional control.


Asunto(s)
Ensamble y Desensamble de Cromatina , Factores de Transcripción/metabolismo , Animales , Anomalías Cardiovasculares/genética , Anomalías Cardiovasculares/metabolismo , Células Cultivadas , Reparación del ADN , Replicación del ADN , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Expresión Génica , Ratones , Factores de Transcripción/genética
14.
Proc Natl Acad Sci U S A ; 105(14): 5519-24, 2008 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-18378906

RESUMEN

At the end of every heartbeat, cardiac myocytes must relax to allow filling of the heart. Impaired relaxation is a significant factor in heart failure, but all pathways regulating the cardiac relaxation apparatus are not known. Haploinsufficiency of the T-box transcription factor Tbx5 in mouse and man causes congenital heart defects (CHDs) as part of Holt-Oram syndrome (HOS). Here, we show that haploinsufficiency of Tbx5 in mouse results in cell-autonomous defects in ventricular relaxation. Tbx5 dosage modulates expression of the sarco(endo)plasmic reticulum Ca(2+)-ATPase isoform 2a encoded by Atp2a2 and Tbx5 haploinsufficiency in ventricular myocytes results in impaired Ca(2+) uptake dynamics and Ca(2+) transient prolongation. We also demonstrate that Tbx5 can activate the Atp2a2 promoter. Furthermore, we find that patients with HOS have significant diastolic filling abnormalities. These results reveal a direct genetic pathway that regulates cardiac diastolic function, implying that patients with structural CHDs may have clinically important underlying anomalies in heart function that merit treatment.


Asunto(s)
Diástole/genética , Cardiopatías Congénitas/etiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/fisiología , Animales , Calcio/metabolismo , Estudios de Casos y Controles , Regulación de la Expresión Génica/fisiología , Humanos , Ratones , Regiones Promotoras Genéticas , Transducción de Señal , Proteínas de Dominio T Box/metabolismo
15.
PLoS One ; 16(2): e0226538, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606708

RESUMEN

Glypican-5 (GPC5) is a heparan sulfate proteoglycan (HSPG) localized to the plasma membrane. We previously reported that in the human mesenchymal stem cell line UE6E7T-3, GPC5 is overexpressed in association with transformation and promotes cell proliferation by acting as a co-receptor for Sonic hedgehog signaling. In this study, we found using immunofluorescence microscopy that in transformed cells (U3DT), GPC5 localized not only at primary cilia on the cell surface, but also at the leading edge of migrating cells, at the intercellular bridge and blebs during cytokinesis, and in extracellular vesicles. In each subcellular region, GPC5 colocalized with fibroblast growth factor receptor (FGFR) and the small GTPases Rab11 and ARF6, indicating that GPC5 is delivered to these regions by Rab11-associated recycling endosomes. These colocalizations suggest that GPC5 plays an important role in FGF2 stimulation of cell migration, which was abrogated by knockdown of GPC5. Our findings indicate that GPC5 plays a role in regulation of U3DT cell migration and provides several insights into the functions of GPC5 that could be elucidated by future studies.


Asunto(s)
Movimiento Celular/fisiología , Glipicanos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Membrana Celular/fisiología , Proliferación Celular , Glipicanos/fisiología , Proteínas Hedgehog/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Humanos , Células Madre Mesenquimatosas/fisiología , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal
16.
Nature ; 432(7013): 107-12, 2004 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-15525990

RESUMEN

Tissue-specific transcription factors regulate several important aspects of embryonic development. They must function in the context of DNA assembled into the higher-order structure of chromatin. Enzymatic complexes such as the Swi/Snf-like BAF complexes remodel chromatin to allow the transcriptional machinery access to gene regulatory elements. Here we show that Smarcd3, encoding Baf60c, a subunit of the BAF complexes, is expressed specifically in the heart and somites in the early mouse embryo. Smarcd3 silencing by RNA interference in mouse embryos derived from embryonic stem cells causes defects in heart morphogenesis that reflect impaired expansion of the anterior/secondary heart field, and also results in abnormal cardiac and skeletal muscle differentiation. An intermediate reduction in Smarcd3 expression leads to defects in outflow tract remodelling reminiscent of human congenital heart defects. Baf60c overexpressed in cell culture can mediate interactions between cardiac transcription factors and the BAF complex ATPase Brg1, thereby potentiating the activation of target genes. These results reveal tissue-specific and dose-dependent roles for Baf60c in recruiting BAF chromatin remodelling complexes to heart-specific enhancers, providing a novel mechanism to ensure transcriptional regulation during organogenesis.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Corazón/embriología , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factor de Transcripción GATA4 , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunoprecipitación , Hibridación in Situ , Ratones , Ratones Transgénicos , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas Musculares/genética , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Somitos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Activación Transcripcional
18.
PLoS One ; 15(2): e0229750, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32084243

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0177988.].

19.
Gene Expr Patterns ; 7(1-2): 51-6, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16824806

RESUMEN

Iroquois homeodomain (Irx) transcription factors are encoded by a conserved family of six genes that are found in two clusters of three genes each. Irx proteins are highly conserved, and their expression patterns overlap considerably during embryonic development, suggesting genetically redundant functions. We have identified a highly divergent Irx gene, which we term Iroquois homeobox-like 1 (Irxl1). The chromosomal location of Irxl1 is distinct from the Irx gene clusters. Irxl1 is conserved in most vertebrates, and the deduced amino acid sequence of its protein product predicts a homeodomain that bears significant homology to Irx homeodomains, but is clearly very divergent. We also identified in Irxl1 a divergent Iro box, a motif that is the defining feature of the Irx family. Expression of Irxl1 during mouse embryogenesis was distinct from that of most Irx genes, and was largely restricted to the epaxial and hypaxial components of the somites, limb buds, otic vescicle, craniofacial mesenchyme, retinal ganglion cell layer, and lens. We conclude that Irxl1 is a newly identified highly divergent member of the Irx gene family with specific expression patterns in mouse embryogenesis.


Asunto(s)
Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Ratones , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido
20.
PLoS One ; 12(7): e0177988, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28704447

RESUMEN

BACKGROUND: Sexual dimorphisms are well recognized in various cardiac diseases such as ischemic cardiomyopathy (ICM), hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Thorough understanding of the underlying genetic programs is crucial to optimize treatment strategies specified for each gender. By performing meta-analysis and microarray analysis, we sought to comprehensively characterize the sexual dimorphisms in the healthy and diseased heart at the level of both mRNA and miRNA transcriptome. RESULTS: Existing mRNA microarray data of both mouse and human heart were integrated, identifying dozens/ hundreds of sexually dimorphic genes in healthy heart, ICM, HCM, and DCM. These sexually dimorphic genes overrepresented gene ontologies (GOs) important for cardiac homeostasis. Further, microarray of miRNA, isolated from mouse sham left ventricle (LV) (n = 6 & n = 5 for male & female) and chronic MI LV (n = 19 & n = 19) and from human normal LV (n = 6 & n = 6) and ICM LV (n = 4 & n = 5), was conducted. This revealed that 13 mouse miRNAs are sexually dimorphic in MI and 6 in normal heart. In human, 3 miRNAs were sexually dimorphic in ICM and 15 in normal heart. These data revealed miRNA-mRNA networks that operate in a sexually-biased fashion. CONCLUSIONS: mRNA and miRNA transcriptome of normal and disease heart show significant sex differences, which might impact the cardiac homeostasis. Together this study provides the first comprehensive picture of the genome-wide program underlying the heart sexual dimorphisms, laying the foundation for gender specific treatment strategies.


Asunto(s)
Cardiomiopatías/genética , Perfilación de la Expresión Génica/métodos , MicroARNs/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , ARN Mensajero/genética , Adulto , Anciano , Animales , Cardiomiopatías/veterinaria , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/veterinaria , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/veterinaria , Femenino , Perfilación de la Expresión Génica/veterinaria , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Persona de Mediana Edad , Miocardio/química , Miocardio/patología , Análisis de Secuencia por Matrices de Oligonucleótidos/veterinaria , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA