Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Clin Microbiol ; 58(8)2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32393482

RESUMEN

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a severe international shortage of the nasopharyngeal swabs that are required for collection of optimal specimens, creating a critical bottleneck blocking clinical laboratories' ability to perform high-sensitivity virological testing for SARS-CoV-2. To address this crisis, we designed and executed an innovative, cooperative, rapid-response translational-research program that brought together health care workers, manufacturers, and scientists to emergently develop and clinically validate new swabs for immediate mass production by 3D printing. We performed a multistep preclinical evaluation of 160 swab designs and 48 materials from 24 companies, laboratories, and individuals, and we shared results and other feedback via a public data repository (http://github.com/rarnaout/Covidswab/). We validated four prototypes through an institutional review board (IRB)-approved clinical trial that involved 276 outpatient volunteers who presented to our hospital's drive-through testing center with symptoms suspicious for COVID-19. Each participant was swabbed with a reference swab (the control) and a prototype, and SARS-CoV-2 reverse transcriptase PCR (RT-PCR) results were compared. All prototypes displayed excellent concordance with the control (κ = 0.85 to 0.89). Cycle threshold (CT ) values were not significantly different between each prototype and the control, supporting the new swabs' noninferiority (Mann-Whitney U [MWU] test, P > 0.05). Study staff preferred one of the prototypes over the others and preferred the control swab overall. The total time elapsed between identification of the problem and validation of the first prototype was 22 days. Contact information for ordering can be found at http://printedswabs.org Our experience holds lessons for the rapid development, validation, and deployment of new technology for this pandemic and beyond.


Asunto(s)
Betacoronavirus/aislamiento & purificación , Técnicas de Laboratorio Clínico/instrumentación , Infecciones por Coronavirus/diagnóstico , Diseño de Equipo/métodos , Nasofaringe/virología , Neumonía Viral/diagnóstico , Impresión Tridimensional , Manejo de Especímenes/instrumentación , Adulto , Anciano , Anciano de 80 o más Años , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/virología , Femenino , Hospitales , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Manejo de Especímenes/métodos , Investigación Biomédica Traslacional/organización & administración , Adulto Joven
2.
medRxiv ; 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32511491

RESUMEN

The SARS-CoV-2 pandemic has caused a severe international shortage of the nasopharyngeal swabs that are required for collection of optimal specimens, creating a critical bottleneck in the way of high-sensitivity virological testing for COVID-19. To address this crisis, we designed and executed an innovative, radically cooperative, rapid-response translational-research program that brought together healthcare workers, manufacturers, and scientists to emergently develop and clinically validate new swabs for immediate mass production by 3D printing. We performed a rigorous multi-step preclinical evaluation on 160 swab designs and 48 materials from 24 companies, laboratories, and individuals, and shared results and other feedback via a public data repository (http://github.com/rarnaout/Covidswab/). We validated four prototypes through an institutional review board (IRB)-approved clinical trial that involved 276 outpatient volunteers who presented to our hospital's drive-through testing center with symptoms suspicious for COVID-19. Each participant was swabbed with a reference swab (the control) and a prototype, and SARS-CoV-2 reverse-transcriptase polymerase chain reaction (RT-PCR) results were compared. All prototypes displayed excellent concordance with the control (κ=0.85-0.89). Cycle-threshold (Ct) values were not significantly different between each prototype and the control, supporting the new swabs' non-inferiority (Mann-Whitney U [MWU] p>0.05). Study staff preferred one of the prototypes over the others and the control swab overall. The total time elapsed between identification of the problem and validation of the first prototype was 22 days. Contact information for ordering can be found at http://printedswabs.org. Our experience holds lessons for the rapid development, validation, and deployment of new technology for this pandemic and beyond.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA