Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Environ Microbiol ; 24(12): 5998-6016, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36325730

RESUMEN

The pedogenesis from the mineral substrate released upon glacier melting has been explained with the succession of consortia of pioneer microorganisms, whose structure and functionality are determined by the environmental conditions developing in the moraine. However, the microbiome variability that can be expected in the environmentally heterogeneous niches occurring in a moraine at a given successional stage is poorly investigated. In a 50 m2 area in the forefield of the Lobuche glacier (Himalayas, 5050 m above sea level), we studied six sites of primary colonization presenting different topographical features (orientation, elevation and slope) and harbouring greyish/dark biological soil crusts (BSCs). The spatial vicinity of the sites opposed to their topographical differences, allowed us to examine the effect of environmental conditions independently from the time of deglaciation. The bacterial microbiome diversity and their co-occurrence network, the bacterial metabolisms predicted from 16S rRNA gene high-throughput sequencing, and the microbiome intact polar lipids were investigated in the BSCs and the underlying sediment deep layers (DLs). Different bacterial microbiomes inhabited the BSCs and the DLs, and their composition varied among sites, indicating a niche-specific role of the micro-environmental conditions in the bacterial communities' assembly. In the heterogeneous sediments of glacier moraines, physico-chemical and micro-climatic variations at the site-spatial scale are crucial in shaping the microbiome microvariability and structuring the pioneer bacterial communities during pedogenesis.


Asunto(s)
Cubierta de Hielo , Microbiología del Suelo , Cubierta de Hielo/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Suelo/química
2.
Environ Microbiol ; 23(10): 6275-6291, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34490977

RESUMEN

Aridity negatively affects the diversity and abundance of edaphic microbial communities and their multiple ecosystem services, ultimately impacting vegetation productivity and biotic interactions. Investigation about how plant-associated microbial communities respond to increasing aridity is of particular importance, especially in light of the global climate change predictions. To assess the effect of aridity on plant associated bacterial communities, we investigated the diversity and co-occurrence of bacteria associated with the bulk soil and the root system of olive trees cultivated in orchards located in higher, middle and lower arid regions of Tunisia. The results indicated that the selective process mediated by the plant root system is amplified with the increment of aridity, defining distinct bacterial communities, dominated by aridity-winner and aridity-loser bacteria negatively and positively correlated with increasing annual rainfall, respectively. Aridity regulated also the co-occurrence interactions among bacteria by determining specific modules enriched with one of the two categories (aridity-winners or aridity-losers), which included bacteria with multiple PGP functions against aridity. Our findings provide new insights into the process of bacterial assembly and interactions with the host plant in response to aridity, contributing to understand how the increasing aridity predicted by climate changes may affect the resilience of the plant holobiont.


Asunto(s)
Ecosistema , Olea , Bacterias/genética , Clima Desértico , Suelo , Microbiología del Suelo
3.
Waste Manag ; 179: 234-244, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38489981

RESUMEN

With a growing population, both food and waste production will increase. There is an urgent need for innovative ways of valorizing waste. The black soldier fly (Hermetia illucens L.) efficiently converts agri-food by-products (BPs) into high-quality materials; its rearing process yields larvae (BSFL) rich in fat and protein for feed purposes, with "frass" acting as organic fertilizer. While the insect rearing sector is expanding, few producers use BPs. Therefore, a case study approach was adopted to evaluate the potential for establishing an Italian BSFL production plant on BPs available on the territory. After contacting more than 115 agri-food companies (maximum 100 km from the BSFL plant), they were classified based on sector, distance, size, and BPs (quantity, seasonality, management). BPs with a low value (fruit and vegetable residues) were treated as waste, associated with costs and low valorization. By merging the available BPs on the territory and following the literature on BSFL nutritional needs' two diets (Scenario BSFL) were created, assessing their suitability comparing them to the current full-scale plant diet (Scenario 0). The exploitation of BPs for BSFL rearing reduced local waste production by 52 % compared to conventional composting (Scenario 0). In addition, integrating BPs into the larval feed formulation increased BSFL production value (+47 times). These results highlight the potential of locally-based insect rearing to valorize BPs and create a network of sustainable actors within the agri-food industry. Further investigations are needed to improve the connection between agri-food and insect industrial activities, expanding this framework to other regions.


Asunto(s)
Dípteros , Animales , Larva , Verduras , Industria de Alimentos , Italia
4.
J Environ Sci (China) ; 25(3): 487-94, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23923421

RESUMEN

The capacity of humic acid extracted from organic waste (HAw) to reduce Cr(VI) was tested at pH 2.5, 4 and 6 and compared with coal-derived humic acid (HAc). HAw was more effective than HAc in reducing Cr(VI). The kinetics of Cr(VI) reductions depended strongly on pH. The calculation of the apparent rate coefficients indicated that HAw was more efficient at reducing Cr(VI) than HAc, but was also more efficient than HAs from soil and peat. The reduction capability of HAs depends on the type of functional groups (i.e., thiols and phenols) present, rather than the free radicals. HAw was more efficient at reducing Cr(VI) than HAc because more reactive phenols were present, i.e., methoxy- and methyl-phenols.


Asunto(s)
Cromo/química , Ciudades , Sustancias Húmicas/análisis , Residuos Sólidos/análisis , Concentración de Iones de Hidrógeno , Cinética , Sustancias Macromoleculares/análisis , Oxidación-Reducción , Temperatura
5.
Waste Manag ; 159: 75-83, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36738588

RESUMEN

In this study, hydrochar (HC), a carbon-rich product originated from hydrothermal conversion treatment (HTC), was obtained from wastes of the wine and dairy industries. The effect of mixing secondary char and compost was tested, before and after the aerobic mixing of compost (COM) and HC at increasing doses (from 15 to 75 Mg ha-1 DM), in an effort to lower the HC phytotoxicity due to potential phytotoxic compounds of secondary char. The results indicated that, after the aerobic stabilization, the mix HC/COM was able to double the plant growth in comparison to COM alone. The presence of easily degradable organic compounds probably led to poor stability of HC, increased microbial activity and, consequently, root anoxia when used at high doses. Chemical, spectroscopic and thermal investigation confirmed this hypothesis. In particular, HC shows a high content of dissolved organic matter, characterized by the presence of small molecules, which is negatively correlated with the growth index of lettuce. Furthermore, thermal characterization suggests a higher proportion of less complex and thermally stable molecular compounds in HC in comparison to COM. Therefore, co-composting of HC allows obtaining a useful amendment to support soil organic matter and fertility.


Asunto(s)
Compostaje , Suelo , Suelo/química , Carbono , Compuestos Orgánicos , Materia Orgánica Disuelta
6.
Sci Total Environ ; 868: 161500, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36690113

RESUMEN

Highly stabilized digestate from sewage sludge and digestate-derived ammonium sulphate (RFs), were used in a comparison with synthetic mineral fertilizers (SF) to crop maize in a three-year plot trial in open fields. RFs and SF were dosed to ensure the same amount of mineral N (ammonia-N). In doing so, plots fertilized with digestate received much more N (+185 kg ha-1 of organic N) because digestate also contained organic N. The fate of nitrogen was studied by measuring mineral and organic N in soil at different depths, ammonia and N2O emissions, and N uptake in crops. Soil analyses indicated that at one-meter depth there was no significant difference in nitrate content between RF, SF and Unfertilized plots during crop season indicating that more N dosed with digestate did not lead to extra nitrate leaching. Ammonia emissions and N content in plants and grains measured were also similar for both RF and SF. Measuring denitrification activity by using gene makers resulted in a higher denitrification activity for RF than SF. Nevertheless, N2O measurements showed that SF emitted more N2O than RF (although it was not statistically different) (7.59 ± 3.2 kgN ha-1 for RF and 10.3 ± 6.8 kgN ha-1 for SF), suggesting that probably the addition of organic matter with digestate to RF, increased the denitrification efficiency so that N2 production was favoured. Soil analyses, although were not able detecting N differences between SF and Rf after three years of cropping, revealed a statistical increasing of total carbon, suggesting that dosing digestate lead to carbon (and maybe N) accumulation in soil. Data seem to suggest that N2O/N2 emission and organic N accumulation in soil can explain the fate of the extra N dosed (organic-N) in RF plots.

7.
Sci Total Environ ; 815: 152919, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34998783

RESUMEN

Recovered fertilizers (a highly stabilized digestate and ammonium sulphate) obtained from anaerobic digestion of sewage sludge, were used on plot trials with a maize crop, in a comparison with synthetic fertilizers. After three consecutive cropping seasons, the soils fertilized with the recovered fertilizers (RF), compared to those fertilized with synthetic fertilizers (SF), did not show significant differences either in their chemical characteristics or in the accumulation of inorganic and organic pollutants (POPs). The RF ensured an ammonia N availability in the soil equal to that of the soil fertilized with SF, during the whole period of the experiment. Furthermore, no risks of N leaching were detected, and the use of RF did not result in a greater emission of ammonia or greenhouse gases than the use of SF. The agronomic results obtained using RF were equivalent to those obtained with SF (fertilizer use efficiency of 85.3 ± 10 and 93.6 ± 4.4% for RF and SF respectively). The data show that utilising a very stable digestate can be a good strategy to produce a bio-based fertilizer with similar performance to that of a synthetic fertilizer, without environmental risks.


Asunto(s)
Fertilizantes , Suelo , Sulfato de Amonio , Producción de Cultivos , Fertilizantes/análisis , Nitrógeno/análisis , Aguas del Alcantarillado
8.
Environ Sci Technol ; 45(3): 1107-13, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21174466

RESUMEN

The cell wall structure protects cellulose from enzymatic attack and its successive fermentation. The nature of this protection consists in the very complex macroscopic and microscopic structure of cell wall that limits transport. Explaining this kind of protection is critical in future research to improve cell polymer availability for enzymatic attack. This research shows that the complete description of the cell wall topography at a nanoscale level allows a mechanistic understanding of cellulose protection. For this purpose, we used gas adsorption methods (CO(2) at 273 K and N(2) at 77 K) to detect mesoporosity (pore size of 1.5-30 nm diameter; MeS) and microporosity (pore size of 0.3-1.5 nm diameter; MiS) of the cell wall of five energy crops, i.e., giant cane, rivet wheat straw, miscanthus, proso millet, and sorghum. The presence of both hemicelluloses in the spaces between cellulose fibrils and the unhydrolyzable and highly cross-linked lignocarbohydrate complex (LCC) determines a microporous (80% pores having diameters below 0.8 nm) structure of the cell wall that prevents the cellulase enzymes from coming into direct contact with the cellulose, as their sizes exceed the cell wall pore size. On the other hand, the removal of the hemicelluloses and of the LCC complex determines a reduction of the MiS and an increase of the available surface for enzymatic attack, i.e., pores >5 nm diameter. This was confirmed by the good negative (r = -0.87, P < 0.001, n = 11) and positive (r = 0.78, P < 0.005, n = 11) correlations found for microporosity and mesoporosity (pores of diameters >5 nm), respectively, vs the glucose production, by cellulase enzyme attack in specific enzymatic hydrolysis tests performed on biomass samples.


Asunto(s)
Pared Celular/fisiología , Celulosa/metabolismo , Productos Agrícolas/fisiología , Enzimas/metabolismo , Biomasa , Dióxido de Carbono/metabolismo , Pared Celular/ultraestructura , Productos Agrícolas/citología , Productos Agrícolas/metabolismo , Fermentación , Nitrógeno/metabolismo , Tamaño de la Partícula , Porosidad
9.
Waste Manag ; 134: 67-77, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34416672

RESUMEN

The aim of the study was to assess the effects of high concentrations (10 % w/w, data projected for 2030) of commercial bioplastics, i.e. starch based shopping bags (SBSB) and polylactic acid (PLA) tableware, in the organic fraction of municipal solid wastes (MSW) on compost quality obtained by pilot-scale dry mesophilic anaerobic digestion and subsequent composting of the digestate. After the biological processes, 48.1 % total solids (TS) of SBSB and 15 % TS of PLA degraded, resulting in a high bioplastics content (about 18 % TS) in compost. Subsequent compost incubation in soils indicated that bioplastics degraded by pseudo-zero order kinetics (0.014 and 0.010 mg C cm-2 d-1 for SBSB and PLA, respectively), i.e. complete degradation was expected in 1.6 years (SBSB) and 7.2 years (PLA), confirming the intrinsic biodegradability of bioplastics. Nevertheless, enhancing the rate and amount of bioplastics degradation during waste management represents a goal to decrease the amount of bioplastics reaching the environment.


Asunto(s)
Compostaje , Administración de Residuos , Anaerobiosis , Suelo , Residuos Sólidos
10.
Bioresour Technol ; 337: 125459, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34320741

RESUMEN

Bioplastics are becoming more and more widespread as substitutes for petroleum-derived plastics due to their biodegradability. Bioplastics degradation under different environments has been described and reported to depend mainly on bioplastics' compositions and the environmental conditions. Incomplete degradation during waste management processes and leakage of bioplastics into the environment are becoming major concerns that need to be further investigated. In this context, the present paper aimed to review recent literature dealing with biodegradation of bioplastics under industrial (e.g. anaerobic digestion and composting) and natural (e.g. soil and water) environments, and to link it to the potential bioplastics' leakage into the environment. Reviewed data were used to estimate the potential role of waste management processes in decreasing the potential leakage of bioplastics. Depending on bioplastics' type and processing conditions, waste management can effectively reduce bioplastics' potential leakage, decreasing the concentration of these materials that can reach the natural environments.


Asunto(s)
Compostaje , Administración de Residuos , Biodegradación Ambiental , Plásticos , Suelo
11.
Waste Manag ; 124: 356-367, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33662767

RESUMEN

This work reports a full-scale study in which organic wastes were transformed by high-solid thermophilic anaerobic digestion (HSAD), into N fertilizers and organic fertilizers, i.e. digestate. The produced fertilizers were characterized over 42 months and their properties were discussed in comparisons with literature data. HSAD coupled with N stripping technology led to ammonia sulphate production having high N concentration (74 ± 2 g kg-1 wet weight), neutral pH (6.8 ± 1.3) and low traces of other elements. Digestate showed both higher carbon (C) content (314 ± 30 g kg-1 on dry matter (DM) and biological stability than green composts, indicating good amendment properties. Digestate was also interesting for its N (77 ± 3.7 g kg-1 dry matter - DM) content, half of it in the ammonia form, and P content (28 ± 4.1 g kg-1 DM) that was 43% readily available as soluble P-orthophosphate. K content was low (6.5 ± 1.3 g kg-1 DM), indicating poor fertilizing ability of digestate for this element. All organic pollutants investigated were much lower than the limits required for agricultural use and levels of some of them were lower than the content revealed for other organic matrices such as agricultural and energy crop digestates and compost. Emerging pollutants (i.e., pharmaceuticals) were tested as markers and they were found to be below the detection limit (<0.01 mg kg-1 DM) indicating very low content. The results obtained showed that HSAD coupled with N stripping allowed transforming sewage sludge into fertilizers and soil improvers exploitable in agriculture.


Asunto(s)
Agricultura , Fertilizantes , Anaerobiosis , Fertilizantes/análisis , Aguas del Alcantarillado , Suelo
12.
Environ Microbiol ; 12(2): 293-303, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19840107

RESUMEN

During primary colonization of rock substrates by plants, mineral weathering is strongly accelerated under plant roots, but little is known on how it affects soil ecosystem development before plant establishment. Here we show that rock mineral weathering mediated by chemolithoautotrophic bacteria is associated to plant community formation in sites recently released by permanent glacier ice cover in the Midtre Lovénbreen glacier moraine (78 degrees 53'N), Svalbard. Increased soil fertility fosters growth of prokaryotes and plants at the boundary between sites of intense bacterial mediated chemolithotrophic iron-sulfur oxidation and pH decrease, and the common moraine substrate where carbon and nitrogen are fixed by cyanobacteria. Microbial iron oxidizing activity determines acidity and corresponding fertility gradients, where water retention, cation exchange capacity and nutrient availability are increased. This fertilization is enabled by abundant mineral nutrients and reduced forms of iron and sulfur in pyrite minerals within a conglomerate type of moraine rock. Such an interaction between microorganisms and moraine minerals determines a peculiar, not yet described model for soil genesis and plant ecosystem formation with potential past and present analogues in other harsh environments with similar geochemical settings.


Asunto(s)
Bacterias/metabolismo , Clima Desértico , Ecosistema , Microbiología del Suelo , Regiones Árticas , Carbono/metabolismo , Cianobacterias/metabolismo , Cubierta de Hielo/microbiología , Nitrógeno/metabolismo , Desarrollo de la Planta , Raíces de Plantas/microbiología , Suelo , Svalbard
13.
Environ Sci Pollut Res Int ; 27(6): 5730-5743, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31919818

RESUMEN

Phosphorus is an essential element in the food production chain, even though it is a non-renewable and limited natural resource, which is going to run out soon. However, it is also a pollutant if massively introduced into soil and water ecosystems. This study focuses on the current alternative low-cost technologies for phosphorus recovery from livestock effluents. Recovering phosphorus from these wastewaters is considered a big challenge due to the high phosphorus concentration (between 478 and 1756 mg L-1) and solids content (> 2-6% of total solids). In particular, the methods discussed in this study are (i) magnesium-based crystallization (struvite synthesis), (ii) calcium-based crystallization, (iii) electrocoagulation and (iv) biochar production, which differ among them for some advantages and disadvantages. According to the data collected, struvite crystallization achieves the highest phosphorus removal (> 95%), even when combined with the use of seawater bittern (a by-product of sea salt processing) instead of magnesium chloride pure salt as the magnesium source. Moreover, the crystallizer technology used for struvite precipitation has already been tested in wastewater treatment plants, and data reported in this review showed the feasibility of this technology for use with high total solids (> 5%) livestock manure. Furthermore, economic and energetic analyses here reported show that struvite crystallization is the most practicable among the low-cost phosphorus recovery technologies for treating livestock effluents.


Asunto(s)
Ganado , Fósforo , Purificación del Agua , Animales , Ecosistema , Compuestos de Magnesio , Fosfatos , Estruvita , Eliminación de Residuos Líquidos
14.
PLoS One ; 15(6): e0228364, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32484823

RESUMEN

Nitrogen transformation in soil is a complex process and the soil microbial population can regulate the potential for N mineralization, nitrification and denitrification. Here we show that agricultural soils under standard agricultural N-management are consistently characterized by a high presence of gene copies for some of the key biological activities related to the N-cycle. This led to a strong NO3- reduction (75%) passing from the soil surface (15.38 ± 11.36 g N-NO3 kg-1 on average) to the 1 m deep layer (3.92 ± 4.42 g N-NO3 kg-1 on average), and ensured low nitrate presence in the deepest layer. Under these circumstances the other soil properties play a minor role in reducing soil nitrate presence in soil. However, with excessive N fertilization, the abundance of bacterial gene copies is not sufficient to explain N leaching in soil and other factors, i.e. soil texture and rainfall, become more important in controlling these aspects.


Asunto(s)
Amoníaco/análisis , Fertilizantes , Regulación de la Expresión Génica/efectos de los fármacos , Minerales/farmacología , Nitratos/análisis , Ciclo del Nitrógeno/genética , Suelo/química , Dosificación de Gen/efectos de los fármacos , Ciclo del Nitrógeno/efectos de los fármacos
15.
Sci Total Environ ; 734: 139284, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32450400

RESUMEN

This study aims to investigate the effect of anaerobic digestion (AD) on P species and how the different species are distributed in the digestate and digestate fractions, i.e. liquid and solid fractions. To do so, six full scale AD plants were used in this work and representative biomass samples were collected for investigation. P fractionation proceeded by adopting fractionation protocols consisting in step-by-step extraction with different solvents, (i.e. NaHCO3, HCl and NaOH-EDTA). Subsequently P species in the different fractions were identified by using 31PNMR. On average, AD did not substantially affect P speciation that depended on the P-fraction content of feeds. A high NaHCO3 fraction content in the ingestate determined, also, a high content of this fraction in the digestate, with consequently lower contents of both P-HCl and P-NaOH-EDTA, i.e. digestate P-fraction contents represented an inheritance of P speciation in the ingestate. A feed effect was observed in single plants. Highest pig/cow slurry content in the feeds seemed to decrease readily soluble P (extracted with NaHCO3) content and increased P associated with both organic matter and amorphous Fe/Al in the digestate. Again, using a large amount of digestate in the feed increased P-soluble content in the digestate. 31P NMR analyses revealed that inorganic P compounds dominated the spectra of all biomasses and fractions, with orthophosphate as the predominant species. When present, organic phosphorus compounds were typically represented by monophosphate esters, DNA and phospholipids, with a predominance of monophosphate esters.


Asunto(s)
Fósforo/química , Anaerobiosis , Animales , Biomasa , Bovinos , Femenino , Porcinos
16.
Waste Manag ; 29(1): 174-9, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18396394

RESUMEN

We investigated the effect of a single compost application at two rates (50 and 85Mgha(-1)) on carbon (C) degradation and retention in an agricultural soil cropped with maize after 150d. We used both C mass balance and soil respiration data to trace the fate of compost C. Our results indicated that compost C accumulated in the soil after 150d was 4.24Mgha(-1) and 6.82Mg C ha(-1) for 50 and 85Mg ha(-1) compost rate, respectively. Compost C was sequestered at the rate of 623 and 617g C kg(-1) compost TOC for 50 and 85Mgha(-1) compost dose, respectively. These results point to a linear response between dose of application and both C degradation and retention. The amount of C sequestered was similar to the total recalcitrant C content of compost, which was 586g C kg(-1) compost TOC, indicating that, probably, during the short experiment, the labile C pool of compost (414g C kg(-1) of compost TOC) was completely degraded. Soil respiration measured at different times during the crop growth cycle was stable for soils amended with compost (CO2 flux of 0.96+/-0.11g CO2 m(-2) h(-1) and 1.07+/-0.10g CO2 m(-2) h(-1), respectively, for 50 and 85Mgha(-1)), whereas it increased in the control. The CO2 flux due to compost degradation only, though not statistically significant, was always greatest for the highest compost doses applied (0.22+/-0.40g CO2 m(-2) h(-1) and 0.33+/-0.25g CO2 m(-2) h(-1) for the 50 and 85Mgha(-1) compost dose, respectively). This seems to confirm the highest C degradation for the 85Mgha(-1) compost dose as a consequence of the presence of more labile C. Unlike other studies, the results show a slight increase in the fraction of carbon retained with the increase in compost application rate. This could be due to the highly stable state of the compost prior to application, although it could also be due to sampling uncertainty. Further investigations are needed to better explain how the compost application rate affects carbon sequestration, and how characterization into labile and recalcitrant C can predict the amount of C sequestered in the soil.


Asunto(s)
Carbono/química , Carbono/metabolismo , Eliminación de Residuos/métodos , Suelo/análisis , Factores de Tiempo
17.
Waste Manag ; 29(1): 383-9, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18346886

RESUMEN

A compost isolated humic acid-like (cHAL) material was pointed out in previous work for its potential as auxiliary in chemical technology. Its potential is based on its relatively low 0.4gL(-1) critical micellar concentration (cmc) in water, which enables cHAL to enhance the water solubility of hydrophobic substances, like phenanthrene, when used at higher concentrations than 0.4gL(-1). This material could be obtained from a 1:1 v/v mixture of municipal solid and lignocellulosic wastes composted for 15 days. The compost, containing 69.3% volatile solids, 39.6% total organic C and 21C/N ratio, was extracted for 24h at 65 degrees C under N2 with aqueous 0.1molL(-1) NaOH and 0.1molL(-1) Na4P2O7, and the solution was acidified to separate the precipitated cHAL in 12% yield from soluble carbohydrates and other humic and non-humic substances. In this work two typical applications of surfactants, i.e., textile dyeing (TD) and soil remediation by washing (SW), were chosen as grounds for testing the performance of the cHAL biosurfactant against the one of sodium dodecylsulfate (SDS), which is a well established commercial synthetic surfactant. The TD trials were carried out with nylon 6 microfiber and a water insoluble dye, while the SW tests were performed with two soils contaminated by polycyclic aromatic hydrocarbons (PAH) for several decades. Performances were rated in the TD experiments based on the fabric colour intensity (DeltaE) and uniformity (sigmaDeltaE), and in the SW experiments based on the total hydrocarbons concentration (CWPAH) and on the residual surfactant (Cre) concentrations in the washing solution equilibrated with the contaminated soils. The results show that both cHAL and SDS exhibit enhanced performance when applied above their cmc values. However, while in the TD case a significant performance effect was observed at the surfactants cmc value, in the SW case the required surfactants concentration values were equivalent to 25-125xcmc for cHAL and to 4-22xcmc for SDS. The vis-a-vis comparison of the two surfactants gave the following results: in the TD case the cHAL biosurfactant at 0.4gL(-1) yields good colour intensity and equal colour uniformity as SDS at 5gL(-1), in the SW case cHAL was found to enhance CWPAH by a factor of 2-4 relative to SDS with one soil, whereas with the other soil the two surfactants behaved similarly. The Cre data, however, showed that both soils absorbed by far more SDS (68-95%) than cHAL (12-54%). The results point out intriguing technological and environmental perspectives deriving from the use of compost isolated biosurfactants in the place of synthetic surfactants.


Asunto(s)
Colorantes/química , Restauración y Remediación Ambiental , Eliminación de Residuos , Suelo , Tensoactivos/química , Textiles , Ciudades , Conservación de los Recursos Naturales , Estructura Molecular
18.
Waste Manag ; 88: 21-27, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31079633

RESUMEN

The liquid fraction (LF) of digestate has usually been proposed as a substitute for mineral fertilizers because of the presence of high N content, above all in easily available form (ammonia). The LF was reported to contain about 66% of dry matter from the digestate. This study reports the characterization of the organic carbon (OC) contained in the LF of digestates obtained from full scale plants by screw-press solid/liquid separation, to find out about their organic amendment properties. Results indicate that LF contains stable OC because of the concentration during anaerobic digestion of recalcitrant molecules, and that its biological stability, measured by oxygen uptake rate, was similar to that of compost, i.e. 40 ±â€¯15 mg O2 g DM-1 20 h-1 and 41.1 ±â€¯5.1 mg O2 g DM-1 20 h-1. 13C NMR indicated that LFs were similar each other and were constituted of recalcitrant Alkyl-C (34.82 ±â€¯5.28% OC) derived from plant and fecal material, Aromatic-C (11.10 ±â€¯2.2% OC) derived from lignin-like structures and O/N-alkyl (44.91 ±â€¯4.87% OC) derived from cellulose/hemicelluloses and protein material. A simple simulation of the real C dosed by using LF as N-fertilizers indicated that amendment properties cannot be ignored. All these results seem to indicate good amendment properties for LFs, contrary to the common opinion.


Asunto(s)
Compostaje , Fertilizantes , Amoníaco , Carbono , Celulosa , Suelo
19.
Sci Total Environ ; 637-638: 791-802, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29758434

RESUMEN

Anaerobic digestion (AD) is the most widely used method of sewage sludge treatment (SS) before its agricultural use. AD achieves the required "sterilisation" of pathogens and is able to cover the energy required by the process, reducing pre-treatment costs, thanks to the production of biogas. The SS agronomic (fertilizer properties), environmental (pollutants contents) characteristics and nuisance to people (odours and pathogens) need to be evaluated together for the safe and useful deployment of SS in agriculture. To evaluate SS properties an unsupervised (Principal Component Analysis) and a supervised (K nearest neighbours) chemometric approach was applied to rank digested SS for agronomic and environmental properties in comparison with other organic matrices for which the agronomic and/or environmental properties are well known or expected. To do so, complete chemical, biological and "impact on people" characterization was carried out on SS ingestate (SS-ing.) and SS digestate (SS-dig.) and another 10 biomasses. The SS-AD process enhanced the agronomic properties of sewage sludge and did not lead to a substantial concentration of pollutants because of the low degradation of organic matter. The best PCA performances were reached for amendment and fertilizer modules but the results found for the environment and nuisance to inhabitants were not satisfactory. The KNN approach proposed to evaluate the suitability of a biomass for agricultural purposes, represents a win-win approach as it allows one to avoid time-consuming and costly full field studies.


Asunto(s)
Agricultura , Fertilizantes , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Biocombustibles , Biomasa , Aguas del Alcantarillado
20.
ISME J ; 12(5): 1188-1198, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29335640

RESUMEN

In mature soils, plant species and soil type determine the selection of root microbiota. Which of these two factors drives rhizosphere selection in barren substrates of developing desert soils has, however, not yet been established. Chronosequences of glacier forelands provide ideal natural environments to identify primary rhizosphere selection factors along the changing edaphic conditions of a developing soil. Here, we analyze changes in bacterial diversity in bulk soils and rhizospheres of a pioneer plant across a High Arctic glacier chronosequence. We show that the developmental stage of soil strongly modulates rhizosphere community assembly, even though plant-induced selection buffers the effect of changing edaphic factors. Bulk and rhizosphere soils host distinct bacterial communities that differentially vary along the chronosequence. Cation exchange capacity, exchangeable potassium, and metabolite concentration in the soil account for the rhizosphere bacterial diversity. Although the soil fraction (bulk soil and rhizosphere) explains up to 17.2% of the variation in bacterial microbiota, the soil developmental stage explains up to 47.7% of this variation. In addition, the operational taxonomic unit (OTU) co-occurrence network of the rhizosphere, whose complexity increases along the chronosequence, is loosely structured in barren compared with mature soils, corroborating our hypothesis that soil development tunes the rhizosphere effect.


Asunto(s)
Bacterias/aislamiento & purificación , Rizosfera , Microbiología del Suelo , Suelo/química , Regiones Árticas , Bacterias/clasificación , Biodiversidad , Clima Desértico , Cubierta de Hielo , Microbiota , Raíces de Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA