Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(2): 371-385.e18, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625053

RESUMEN

Identifying molecular cancer drivers is critical for precision oncology. Multiple advanced algorithms to identify drivers now exist, but systematic attempts to combine and optimize them on large datasets are few. We report a PanCancer and PanSoftware analysis spanning 9,423 tumor exomes (comprising all 33 of The Cancer Genome Atlas projects) and using 26 computational tools to catalog driver genes and mutations. We identify 299 driver genes with implications regarding their anatomical sites and cancer/cell types. Sequence- and structure-based analyses identified >3,400 putative missense driver mutations supported by multiple lines of evidence. Experimental validation confirmed 60%-85% of predicted mutations as likely drivers. We found that >300 MSI tumors are associated with high PD-1/PD-L1, and 57% of tumors analyzed harbor putative clinically actionable events. Our study represents the most comprehensive discovery of cancer genes and mutations to date and will serve as a blueprint for future biological and clinical endeavors.


Asunto(s)
Neoplasias/patología , Algoritmos , Antígeno B7-H1/genética , Biología Computacional , Bases de Datos Genéticas , Entropía , Humanos , Inestabilidad de Microsatélites , Mutación , Neoplasias/genética , Neoplasias/inmunología , Análisis de Componente Principal , Receptor de Muerte Celular Programada 1/genética
2.
Cell ; 166(3): 740-754, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27397505

RESUMEN

Systematic studies of cancer genomes have provided unprecedented insights into the molecular nature of cancer. Using this information to guide the development and application of therapies in the clinic is challenging. Here, we report how cancer-driven alterations identified in 11,289 tumors from 29 tissues (integrating somatic mutations, copy number alterations, DNA methylation, and gene expression) can be mapped onto 1,001 molecularly annotated human cancer cell lines and correlated with sensitivity to 265 drugs. We find that cell lines faithfully recapitulate oncogenic alterations identified in tumors, find that many of these associate with drug sensitivity/resistance, and highlight the importance of tissue lineage in mediating drug response. Logic-based modeling uncovers combinations of alterations that sensitize to drugs, while machine learning demonstrates the relative importance of different data types in predicting drug response. Our analysis and datasets are rich resources to link genotypes with cellular phenotypes and to identify therapeutic options for selected cancer sub-populations.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Análisis de Varianza , Línea Celular Tumoral , Metilación de ADN , Resistencia a Antineoplásicos/genética , Dosificación de Gen , Humanos , Modelos Genéticos , Mutación , Neoplasias/genética , Oncogenes , Medicina de Precisión
3.
Cell ; 158(4): 929-944, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25109877

RESUMEN

Recent genomic analyses of pathologically defined tumor types identify "within-a-tissue" disease subtypes. However, the extent to which genomic signatures are shared across tissues is still unclear. We performed an integrative analysis using five genome-wide platforms and one proteomic platform on 3,527 specimens from 12 cancer types, revealing a unified classification into 11 major subtypes. Five subtypes were nearly identical to their tissue-of-origin counterparts, but several distinct cancer types were found to converge into common subtypes. Lung squamous, head and neck, and a subset of bladder cancers coalesced into one subtype typified by TP53 alterations, TP63 amplifications, and high expression of immune and proliferation pathway genes. Of note, bladder cancers split into three pan-cancer subtypes. The multiplatform classification, while correlated with tissue-of-origin, provides independent information for predicting clinical outcomes. All data sets are available for data-mining from a unified resource to support further biological discoveries and insights into novel therapeutic strategies.


Asunto(s)
Neoplasias/clasificación , Neoplasias/genética , Análisis por Conglomerados , Humanos , Neoplasias/patología , Transcriptoma
5.
J Intern Med ; 295(6): 785-803, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38698538

RESUMEN

In the last decades, the development of high-throughput molecular assays has revolutionised cancer diagnostics, paving the way for the concept of personalised cancer medicine. This progress has been driven by the introduction of such technologies through biomarker-driven oncology trials. In this review, strengths and limitations of various state-of-the-art sequencing technologies, including gene panel sequencing (DNA and RNA), whole-exome/whole-genome sequencing and whole-transcriptome sequencing, are explored, focusing on their ability to identify clinically relevant biomarkers with diagnostic, prognostic and/or predictive impact. This includes the need to assess complex biomarkers, for example microsatellite instability, tumour mutation burden and homologous recombination deficiency, to identify patients suitable for specific therapies, including immunotherapy. Furthermore, the crucial role of biomarker analysis and multidisciplinary molecular tumour boards in selecting patients for trial inclusion is discussed in relation to various trial concepts, including drug repurposing. Recognising that today's exploratory techniques will evolve into tomorrow's routine diagnostics and clinical study inclusion assays, the importance of emerging technologies for multimodal diagnostics, such as proteomics and in vivo drug sensitivity testing, is also discussed. In addition, key regulatory aspects and the importance of patient engagement in all phases of a clinical trial are described. Finally, we propose a set of recommendations for consideration when planning a new precision cancer medicine trial.


Asunto(s)
Biomarcadores de Tumor , Neoplasias , Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Secuenciación de Nucleótidos de Alto Rendimiento , Ensayos Clínicos como Asunto , Oncología Médica/métodos , Oncología Médica/tendencias
6.
Genet Med ; 24(5): 986-998, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35101336

RESUMEN

PURPOSE: Several professional societies have published guidelines for the clinical interpretation of somatic variants, which specifically address diagnostic, prognostic, and therapeutic implications. Although these guidelines for the clinical interpretation of variants include data types that may be used to determine the oncogenicity of a variant (eg, population frequency, functional, and in silico data or somatic frequency), they do not provide a direct, systematic, and comprehensive set of standards and rules to classify the oncogenicity of a somatic variant. This insufficient guidance leads to inconsistent classification of rare somatic variants in cancer, generates variability in their clinical interpretation, and, importantly, affects patient care. Therefore, it is essential to address this unmet need. METHODS: Clinical Genome Resource (ClinGen) Somatic Cancer Clinical Domain Working Group and ClinGen Germline/Somatic Variant Subcommittee, the Cancer Genomics Consortium, and the Variant Interpretation for Cancer Consortium used a consensus approach to develop a standard operating procedure (SOP) for the classification of oncogenicity of somatic variants. RESULTS: This comprehensive SOP has been developed to improve consistency in somatic variant classification and has been validated on 94 somatic variants in 10 common cancer-related genes. CONCLUSION: The comprehensive SOP is now available for classification of oncogenicity of somatic variants.


Asunto(s)
Genoma Humano , Neoplasias , Pruebas Genéticas/métodos , Variación Genética/genética , Genoma Humano/genética , Genómica/métodos , Humanos , Neoplasias/genética , Virulencia
7.
Haematologica ; 106(8): 2215-2223, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32675227

RESUMEN

Myelodysplastic syndromes (MDS) are hematological disorders at high risk of progression to secondary acute myeloid leukemia (sAML). However, the mutational dynamics and clonal evolution underlying disease progression are poorly understood at present. To elucidate the mutational dynamics of pathways and genes occurring during the evolution to sAML, next generation sequencing was performed on 84 serially paired samples of MDS patients who developed sAML (discovery cohort) and 14 paired samples from MDS patients who did not progress to sAML during follow-up (control cohort). Results were validated in an independent series of 388 MDS patients (validation cohort). We used an integrative analysis to identify how mutations, alone or in combination, contribute to leukemic transformation. The study showed that MDS progression to sAML is characterized by greater genomic instability and the presence of several types of mutational dynamics, highlighting increasing (STAG2) and newly-acquired (NRAS and FLT3) mutations. Moreover, we observed cooperation between genes involved in the cohesin and Ras pathways in 15-20% of MDS patients who evolved to sAML, as well as a high proportion of newly acquired or increasing mutations in the chromatin-modifier genes in MDS patients receiving a disease-modifying therapy before their progression to sAML.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Neoplasias Primarias Secundarias , Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Humanos , Leucemia Mieloide Aguda/genética , Mutación , Síndromes Mielodisplásicos/genética , Cohesinas
8.
Nature ; 526(7574): 519-24, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26200345

RESUMEN

Chronic lymphocytic leukaemia (CLL) is a frequent disease in which the genetic alterations determining the clinicobiological behaviour are not fully understood. Here we describe a comprehensive evaluation of the genomic landscape of 452 CLL cases and 54 patients with monoclonal B-lymphocytosis, a precursor disorder. We extend the number of CLL driver alterations, including changes in ZNF292, ZMYM3, ARID1A and PTPN11. We also identify novel recurrent mutations in non-coding regions, including the 3' region of NOTCH1, which cause aberrant splicing events, increase NOTCH1 activity and result in a more aggressive disease. In addition, mutations in an enhancer located on chromosome 9p13 result in reduced expression of the B-cell-specific transcription factor PAX5. The accumulative number of driver alterations (0 to ≥4) discriminated between patients with differences in clinical behaviour. This study provides an integrated portrait of the CLL genomic landscape, identifies new recurrent driver mutations of the disease, and suggests clinical interventions that may improve the management of this neoplasia.


Asunto(s)
Leucemia Linfocítica Crónica de Células B/genética , Mutación/genética , Regiones no Traducidas 3'/genética , Empalme Alternativo/genética , Linfocitos B/metabolismo , Proteínas Portadoras/genética , Cromosomas Humanos Par 9/genética , Análisis Mutacional de ADN , ADN de Neoplasias/genética , Proteínas de Unión al ADN , Elementos de Facilitación Genéticos/genética , Genómica , Humanos , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Factor de Transcripción PAX5/biosíntesis , Factor de Transcripción PAX5/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Receptor Notch1/genética , Receptor Notch1/metabolismo , Factores de Transcripción/genética
9.
Nat Methods ; 14(8): 782-788, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28714987

RESUMEN

Understanding genetic events that lead to cancer initiation and progression remains one of the biggest challenges in cancer biology. Traditionally, most algorithms for cancer-driver identification look for genes that have more mutations than expected from the average background mutation rate. However, there is now a wide variety of methods that look for nonrandom distribution of mutations within proteins as a signal for the driving role of mutations in cancer. Here we classify and review such subgene-resolution algorithms, compare their findings on four distinct cancer data sets from The Cancer Genome Atlas and discuss how predictions from these algorithms can be interpreted in the emerging paradigms that challenge the simple dichotomy between driver and passenger genes.


Asunto(s)
Algoritmos , Carcinogénesis/genética , Mapeo Cromosómico/métodos , Genes Relacionados con las Neoplasias/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias/genética , Humanos , Sensibilidad y Especificidad
10.
Blood ; 130(6): 789-802, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28619982

RESUMEN

The bone marrow (BM) provides a protective microenvironment to support the survival of leukemic cells and influence their response to therapeutic agents. In acute myeloid leukemia (AML), the high rate of relapse may in part be a result of the inability of current treatment to effectively overcome the protective influence of the BM niche. To better understand the effect of the BM microenvironment on drug responses in AML, we conducted a comprehensive evaluation of 304 inhibitors, including approved and investigational agents, comparing ex vivo responses of primary AML cells in BM stroma-derived and standard culture conditions. In the stroma-based conditions, the AML patient cells exhibited significantly reduced sensitivity to 12% of the tested compounds, including topoisomerase II, B-cell chronic lymphocytic leukemia/lymphoma 2 (BCL2), and many tyrosine kinase inhibitors (TKIs). The loss of TKI sensitivity was most pronounced in patient samples harboring FLT3 or PDGFRB alterations. In contrast, the stroma-derived conditions enhanced sensitivity to Janus kinase (JAK) inhibitors. Increased cell viability and resistance to specific drug classes in the BM stroma-derived conditions was a result of activation of alternative signaling pathways mediated by factors secreted by BM stromal cells and involved a switch from BCL2 to BCLXL-dependent cell survival. Moreover, the JAK1/2 inhibitor ruxolitinib restored sensitivity to the BCL2 inhibitor venetoclax in AML patient cells ex vivo in different model systems and in vivo in an AML xenograft mouse model. These findings highlight the potential of JAK inhibitors to counteract stroma-induced resistance to BCL2 inhibitors in AML.


Asunto(s)
Antineoplásicos/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Janus Quinasa 1/antagonistas & inhibidores , Janus Quinasa 2/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Pirazoles/uso terapéutico , Sulfonamidas/uso terapéutico , Animales , Antineoplásicos/farmacología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Humanos , Janus Quinasa 1/metabolismo , Janus Quinasa 2/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Nitrilos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Pirazoles/farmacología , Pirimidinas , Factores de Transcripción STAT/metabolismo , Transducción de Señal/efectos de los fármacos , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Células del Estroma/patología , Sulfonamidas/farmacología , Células Tumorales Cultivadas
11.
Genome Res ; 24(2): 212-26, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24265505

RESUMEN

Chronic lymphocytic leukemia (CLL) has heterogeneous clinical and biological behavior. Whole-genome and -exome sequencing has contributed to the characterization of the mutational spectrum of the disease, but the underlying transcriptional profile is still poorly understood. We have performed deep RNA sequencing in different subpopulations of normal B-lymphocytes and CLL cells from a cohort of 98 patients, and characterized the CLL transcriptional landscape with unprecedented resolution. We detected thousands of transcriptional elements differentially expressed between the CLL and normal B cells, including protein-coding genes, noncoding RNAs, and pseudogenes. Transposable elements are globally derepressed in CLL cells. In addition, two thousand genes-most of which are not differentially expressed-exhibit CLL-specific splicing patterns. Genes involved in metabolic pathways showed higher expression in CLL, while genes related to spliceosome, proteasome, and ribosome were among the most down-regulated in CLL. Clustering of the CLL samples according to RNA-seq derived gene expression levels unveiled two robust molecular subgroups, C1 and C2. C1/C2 subgroups and the mutational status of the immunoglobulin heavy variable (IGHV) region were the only independent variables in predicting time to treatment in a multivariate analysis with main clinico-biological features. This subdivision was validated in an independent cohort of patients monitored through DNA microarrays. Further analysis shows that B-cell receptor (BCR) activation in the microenvironment of the lymph node may be at the origin of the C1/C2 differences.


Asunto(s)
Linfocitos B , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Leucemia Linfocítica Crónica de Células B/genética , Anciano , Secuencia de Bases , Femenino , Perfilación de la Expresión Génica , Humanos , Región Variable de Inmunoglobulina , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Persona de Mediana Edad , Mutación , Ribosomas/genética , Empalmosomas/genética
13.
Nat Methods ; 10(11): 1081-2, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24037244

RESUMEN

The IntOGen-mutations platform (http://www.intogen.org/mutations/) summarizes somatic mutations, genes and pathways involved in tumorigenesis. It identifies and visualizes cancer drivers, analyzing 4,623 exomes from 13 cancer sites. It provides support to cancer researchers, aids the identification of drivers across tumor cohorts and helps rank mutations for better clinical decision-making.


Asunto(s)
Mutación , Neoplasias/genética , Exoma , Humanos , Neoplasias/clasificación , Neoplasias/patología
14.
Bioinformatics ; 30(17): i549-55, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25161246

RESUMEN

MOTIVATION: Several computational methods have been developed to identify cancer drivers genes-genes responsible for cancer development upon specific alterations. These alterations can cause the loss of function (LoF) of the gene product, for instance, in tumor suppressors, or increase or change its activity or function, if it is an oncogene. Distinguishing between these two classes is important to understand tumorigenesis in patients and has implications for therapy decision making. Here, we assess the capacity of multiple gene features related to the pattern of genomic alterations across tumors to distinguish between activating and LoF cancer genes, and we present an automated approach to aid the classification of novel cancer drivers according to their role. RESULT: OncodriveROLE is a machine learning-based approach that classifies driver genes according to their role, using several properties related to the pattern of alterations across tumors. The method shows an accuracy of 0.93 and Matthew's correlation coefficient of 0.84 classifying genes in the Cancer Gene Census. The OncodriveROLE classifier, its results when applied to two lists of predicted cancer drivers and TCGA-derived mutation and copy number features used by the classifier are available at http://bg.upf.edu/oncodrive-role. AVAILABILITY AND IMPLEMENTATION: The R implementation of the OncodriveROLE classifier is available at http://bg.upf.edu/oncodrive-role. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Inteligencia Artificial , Genes Supresores de Tumor , Oncogenes , Algoritmos , Genómica/métodos , Humanos , Mutación , Neoplasias/genética , Programas Informáticos
15.
Bioinformatics ; 30(17): i617-23, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25161255

RESUMEN

MOTIVATION: Studying combinatorial patterns in cancer genomic datasets has recently emerged as a tool for identifying novel cancer driver networks. Approaches have been devised to quantify, for example, the tendency of a set of genes to be mutated in a 'mutually exclusive' manner. The significance of the proposed metrics is usually evaluated by computing P-values under appropriate null models. To this end, a Monte Carlo method (the switching-algorithm) is used to sample simulated datasets under a null model that preserves patient- and gene-wise mutation rates. In this method, a genomic dataset is represented as a bipartite network, to which Markov chain updates (switching-steps) are applied. These steps modify the network topology, and a minimal number of them must be executed to draw simulated datasets independently under the null model. This number has previously been deducted empirically to be a linear function of the total number of variants, making this process computationally expensive. RESULTS: We present a novel approximate lower bound for the number of switching-steps, derived analytically. Additionally, we have developed the R package BiRewire, including new efficient implementations of the switching-algorithm. We illustrate the performances of BiRewire by applying it to large real cancer genomics datasets. We report vast reductions in time requirement, with respect to existing implementations/bounds and equivalent P-value computations. Thus, we propose BiRewire to study statistical properties in genomic datasets, and other data that can be modeled as bipartite networks. AVAILABILITY AND IMPLEMENTATION: BiRewire is available on BioConductor at http://www.bioconductor.org/packages/2.13/bioc/html/BiRewire.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genómica/métodos , Algoritmos , Humanos , Cadenas de Markov , Método de Montecarlo , Neoplasias/genética , Distribución Aleatoria , Programas Informáticos
16.
Bioinformatics ; 29(18): 2238-44, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23884480

RESUMEN

MOTIVATION: Gain-of-function mutations often cluster in specific protein regions, a signal that those mutations provide an adaptive advantage to cancer cells and consequently are positively selected during clonal evolution of tumours. We sought to determine the overall extent of this feature in cancer and the possibility to use this feature to identify drivers. RESULTS: We have developed OncodriveCLUST, a method to identify genes with a significant bias towards mutation clustering within the protein sequence. This method constructs the background model by assessing coding-silent mutations, which are assumed not to be under positive selection and thus may reflect the baseline tendency of somatic mutations to be clustered. OncodriveCLUST analysis of the Catalogue of Somatic Mutations in Cancer retrieved a list of genes enriched by the Cancer Gene Census, prioritizing those with dominant phenotypes but also highlighting some recessive cancer genes, which showed wider but still delimited mutation clusters. Assessment of datasets from The Cancer Genome Atlas demonstrated that OncodriveCLUST selected cancer genes that were nevertheless missed by methods based on frequency and functional impact criteria. This stressed the benefit of combining approaches based on complementary principles to identify driver mutations. We propose OncodriveCLUST as an effective tool for that purpose. AVAILABILITY: OncodriveCLUST has been implemented as a Python script and is freely available from http://bg.upf.edu/oncodriveclust CONTACT: nuria.lopez@upf.edu or abel.gonzalez@upf.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genes Relacionados con las Neoplasias , Mutación , Proteínas de Neoplasias/genética , Análisis de Secuencia de Proteína/métodos , Análisis por Conglomerados , Genómica , Humanos , Programas Informáticos
17.
Cancer Discov ; 14(7): 1147-1153, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38870393

RESUMEN

Cancer Core Europe brings together the expertise, resources, and interests of seven leading cancer institutes committed to leveraging collective innovation and collaboration in precision oncology. Through targeted efforts addressing key medical challenges in cancer and partnerships with multiple stakeholders, the consortium seeks to advance cancer research and enhance equitable patient care.


Asunto(s)
Oncología Médica , Neoplasias , Humanos , Europa (Continente) , Oncología Médica/organización & administración , Oncología Médica/métodos , Neoplasias/terapia , Investigación Biomédica/organización & administración , Medicina de Precisión/métodos
18.
Nat Cancer ; 3(2): 251-261, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35221333

RESUMEN

There is a growing need for systems that efficiently support the work of medical teams at the precision-oncology point of care. Here, we present the implementation of the Molecular Tumor Board Portal (MTBP), an academic clinical decision support system developed under the umbrella of Cancer Core Europe that creates a unified legal, scientific and technological platform to share and harness next-generation sequencing data. Automating the interpretation and reporting of sequencing results decrease the need for time-consuming manual procedures that are prone to errors. The adoption of an expert-agreed process to systematically link tumor molecular profiles with clinical actions promotes consistent decision-making and structured data capture across the connected centers. The use of information-rich patient reports with interactive content facilitates collaborative discussion of complex cases during virtual molecular tumor board meetings. Overall, streamlined digital systems like the MTBP are crucial to better address the challenges brought by precision oncology and accelerate the use of emerging biomarkers.


Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Neoplasias , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Oncología Médica/métodos , Neoplasias/diagnóstico , Medicina de Precisión/métodos
19.
J Cardiovasc Electrophysiol ; 22(10): 1129-34, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21635609

RESUMEN

INTRODUCTION: Echocardiographic optimization of the VV interval may improve CRT response, but it is time-consuming and not routinely performed. The aim of this study was to compare the response to cardiac resynchronization therapy (CRT) when the interventricular pacing (VV) interval was optimized by tissue Doppler imaging (TDI) to CRT response when it was optimized following QRS width criteria. METHODS AND RESULTS: The study included 156 consecutive CRT patients with severe heart failure and left bundle-branch block configuration. Atrioventricular interval was selected according to a pulsed Doppler assessment, and VV optimization was randomly assigned to echocardiography (ECHO group, n = 78) or electrocardiography (ECG group, n = 78). Optimal VV was defined for the ECHO group as producing the best LV intraventricular synchrony according to TDI displacement curves and for the ECG group as resulting in the narrowest QRS measured from the earliest deflection. At 6-month follow-up, percentage of echocardiographic responders (defined as neither death nor heart transplantation and a LV end-systolic volume reduction >10%) was higher in the ECG optimized group (50.0% vs 67.9%; P = 0.023), whereas clinical response (defined as neither death nor heart transplantation and >10% improvement in the 6-minute walking test) was similar in both groups (71.8% vs 73.1%; P = 0.858). CONCLUSIONS: VV optimization based on QRS width obtained a higher percentage of responders in terms of LV reverse remodeling compared to the TDI method.


Asunto(s)
Bloqueo de Rama/terapia , Terapia de Resincronización Cardíaca , Ecocardiografía Doppler de Pulso , Electrocardiografía , Insuficiencia Cardíaca/terapia , Bloqueo de Rama/diagnóstico por imagen , Bloqueo de Rama/fisiopatología , Distribución de Chi-Cuadrado , Prueba de Esfuerzo , Tolerancia al Ejercicio , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/fisiopatología , Humanos , Modelos Logísticos , Valor Predictivo de las Pruebas , Estudios Prospectivos , Recuperación de la Función , España , Factores de Tiempo , Resultado del Tratamiento , Función Ventricular Izquierda , Remodelación Ventricular , Caminata
20.
Pacing Clin Electrophysiol ; 34(8): 984-90, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21438894

RESUMEN

BACKGROUND: Best practice for cardiac resynchronization therapy (CRT) device optimization is not established. This study compared Tissue Doppler Imaging (TDI) to study left ventricular (LV) synchrony and left ventricular outflow tract velocity-time integral (LVOT VTI) to assess hemodynamic performance. METHODS: LVOT VTI and LV synchrony were tested in 50 patients at three interventricular (VV) delays (LV preactivation at -30 ms, simultaneous biventricular pacing, and right ventricular preactivation at +30 ms), selecting the highest VTI and the greatest degree of superposition of the displacement curves, respectively, as the optimum VV delay. RESULTS: In 39 patients (81%), both techniques agreed (Kappa = 0.65, p < 0.0001) on the optimum VV delay. LV preactivation (VV - 30) was the interval most frequently chosen. CONCLUSIONS: Both TDI and LVOT VTI are useful CRT programming methods for VV optimization. The best hemodynamic response correlates with the best synchrony. In most patients, the optimum VV interval is LV preactivation.


Asunto(s)
Terapia de Resincronización Cardíaca/métodos , Cardiomiopatía Dilatada/terapia , Ecocardiografía Doppler de Pulso/métodos , Hemodinámica/fisiología , Isquemia Miocárdica/terapia , Anciano , Anciano de 80 o más Años , Cardiomiopatía Dilatada/diagnóstico por imagen , Cardiomiopatía Dilatada/fisiopatología , Ecocardiografía Doppler de Pulso/instrumentación , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Isquemia Miocárdica/diagnóstico por imagen , Isquemia Miocárdica/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA