RESUMEN
Stimulator of interferon genes (STING) is a dimeric transmembrane adapter protein that plays a key role in the human innate immune response to infection and has been therapeutically exploited for its antitumor activity. The activation of STING requires its high-order oligomerization, which could be induced by binding of the endogenous ligand, cGAMP, to the cytosolic ligand-binding domain. Here we report the discovery through functional screens of a class of compounds, named NVS-STGs, that activate human STING. Our cryo-EM structures show that NVS-STG2 induces the high-order oligomerization of human STING by binding to a pocket between the transmembrane domains of the neighboring STING dimers, effectively acting as a molecular glue. Our functional assays showed that NVS-STG2 could elicit potent STING-mediated immune responses in cells and antitumor activities in animal models.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de la Membrana , Animales , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Bioensayo , Citosol , Inmunidad Innata , Ligandos , Proteínas de la Membrana/metabolismoRESUMEN
Many diseases are driven by proteins that are aberrantly ubiquitinated and degraded. These diseases would be therapeutically benefited by targeted protein stabilization (TPS). Here we present deubiquitinase-targeting chimeras (DUBTACs), heterobifunctional small molecules consisting of a deubiquitinase recruiter linked to a protein-targeting ligand, to stabilize the levels of specific proteins degraded in a ubiquitin-dependent manner. Using chemoproteomic approaches, we discovered the covalent ligand EN523 that targets a non-catalytic allosteric cysteine C23 in the K48-ubiquitin-specific deubiquitinase OTUB1. We showed that a DUBTAC consisting of our EN523 OTUB1 recruiter linked to lumacaftor, a drug used to treat cystic fibrosis that binds ΔF508-cystic fibrosis transmembrane conductance regulator (CFTR), robustly stabilized ΔF508-CFTR protein levels, leading to improved chloride channel conductance in human cystic fibrosis bronchial epithelial cells. We also demonstrated stabilization of the tumor suppressor kinase WEE1 in hepatoma cells. Our study showcases covalent chemoproteomic approaches to develop new induced proximity-based therapeutic modalities and introduces the DUBTAC platform for TPS.
Asunto(s)
Fibrosis Quística , Quimera/metabolismo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/uso terapéutico , Humanos , Ligandos , Ubiquitina/metabolismoRESUMEN
While vaccines and antivirals are now being deployed for the current SARS-CoV-2 pandemic, we require additional antiviral therapeutics to not only effectively combat SARS-CoV-2 and its variants, but also future coronaviruses. All coronaviruses have relatively similar genomes that provide a potential exploitable opening to develop antiviral therapies that will be effective against all coronaviruses. Among the various genes and proteins encoded by all coronaviruses, one particularly "druggable" or relatively easy-to-drug target is the coronavirus Main Protease (3CLpro or Mpro), an enzyme that is involved in cleaving a long peptide translated by the viral genome into its individual protein components that are then assembled into the virus to enable viral replication in the cell. Inhibiting Mpro with a small-molecule antiviral would effectively stop the ability of the virus to replicate, providing therapeutic benefit. In this study, we have utilized activity-based protein profiling (ABPP)-based chemoproteomic approaches to discover and further optimize cysteine-reactive pyrazoline-based covalent inhibitors for the SARS-CoV-2 Mpro. Structure-guided medicinal chemistry and modular synthesis of di- and tri-substituted pyrazolines bearing either chloroacetamide or vinyl sulfonamide cysteine-reactive warheads enabled the expedient exploration of structure-activity relationships (SAR), yielding nanomolar potency inhibitors against Mpro from not only SARS-CoV-2, but across many other coronaviruses. Our studies highlight promising chemical scaffolds that may contribute to future pan-coronavirus inhibitors.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Cisteína , Antivirales/farmacología , Antivirales/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Simulación del Acoplamiento MolecularRESUMEN
Proteolysis-targeting chimeras (PROTACs), heterobifunctional compounds that consist of protein-targeting ligands linked to an E3 ligase recruiter, have arisen as a powerful therapeutic modality for targeted protein degradation (TPD). Despite the popularity of TPD approaches in drug discovery, only a small number of E3 ligase recruiters are available for the >600 E3 ligases that exist in human cells. Here, we have discovered a cysteine-reactive covalent ligand, EN106, that targets FEM1B, an E3 ligase recently discovered as the critical component of the cellular response to reductive stress. By targeting C186 in FEM1B, EN106 disrupts recognition of the key reductive stress substrate of FEM1B, FNIP1. We further establish that EN106 can be used as a covalent recruiter for FEM1B in TPD applications by demonstrating that a PROTAC linking EN106 to the BET bromodomain inhibitor JQ1 or the kinase inhibitor dasatinib leads to the degradation of BRD4 and BCR-ABL, respectively. Our study showcases a covalent ligand that targets a natural E3 ligase-substrate binding site and highlights the utility of covalent ligand screening in expanding the arsenal of E3 ligase recruiters suitable for TPD applications.
Asunto(s)
Acetamidas/química , Proteínas de Ciclo Celular/metabolismo , Proteolisis , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Animales , Azepinas/química , Sitios de Unión , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Línea Celular , Cisteína/química , Dasatinib/química , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Triazoles/química , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/genéticaRESUMEN
Activity-based protein profiling (ABPP) is a versatile strategy for identifying and characterizing functional protein sites and compounds for therapeutic development. However, the vast majority of ABPP methods for covalent drug discovery target highly nucleophilic amino acids such as cysteine or lysine. Here, we report a methionine-directed ABPP platform using Redox-Activated Chemical Tagging (ReACT), which leverages a biomimetic oxidative ligation strategy for selective methionine modification. Application of ReACT to oncoprotein cyclin-dependent kinase 4 (CDK4) as a representative high-value drug target identified three new ligandable methionine sites. We then synthesized a methionine-targeting covalent ligand library bearing a diverse array of heterocyclic, heteroatom, and stereochemically rich substituents. ABPP screening of this focused library identified 1oxF11 as a covalent modifier of CDK4 at an allosteric M169 site. This compound inhibited kinase activity in a dose-dependent manner on purified protein and in breast cancer cells. Further investigation of 1oxF11 found prominent cation-π and H-bonding interactions stabilizing the binding of this fragment at the M169 site. Quantitative mass-spectrometry studies validated 1oxF11 ligation of CDK4 in breast cancer cell lysates. Further biochemical analyses revealed cross-talk between M169 oxidation and T172 phosphorylation, where M169 oxidation prevented phosphorylation of the activating T172 site on CDK4 and blocked cell cycle progression. By identifying a new mechanism for allosteric methionine redox regulation on CDK4 and developing a unique modality for its therapeutic intervention, this work showcases a generalizable platform that provides a starting point for engaging in broader chemoproteomics and protein ligand discovery efforts to find and target previously undruggable methionine sites.
Asunto(s)
Neoplasias de la Mama , Metionina , Humanos , Femenino , Quinasa 4 Dependiente de la Ciclina/metabolismo , Ligandos , Fosforilación , Oxidación-Reducción , Racemetionina/metabolismoRESUMEN
Molecular glues are an intriguing therapeutic modality that harness small molecules to induce interactions between proteins that typically do not interact. However, such molecules are rare and have been discovered fortuitously, thus limiting their potential as a general strategy for therapeutic intervention. We postulated that natural products bearing one or more electrophilic sites may be an unexplored source of new molecular glues, potentially acting through multicovalent attachment. Using chemoproteomic platforms, we show that members of the manumycin family of polyketides, which bear multiple potentially reactive sites, target C374 of the putative E3 ligase UBR7 in breast cancer cells, and engage in molecular glue interactions with the neosubstrate tumor-suppressor TP53, leading to p53 transcriptional activation and cell death. Our results reveal an anticancer mechanism of this natural product family, and highlight the potential for combining chemoproteomics and multicovalent natural products for the discovery of new molecular glues.
Asunto(s)
Antineoplásicos/química , Neoplasias de la Mama/tratamiento farmacológico , Polienos/química , Policétidos/química , Alcamidas Poliinsaturadas/química , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Reactivos de Enlaces Cruzados/química , Descubrimiento de Drogas , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Conformación Molecular , Estructura Molecular , Polienos/farmacología , Alcamidas Poliinsaturadas/farmacología , Electricidad Estática , Relación Estructura-Actividad , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
The post-genomic era has seen many advances in our understanding of cancer pathways, yet resistance and tumor heterogeneity necessitate multiple approaches to target even monogenic tumors. Here, we combine phenotypic screening with chemical genetics to identify pre-messenger RNA endonuclease cleavage and polyadenylation specificity factor 3 (CPSF3) as the target of JTE-607, a small molecule with previously unknown target. We show that CPSF3 represents a synthetic lethal node in a subset of acute myeloid leukemia (AML) and Ewing's sarcoma cancer cell lines. Inhibition of CPSF3 by JTE-607 alters expression of known downstream effectors in AML and Ewing's sarcoma lines, upregulates apoptosis and causes tumor-selective stasis in mouse xenografts. Mechanistically, it prevents the release of newly synthesized pre-mRNAs, resulting in read-through transcription and the formation of DNA-RNA hybrid R-loop structures. This study implicates pre-mRNA processing, and specifically CPSF3, as a druggable target providing an avenue to therapeutic intervention in cancer.
Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Leucemia Mieloide Aguda/metabolismo , Precursores del ARN/metabolismo , Sarcoma de Ewing/metabolismo , Animales , Apoptosis/efectos de los fármacos , Sitios de Unión , Hidrolasas de Éster Carboxílico/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Células HEK293 , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Fenotipo , Fenilalanina/análogos & derivados , Fenilalanina/farmacología , Piperazinas/farmacología , Unión Proteica , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Sarcoma de Ewing/tratamiento farmacológicoRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Nimbolide, a terpenoid natural product derived from the Neem tree, impairs cancer pathogenicity; however, the direct targets and mechanisms by which nimbolide exerts its effects are poorly understood. Here, we used activity-based protein profiling (ABPP) chemoproteomic platforms to discover that nimbolide reacts with a novel functional cysteine crucial for substrate recognition in the E3 ubiquitin ligase RNF114. Nimbolide impairs breast cancer cell proliferation in-part by disrupting RNF114-substrate recognition, leading to inhibition of ubiquitination and degradation of tumor suppressors such as p21, resulting in their rapid stabilization. We further demonstrate that nimbolide can be harnessed to recruit RNF114 as an E3 ligase in targeted protein degradation applications and show that synthetically simpler scaffolds are also capable of accessing this unique reactive site. Our study highlights the use of ABPP platforms in uncovering unique druggable modalities accessed by natural products for cancer therapy and targeted protein degradation applications.
Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Productos Biológicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Proteínas Portadoras/metabolismo , Limoninas/farmacología , Proteolisis/efectos de los fármacos , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Limoninas/química , Limoninas/aislamiento & purificación , Ubiquitina-Proteína LigasasRESUMEN
The identification of activating mutations in NOTCH1 in 50% of T cell acute lymphoblastic leukemia has generated interest in elucidating how these mutations contribute to oncogenic transformation and in targeting the pathway. A phenotypic screen identified compounds that interfere with trafficking of Notch and induce apoptosis via an endoplasmic reticulum (ER) stress mechanism. Target identification approaches revealed a role for SLC39A7 (ZIP7), a zinc transport family member, in governing Notch trafficking and signaling. Generation and sequencing of a compound-resistant cell line identified a V430E mutation in ZIP7 that confers transferable resistance to the compound NVS-ZP7-4. NVS-ZP7-4 altered zinc in the ER, and an analog of the compound photoaffinity labeled ZIP7 in cells, suggesting a direct interaction between the compound and ZIP7. NVS-ZP7-4 is the first reported chemical tool to probe the impact of modulating ER zinc levels and investigate ZIP7 as a novel druggable node in the Notch pathway.
Asunto(s)
Proteínas de Transporte de Catión/genética , Estrés del Retículo Endoplásmico/fisiología , Receptor Notch1/genética , Animales , Apoptosis , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/fisiología , Línea Celular , Transformación Celular Neoplásica , Retículo Endoplásmico/fisiología , Humanos , Mutación , Transporte de Proteínas , Receptor Notch1/fisiología , Transducción de Señal , Zinc/metabolismoRESUMEN
YAP signaling pathway plays critical roles in tissue homeostasis, and aberrant activation of YAP signaling has been implicated in cancers. To identify tractable targets of YAP pathway, we have performed a pathway-based pooled CRISPR screen and identified tankyrase and its associated E3 ligase RNF146 as positive regulators of YAP signaling. Genetic ablation or pharmacological inhibition of tankyrase prominently suppresses YAP activity and YAP target gene expression. Using a proteomic approach, we have identified angiomotin family proteins, which are known negative regulators of YAP signaling, as novel tankyrase substrates. Inhibition of tankyrase or depletion of RNF146 stabilizes angiomotins. Angiomotins physically interact with tankyrase through a highly conserved motif at their N terminus, and mutation of this motif leads to their stabilization. Tankyrase inhibitor-induced stabilization of angiomotins reduces YAP nuclear translocation and decreases downstream YAP signaling. We have further shown that knock-out of YAP sensitizes non-small cell lung cancer to EGFR inhibitor Erlotinib. Tankyrase inhibitor, but not porcupine inhibitor, which blocks Wnt secretion, enhances growth inhibitory activity of Erlotinib. This activity is mediated by YAP inhibition and not Wnt/ß-catenin inhibition. Our data suggest that tankyrase inhibition could serve as a novel strategy to suppress YAP signaling for combinatorial targeted therapy.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Receptores ErbB/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/antagonistas & inhibidores , Tanquirasas/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Angiomotinas , Antineoplásicos/farmacología , Sistemas CRISPR-Cas , Línea Celular Tumoral , Regulación hacia Abajo , Clorhidrato de Erlotinib/farmacología , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de Microfilamentos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica/efectos de los fármacos , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Tanquirasas/química , Tanquirasas/genética , Factores de Transcripción , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Señalizadoras YAPRESUMEN
A new cyclic decadepsipeptide was isolated from Chaetosphaeria tulasneorum with potent bioactivity on mammalian and yeast cells. Chemogenomic profiling in S. cerevisiae indicated that the Sec61 translocon complex, the machinery for protein translocation and membrane insertion at the endoplasmic reticulum, is the target. The profiles were similar to those of cyclic heptadepsipeptides of a distinct chemotype (including HUN-7293 and cotransin) that had previously been shown to inhibit cotranslational translocation at the mammalian Sec61 translocon. Unbiased, genome-wide mutagenesis followed by full-genome sequencing in both fungal and mammalian cells identified dominant mutations in Sec61p (yeast) or Sec61α1 (mammals) that conferred resistance. Most, but not all, of these mutations affected inhibition by both chemotypes, despite an absence of structural similarity. Biochemical analysis confirmed inhibition of protein translocation into the endoplasmic reticulum of both co- and post-translationally translocated substrates by both chemotypes, demonstrating a mechanism independent of a translating ribosome. Most interestingly, both chemotypes were found to also inhibit SecYEG, the bacterial Sec61 translocon homolog. We suggest 'decatransin' as the name for this new decadepsipeptide translocation inhibitor.
Asunto(s)
Productos Biológicos/farmacología , Retículo Endoplásmico/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Ascomicetos/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HCT116 , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Péptidos Cíclicos/farmacología , Polimorfismo de Nucleótido Simple/genética , Canales de Translocación SEC , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrolloRESUMEN
Spinal muscular atrophy (SMA), which results from the loss of expression of the survival of motor neuron-1 (SMN1) gene, represents the most common genetic cause of pediatric mortality. A duplicate copy (SMN2) is inefficiently spliced, producing a truncated and unstable protein. We describe herein a potent, orally active, small-molecule enhancer of SMN2 splicing that elevates full-length SMN protein and extends survival in a severe SMA mouse model. We demonstrate that the molecular mechanism of action is via stabilization of the transient double-strand RNA structure formed by the SMN2 pre-mRNA and U1 small nuclear ribonucleic protein (snRNP) complex. The binding affinity of U1 snRNP to the 5' splice site is increased in a sequence-selective manner, discrete from constitutive recognition. This new mechanism demonstrates the feasibility of small molecule-mediated, sequence-selective splice modulation and the potential for leveraging this strategy in other splicing diseases.
Asunto(s)
Empalme Alternativo , Atrofia Muscular Espinal/tratamiento farmacológico , ARN Bicatenario/agonistas , Ribonucleoproteína Nuclear Pequeña U1/agonistas , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Sitios de Unión , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Modelos Moleculares , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/mortalidad , Atrofia Muscular Espinal/patología , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Proteolisis , Precursores del ARN/agonistas , Precursores del ARN/química , Precursores del ARN/metabolismo , ARN Bicatenario/química , ARN Bicatenario/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/metabolismo , Análisis de Supervivencia , Proteína 2 para la Supervivencia de la Neurona Motora/química , Proteína 2 para la Supervivencia de la Neurona Motora/genéticaRESUMEN
Identification and validation of drug-resistant mutations can provide important insights into the mechanism of action of a compound. Here we demonstrate the feasibility of such an approach in mammalian cells using next-generation sequencing of drug-resistant clones and CRISPR-Cas9-mediated gene editing on two drug-target pairs, 6-thioguanine-HPRT1 and triptolide-ERCC3. We showed that disrupting functional HPRT1 allele or introducing ERCC3 point mutations by gene editing can confer drug resistance in cells.
Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Endonucleasas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Animales , Línea Celular/efectos de los fármacos , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Diterpenos/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Compuestos Epoxi/farmacología , Células HCT116 , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Mamíferos , Fenantrenos/farmacología , Mutación Puntual , Reproducibilidad de los Resultados , Tioguanina/farmacologíaRESUMEN
Hedgehog (Hh) signaling determines cell fate during development and can drive tumorigenesis. We performed a screen for new compounds that can impinge on Hh signaling downstream of Smoothened (Smo). A series of cyclohexyl-methyl aminopyrimidine chemotype compounds ('CMAPs') were identified that could block pathway signaling in a Smo-independent manner. In addition to inhibiting Hh signaling, the compounds generated inositol phosphates through an unknown GPCR. Correlation of GPCR mRNA expression levels with compound activity across cell lines suggested the target to be the orphan receptor GPR39. RNA interference or cDNA overexpression of GPR39 demonstrated that the receptor is necessary for compound activity. We propose a model in which CMAPs activate GPR39, which signals to the Gli transcription factors and blocks signaling. In addition to the discovery of GPR39 as a new target that impinges on Hh signaling, we report on small-molecule modulators of the receptor that will enable in vitro interrogation of GPR39 signaling in different cellular contexts.
Asunto(s)
Proteínas Hedgehog/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo , Cromatografía de Afinidad , Proteómica , Transducción de Señal , Espectrometría de Masas en TándemRESUMEN
The stability of the Wnt pathway transcription factor beta-catenin is tightly regulated by the multi-subunit destruction complex. Deregulated Wnt pathway activity has been implicated in many cancers, making this pathway an attractive target for anticancer therapies. However, the development of targeted Wnt pathway inhibitors has been hampered by the limited number of pathway components that are amenable to small molecule inhibition. Here, we used a chemical genetic screen to identify a small molecule, XAV939, which selectively inhibits beta-catenin-mediated transcription. XAV939 stimulates beta-catenin degradation by stabilizing axin, the concentration-limiting component of the destruction complex. Using a quantitative chemical proteomic approach, we discovered that XAV939 stabilizes axin by inhibiting the poly-ADP-ribosylating enzymes tankyrase 1 and tankyrase 2. Both tankyrase isoforms interact with a highly conserved domain of axin and stimulate its degradation through the ubiquitin-proteasome pathway. Thus, our study provides new mechanistic insights into the regulation of axin protein homeostasis and presents new avenues for targeted Wnt pathway therapies.
Asunto(s)
Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Tanquirasas/antagonistas & inhibidores , Proteínas Wnt/antagonistas & inhibidores , Proteína Axina , División Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteómica , Proteínas Represoras/química , Tanquirasas/metabolismo , Transcripción Genética/efectos de los fármacos , Ubiquitina/metabolismo , Ubiquitinación , Proteínas Wnt/metabolismo , beta Catenina/antagonistas & inhibidores , beta Catenina/metabolismoRESUMEN
The search for novel therapeutic interventions for viral disease is a challenging pursuit, hallmarked by the paucity of antiviral agents currently prescribed. Targeting of viral proteins has the inextricable challenge of rise of resistance. Safe and effective vaccines are not possible for many viral pathogens. New approaches are required to address the unmet medical need in this area. We undertook a cell-based high-throughput screen to identify leads for development of drugs to treat respiratory syncytial virus (RSV), a serious pediatric pathogen. We identified compounds that are potent (nanomolar) inhibitors of RSV in vitro in HEp-2 cells and in primary human bronchial epithelial cells and were shown to act postentry. Interestingly, two scaffolds exhibited broad-spectrum activity among multiple RNA viruses. Using the chemical matter as a probe, we identified the targets and identified a common cellular pathway: the de novo pyrimidine biosynthesis pathway. Both targets were validated in vitro and showed no significant cell cytotoxicity except for activity against proliferative B- and T-type lymphoid cells. Corollary to this finding was to understand the consequences of inhibition of the target to the host. An in vivo assessment for antiviral efficacy failed to demonstrate reduced viral load, but revealed microscopic changes and a trend toward reduced pyrimidine pools and findings in histopathology. We present here a discovery program that includes screen, target identification, validation, and druggability that can be broadly applied to identify and interrogate other host factors for antiviral effect starting from chemical matter of unknown target/mechanism of action.
Asunto(s)
Antivirales , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitiales Respiratorios/metabolismo , Animales , Antivirales/síntesis química , Antivirales/química , Antivirales/farmacología , Linfocitos B/metabolismo , Linfocitos B/patología , Linfocitos B/virología , Proliferación Celular/efectos de los fármacos , Chlorocebus aethiops , Perros , Relación Dosis-Respuesta a Droga , Células HeLa , Humanos , Células Jurkat , Infecciones por Virus Sincitial Respiratorio/patología , Linfocitos T/metabolismo , Linfocitos T/patología , Linfocitos T/virología , Células VeroRESUMEN
Ophiobolin A (OPA) is a sesterterpenoid fungal natural product with broad anticancer activity. While OPA possesses multiple electrophilic moieties that can covalently react with nucleophilic amino acids on proteins, the proteome-wide targets and mechanism of OPA remain poorly understood in many contexts. In this study, we used covalent chemoproteomic platforms to map the proteome-wide reactivity of the OPA in a highly sensitive lung cancer cell line. Among several proteins that OPA engaged, we focused on two targets: lysine-72 of cytochrome c oxidase subunit 5A (COX5A) and cysteine-53 of mitochondrial hypoxia induced gene 1 domain family member 2A (HIGD2A). These two subunit proteins are part of complex IV (cytochrome C oxidase) within the electron transport chain and contributed significantly to the antiproliferative activity of OPA. OPA activated mitochondrial respiration in a COX5A- and HIGD2A-dependent manner, leading to an initial spike in mitochondrial ATP and heightened mitochondrial oxidative stress. OPA compromised mitochondrial membrane potential, ultimately leading to ATP depletion. We have used chemoproteomic strategies to discover a unique anticancer mechanism of OPA through activation of complex IV leading to compromised mitochondrial energetics and rapid cell death.
Asunto(s)
Complejo IV de Transporte de Electrones , Mitocondrias , Sesterterpenos , Humanos , Sesterterpenos/farmacología , Sesterterpenos/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Estrés Oxidativo/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Proliferación Celular/efectos de los fármacosRESUMEN
High-throughput phenotypic screening against the yeast Saccharomyces cerevisiae revealed a series of triazolopyrimidine-sulfonamide compounds with broad-spectrum antifungal activity, no significant cytotoxicity, and low protein binding. To elucidate the target of this series, we have applied a chemogenomic profiling approach using the S. cerevisiae deletion collection. All compounds of the series yielded highly similar profiles that suggested acetolactate synthase (Ilv2p, which catalyzes the first common step in branched-chain amino acid biosynthesis) as a possible target. The high correlation with profiles of known Ilv2p inhibitors like chlorimuron-ethyl provided further evidence for a similar mechanism of action. Genome-wide mutagenesis in S. cerevisiae identified 13 resistant clones with 3 different mutations in the catalytic subunit of acetolactate synthase that also conferred cross-resistance to established Ilv2p inhibitors. Mapping of the mutations into the published Ilv2p crystal structure outlined the chlorimuron-ethyl binding cavity, and it was possible to dock the triazolopyrimidine-sulfonamide compound into this pocket in silico. However, fungal growth inhibition could be bypassed through supplementation with exogenous branched-chain amino acids or by the addition of serum to the medium in all of the fungal organisms tested except for Aspergillus fumigatus. Thus, these data support the identification of the triazolopyrimidine-sulfonamide compounds as inhibitors of acetolactate synthase but suggest that targeting may be compromised due to the possibility of nutrient bypass in vivo.