Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Physiol ; 239(5): e31256, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38591855

RESUMEN

Osteosarcoma (OS) cancer treatments include systemic chemotherapy and surgical resection. In the last years, novel treatment approaches have been proposed, which employ a drug-delivery system to prevent offside effects and improves treatment efficacy. Locally delivering anticancer compounds improves on high local concentrations with more efficient tumour-killing effect, reduced drugs resistance and confined systemic effects. Here, the synthesis of injectable strontium-doped calcium phosphate (SrCPC) scaffold was proposed as drug delivery system to combine bone tissue regeneration and anticancer treatment by controlled release of methotrexate (MTX) and doxorubicin (DOX), coded as SrCPC-MTX and SrCPC-DOX, respectively. The drug-loaded cements were tested in an in vitro model of human OS cell line SAOS-2, engineered OS cell line (SAOS-2-eGFP) and U2-OS. The ability of doped scaffolds to induce OS cell death and apoptosis was assessed analysing cell proliferation and Caspase-3/7 activities, respectively. To determine if OS cells grown on doped-scaffolds change their migratory ability and invasiveness, a wound-healing assay was performed. In addition, the osteogenic potential of SrCPC material was evaluated using human adipose derived-mesenchymal stem cells. Osteogenic markers such as (i) the mineral matrix deposition was analysed by alizarin red staining; (ii) the osteocalcin (OCN) protein expression was investigated by enzyme-linked immunosorbent assay test, and (iii) the osteogenic process was studied by real-time polymerase chain reaction array. The delivery system induced cell-killing cytotoxic effects and apoptosis in OS cell lines up to Day 7. SrCPC demonstrates a good cytocompatibility and it induced upregulation of osteogenic genes involved in the skeletal development pathway, together with OCN protein expression and mineral matrix deposition. The proposed approach, based on the local, sustained release of anticancer drugs from nanostructured biomimetic drug-loaded cements is promising for future therapies aiming to combine bone regeneration and anticancer local therapy.


Asunto(s)
Antineoplásicos , Apoptosis , Neoplasias Óseas , Fosfatos de Calcio , Doxorrubicina , Metotrexato , Osteogénesis , Osteosarcoma , Andamios del Tejido , Humanos , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Fosfatos de Calcio/administración & dosificación , Fosfatos de Calcio/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Osteosarcoma/metabolismo , Estroncio/farmacología , Estroncio/química , Andamios del Tejido/química , Sistemas de Liberación de Medicamentos , Metotrexato/administración & dosificación , Metotrexato/farmacología
2.
Langmuir ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056438

RESUMEN

Nanocrystalline apatites have been intensively studied for decades, not only for their well-known mimesis of bone apatite but also for applicative purposes, whether as biomaterials for skeletal repair or more recently for a variety of nanomedical applications enabled by their peculiar surface characteristics. Particularly, ion-doped apatites are of great interest because the incorporation of foreign ions in the composition of apatite (nano)crystals alters the bulk and surface properties, modifying their ability to interact with the external environment. This is clearly seen in the physiology of bone tissue, whose mineral phase, a low crystallinity apatitic phase, can dynamically exchange ions with cells, thus driving bone metabolism. Taking bone mineral as a model, the present work describes the development of Mg-doped hydroxyapatite nanoparticles, exploiting hydrothermal synthesis to achieve extents of Mg2+ doping hardly achieved before and using citrate to develop stable apatite colloidal dispersions. Morphological and physicochemical analyses, associated with in-depth investigation of ions populating the apatitic lattice and the nonapatitic surface layer, concurred to demonstrate the cooperative presence of Mg2+ and citrate ions, affecting the dynamic ion retention/release mechanisms. Achieving high Mg2+ doping rates and understanding how Mg doping translates into surface activation of apatite-based nanoparticles is expected to foster the design of novel smart and tunable devices, to adsorb and release ionic species and cargo molecules, with potential innovations in the biomedical field or even beyond, as in catalysis or for environmental remediation.

3.
Nanomedicine ; 55: 102714, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38738528

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with poor survival rates. Here, we evaluated iron-doped hydroxyapatite (FeHA) as a potential nanomedicine-based approach to combat PDAC. FeHA, in combination with a sublethal dose of the glutathione peroxidase 4 (GPX4) inhibitor RSL3, was found to trigger ferroptosis in KRAS mutant PANC-1 cells, but not in BxPC3 cells, while sparing normal human cells (fibroblasts and peripheral blood mononuclear cells). These findings were recapitulated in 3D spheroids generated using PDAC cells harboring wild-type versus mutant KRAS. Moreover, ferroptosis induction by FeHA plus RSL3 was reversed by the knockdown of STEAP3, a metalloreductase responsible for converting Fe3+ to Fe2+. Taken together, our data show that FeHA is capable of triggering cancer cell death in a KRAS-selective, STEAP3-dependent manner in PDAC cells.


Asunto(s)
Carcinoma Ductal Pancreático , Ferroptosis , Hierro , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Hierro/química , Hierro/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Ferroptosis/efectos de los fármacos , Línea Celular Tumoral , Nanopartículas/química , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
4.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474056

RESUMEN

This review focuses on the latest advancements in magnetic hydroxyapatite (mHA) nanoparticles and their potential applications in nanomedicine and regenerative medicine. mHA nanoparticles have gained significant interest over the last few years for their great potential, offering advanced multi-therapeutic strategies because of their biocompatibility, bioactivity, and unique physicochemical features, enabling on-demand activation and control. The most relevant synthetic methods to obtain magnetic apatite-based materials, either in the form of iron-doped HA nanoparticles showing intrinsic magnetic properties or composite/hybrid compounds between HA and superparamagnetic metal oxide nanoparticles, are described as highlighting structure-property correlations. Following this, this review discusses the application of various magnetic hydroxyapatite nanomaterials in bone regeneration and nanomedicine. Finally, novel perspectives are investigated with respect to the ability of mHA nanoparticles to improve nanocarriers with homogeneous structures to promote multifunctional biological applications, such as cell stimulation and instruction, antimicrobial activity, and drug release with on-demand triggering.


Asunto(s)
Nanomedicina , Nanopartículas , Nanomedicina/métodos , Durapatita/química , Medicina Regenerativa , Nanopartículas/química , Fenómenos Magnéticos
5.
Mar Drugs ; 21(4)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37103351

RESUMEN

The degeneration of osteochondral tissue represents one of the major causes of disability in modern society and it is expected to fuel the demand for new solutions to repair and regenerate the damaged articular joints. In particular, osteoarthritis (OA) is the most common complication in articular diseases and a leading cause of chronic disability affecting a steady increasing number of people. The regeneration of osteochondral (OC) defects is one of the most challenging tasks in orthopedics since this anatomical region is composed of different tissues, characterized by antithetic features and functionalities, in tight connection to work together as a joint. The altered structural and mechanical joint environment impairs the natural tissue metabolism, thus making OC regeneration even more challenging. In this scenario, marine-derived ingredients elicit ever-increased interest for biomedical applications as a result of their outstanding mechanical and multiple biologic properties. The review highlights the possibility to exploit such unique features using a combination of bio-inspired synthesis process and 3D manufacturing technologies, relevant to generate compositionally and structurally graded hybrid constructs reproducing the smart architecture and biomechanical functions of natural OC regions.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Andamios del Tejido/química , Ingeniería de Tejidos
6.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614190

RESUMEN

The reconstruction of large segmental defects still represents a critical issue in the orthopedic field. The use of functionalized scaffolds able to create a magnetic environment is a fascinating option to guide the onset of regenerative processes. In the present study, a porous hydroxyapatite scaffold, incorporating superparamagnetic Fe3O4 nanoparticles (MNPs), was implanted in a critical bone defect realized in sheep metatarsus. Superparamagnetic nanoparticles functionalized with hyperbranched poly(epsilon-Lysine) peptides and physically complexed with vascular endothelial growth factor (VEGF) where injected in situ to penetrate the magnetic scaffold. The scaffold was fixed with cylindrical permanent NdFeB magnets implanted proximally, and the magnetic forces generated by the magnets enabled the capture of the injected nanoparticles forming a VEGF gradient in its porosity. After 16 weeks, histomorphometric measurements were performed to quantify bone growth and bone-to-implant contact, while the mechanical properties of regenerated bone via an atomic force microscopy (AFM) analysis were investigated. The results showed increased bone regeneration at the magnetized interface; this regeneration was higher in the VEGF-MNP-treated group, while the nanomechanical behavior of the tissue was similar to the pattern of the magnetic field distribution. This new approach provides insights into the ability of magnetic technologies to stimulate bone formation, improving bone/scaffold interaction.


Asunto(s)
Andamios del Tejido , Factor A de Crecimiento Endotelial Vascular , Ovinos , Animales , Andamios del Tejido/química , Regeneración Ósea , Durapatita/química , Osteogénesis , Porosidad
7.
Aging Clin Exp Res ; 33(4): 805-821, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31595428

RESUMEN

The aging of the world population is increasingly claimed as an alarming situation, since an ever-raising number of persons in advanced age but still physically active is expected to suffer from invalidating and degenerative diseases. The impairment of the endogenous healing potential provoked by the aging requires the development of more effective and personalized therapies, based on new biomaterials and devices able to direct the cell fate to stimulate and sustain the regrowth of damaged or diseased tissues. To obtain satisfactory results, also in cases where the cell senescence, typical of the elderly, makes the regeneration process harder and longer, the new solutions have to possess excellent ability to mimic the physiological extracellular environment and thus exert biomimetic stimuli on stem cells. To this purpose, the "biomimetic concept" is today recognized as elective to fabricate bioactive and bioresorbable devices such as hybrid osteochondral scaffolds and bioactive bone cements closely resembling the natural hard tissues and with enhanced regenerative ability. The review will illustrate some recent results related to these new biomimetic materials developed for application in different districts of the musculoskeletal system, namely bony, osteochondral and periodontal regions, and the spine. Further, it will be shown how new bioactive and superparamagnetic calcium phosphate nanoparticles can give enhanced results in cardiac regeneration and cancer therapy. Since tissue regeneration will be a major demand in the incoming decades, the high potential of biomimetic materials and devices is promising to significantly increase the healing rate and improve the clinical outcomes even in aged patients.


Asunto(s)
Materiales Biomiméticos , Andamios del Tejido , Anciano , Humanos , Ingeniería de Tejidos
8.
J Mater Sci Mater Med ; 32(1): 3, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33471246

RESUMEN

Biomaterial science increasingly seeks more biomimetic scaffolds that functionally augment the native bone tissue. In this paper, a new concept of a structural scaffold design is presented where the physiological multi-scale architecture is fully incorporated in a single-scaffold solution. Hydroxyapatite (HA) and ß-tricalcium phosphate (ß-TCP) bioceramic scaffolds with different bioinspired porosity, mimicking the spongy and cortical bone tissue, were studied. In vitro experiments, looking at the mesenchymal stem cells behaviour, were conducted in a perfusion bioreactor that mimics the physiological conditions in terms of interstitial fluid flow and associated induced shear stress. All the biomaterials enhanced cell adhesion and cell viability. Cortical bone scaffolds, with an aligned architecture, induced an overexpression of several late stage genes involved in the process of osteogenic differentiation compared to the spongy bone scaffolds. This study reveals the exciting prospect of bioinspired porous designed ceramic scaffolds that combines both cortical and cancellous bone in a single ceramic bone graft. It is prospected that dual core shell scaffold could significantly modulate osteogenic processes, once implanted in patients, rapidly forming mature bone tissue at the tissue interface, followed by subsequent bone maturation in the inner spongy structure.


Asunto(s)
Materiales Biocompatibles/química , Huesos/metabolismo , Células Madre/citología , Tejido Adiposo , Animales , Reactores Biológicos , Fosfatos de Calcio/química , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Cerámica/química , Durapatita/química , Líquido Extracelular , Humanos , Técnicas In Vitro , Células Madre Mesenquimatosas/citología , Microscopía Electrónica de Rastreo , Osteogénesis , Polímeros/química , Porosidad , Polvos , Andamios del Tejido/química
9.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209351

RESUMEN

In this study, the in vitro biocompatibility and osteoinductive ability of a recently developed biomorphic hydroxylapatite ceramic scaffold (B-HA) derived from transformation of wood structures were analyzed using human adipose stem cells (hASCs). Cell viability and metabolic activity were evaluated in hASCs, parental cells and in recombinant genetically engineered hASC-eGFP cells expressing the green fluorescence protein. B-HA osteoinductivity properties, such as differentially expressed genes (DEG) involved in the skeletal development pathway, osteocalcin (OCN) protein expression and mineral matrix deposition in hASCs, were evaluated. In vitro induction of osteoblastic genes, such as Alkaline phosphatase (ALPL), Bone gamma-carboxyglutamate (gla) protein (BGLAP), SMAD family member 3 (SMAD3), Sp7 transcription factor (SP7) and Transforming growth factor, beta 3 (TGFB3) and Tumor necrosis factor (ligand) superfamily, member 11 (TNFSF11)/Receptor activator of NF-κB (RANK) ligand (RANKL), involved in osteoclast differentiation, was undertaken in cells grown on B-HA. Chondrogenic transcription factor SRY (sex determining region Y)-box 9 (SOX9), tested up-regulated in hASCs grown on the B-HA scaffold. Gene expression enhancement in the skeletal development pathway was detected in hASCs using B-HA compared to sintered hydroxylapatite (S-HA). OCN protein expression and calcium deposition were increased in hASCs grown on B-HA in comparison with the control. This study demonstrates the biocompatibility of the novel biomorphic B-HA scaffold and its potential use in osteogenic differentiation for hASCs. Our data highlight the relevance of B-HA for bone regeneration purposes.


Asunto(s)
Tejido Adiposo/metabolismo , Diferenciación Celular , Durapatita/química , Osteogénesis , Células Madre/metabolismo , Andamios del Tejido/química , Técnicas de Cultivo de Célula , Células Cultivadas , Humanos
10.
Int J Mol Sci ; 22(3)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535576

RESUMEN

In bone tissue engineering, the design of 3D systems capable of recreating composition, architecture and micromechanical environment of the native extracellular matrix (ECM) is still a challenge. While perfusion bioreactors have been proposed as potential tool to apply biomechanical stimuli, its use has been limited to a low number of biomaterials. In this work, we propose the culture of human mesenchymal stem cells (hMSC) in biomimetic mineralized recombinant collagen scaffolds with a perfusion bioreactor to simultaneously provide biochemical and biophysical cues guiding stem cell fate. The scaffolds were fabricated by mineralization of recombinant collagen in the presence of magnesium (RCP.MgAp). The organic matrix was homogeneously mineralized with apatite nanocrystals, similar in composition to those found in bone. X-Ray microtomography images revealed isotropic porous structure with optimum porosity for cell ingrowth. In fact, an optimal cell repopulation through the entire scaffolds was obtained after 1 day of dynamic seeding in the bioreactor. Remarkably, RCP.MgAp scaffolds exhibited higher cell viability and a clear trend of up-regulation of osteogenic genes than control (non-mineralized) scaffolds. Results demonstrate the potential of the combination of biomimetic mineralization of recombinant collagen in presence of magnesium and dynamic culture of hMSC as a promising strategy to closely mimic bone ECM.


Asunto(s)
Biomimética , Reactores Biológicos , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Apatitas/química , Materiales Biocompatibles/química , Células de la Médula Ósea/citología , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Linaje de la Célula , Colágeno/química , Medios de Cultivo , Matriz Extracelular/metabolismo , Humanos , Magnesio/química , Nanopartículas/química , Osteogénesis , Perfusión , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Ingeniería de Tejidos/métodos , Andamios del Tejido , Microtomografía por Rayos X
11.
J Mater Sci Mater Med ; 30(12): 136, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31802234

RESUMEN

Many medical-related scientific discoveries arise from trial-error patterns where the processes involved must be refined and modified continuously before any product could be able to reach the final costumers. One of the elements affecting negatively these processes is the inaccuracy of two-dimension (2D) standard culture systems, carried over in plastic plates or similar, in replicating complex environments and patterns. Consequently, animal tests are required to validate every in vitro finding, at the expenses of more funds and ethical issues. A possible solution relies in the implementation of three-dimension (3D) culture systems as a fitting gear between the 2D tests and in vivo tests, aiming to reduce the negative in vivo outcomes. These 3D structures are depending from the comprehension of the extracellular matrix (ECM) and the ability to replicate it in vitro. In this article a comparison of efficacies between these two culture systems was taken as subject, human mesenchymal stem cells (hMSCs) was utilized and a hybrid scaffold made by a blend of chitosan, gelatin and biomineralized gelatin was used for the 3D culture system.


Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Mesenquimatosas/fisiología , Osteogénesis/fisiología , Andamios del Tejido , Materiales Biocompatibles , Diferenciación Celular , Humanos , Ensayo de Materiales
12.
J Craniofac Surg ; 30(4): 1089-1094, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30839465

RESUMEN

PURPOSE: This prospective study is aimed at investigating clinically and histologically the effectiveness of a biomimetic magnesium-enriched-hydroxyapatite (MgHA)/collagen-based bone substitute for alveolar socket preservation. MATERIALS: Patients scheduled for posterior single tooth extraction were included. The alveolar socket was filled either with MgHA or deproteinized bovine bone matrix (DBBM). In DBBM group, a punch of mucosa was taken from the palate and used to cover the graft. Vertical and horizontal dimensional changes of the alveolar process were assessed clinically with a periodontal probe and with 3-dimensional (3D) analysis of a cast model. Postoperative quality of life was assessed through a questionnaire. After 6 months of healing, an alveolar tissue biopsy was taken for histologic and histomorphometric analysis of the newly formed tissue. After checking normality of the distributions, parametric or nonparametric tests were used for statistical comparisons. RESULTS: Twenty patients (12 males, 8 females, mean age 42.8 ±â€Š5.1 years, range 33-50 years) were treated. After 6 months, vertical and horizontal alveolar ridge resorption was similar in the 2 groups. The 3D analysis of the models showed a significantly higher resorption at the buccal side than at the palatal/lingual side. Histomorphometric analysis showed similar new bone formation for MgHA group (23.07 ±â€Š10.3%) and DBBM (22.77 ±â€Š6.95%), and a significantly higher residual material% for DBBM (15.77 ±â€Š1.95%) than MgHA (5.01 ±â€Š1.04%). Significantly less pain was reported in the first 3 days after surgery in patients of the MgHA group. CONCLUSION: The MgHA was as safe and effective as DBBM and may represent a feasible bone substitute for alveolar socket preservation.


Asunto(s)
Proceso Alveolar/cirugía , Sustitutos de Huesos/uso terapéutico , Colágeno/uso terapéutico , Durapatita/uso terapéutico , Xenoinjertos/trasplante , Procedimientos Quirúrgicos Orales , Adulto , Animales , Materiales Biomiméticos/uso terapéutico , Bovinos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Procedimientos Quirúrgicos Orales/efectos adversos , Procedimientos Quirúrgicos Orales/métodos , Procedimientos Quirúrgicos Orales/estadística & datos numéricos , Estudios Prospectivos
13.
Int J Mol Sci ; 20(9)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067635

RESUMEN

Several biomaterials have recently been developed to address the challenge of osteochondral regeneration. Among these, chitosan holds promises both for cartilage and bone healing. The aim of this in vivo study was to evaluate the regeneration potential of a novel hybrid magnesium-doped hydroxyapatite (MgHA), collagen, chitosan-based scaffold, which was tested in a sheep model to ascertain its osteochondral regenerative potential, and in a rabbit model to further evaluate its ability to regenerate bone tissue. Macroscopic, microtomography, histology, histomorphometry, and immunohistochemical analysis were performed. In the sheep model, all analyses did not show significant differences compared to untreated defects (p > 0.05), with no evidence of cartilage and subchondral bone regeneration. In the rabbit model, this bone scaffold provided less ability to enhance tissue healing compared with a commercial bone scaffold. Moreover, persistence of scaffold material and absence of integration with connective tissue around the scaffolds were observed. These results raised some concerns about the osteochondral use of this chitosan composite scaffold, especially for the bone layer. Further studies are needed to explore the best formulation of chitosan-reinforced composites for osteochondral treatment.


Asunto(s)
Regeneración Ósea , Quitosano/análogos & derivados , Andamios del Tejido/efectos adversos , Animales , Cartílago/efectos de los fármacos , Colágeno/química , Durapatita/química , Masculino , Conejos , Ovinos , Andamios del Tejido/química
14.
Stem Cells ; 35(5): 1365-1377, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28100034

RESUMEN

Autosomal recessive osteopetrosis (ARO) is a severe bone disease characterized by increased bone density due to impairment in osteoclast resorptive function or differentiation. Hematopoietic stem cell transplantation is the only available treatment; however, this therapy is not effective in RANKL-dependent ARO, since in bone this gene is mainly expressed by cells of mesenchymal origin. Of note, whether lack of RANKL production might cause a defect also in the bone marrow (BM) stromal compartment, possibly contributing to the pathology, is unknown. To verify this possibility, we generated and characterized BM mesenchymal stromal cell (BM-MSC) lines from wild type and Rankl-/- mice, and found that Rankl-/- BM-MSCs displayed reduced clonogenicity and osteogenic capacity. The differentiation defect was significantly improved by lentiviral transduction of Rankl-/- BM-MSCs with a vector stably expressing human soluble RANKL (hsRANKL). Expression of Rankl receptor, Rank, on the cytoplasmic membrane of BM-MSCs pointed to the existence of an autocrine loop possibly activated by the secreted cytokine. Based on the close resemblance of RANKL-defective osteopetrosis in humans and mice, we expect that our results are also relevant for RANKL-dependent ARO patients. Data obtained in vitro after transduction with a lentiviral vector expressing hsRANKL would suggest that restoration of RANKL production might not only rescue the defective osteoclastogenesis of this ARO form, but also improve a less obvious defect in the osteoblast lineage, thus possibly achieving higher benefit for the patients, when the approach is translated to clinics. Stem Cells 2017;35:1365-1377.


Asunto(s)
Diferenciación Celular , Vectores Genéticos/metabolismo , Lentivirus/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Ligando RANK/deficiencia , Animales , Biomarcadores/metabolismo , Células Clonales , Inmunofenotipificación , Ratones Endogámicos C57BL , Ligando RANK/metabolismo , Transducción de Señal , Transducción Genética
15.
Langmuir ; 34(40): 12036-12048, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30204449

RESUMEN

Nanocrystalline apatites mimicking bone mineral represent a versatile platform for biomedical applications thanks to their similarity to bone apatite and the possibility to (multi)functionalize them so as to provide "à la carte" properties. One relevant domain is in particular oncology, where drug-loaded biomaterials and engineered nanosystems may be used for diagnosis, therapy, or both. In a previous contribution, we investigated the adsorption of doxorubicin onto two nanocrystalline apatite substrates, denoted HA and FeHA (superparamagnetic apatite doped with iron ions), and explored these drug-loaded systems against tumor cells. To widen their applicability in the oncology field, here we examine the interaction between the same two substrates and two other molecules: folic acid (FA), often used as cell targeting agent, and the anticancer drug methotrexate (MTX), an antifolate analogue. In a first stage, we investigated the adsorptive behavior of FA (or MTX) on both substrates, evidencing their specificities. At low concentration, typically under 100 mmol/L, adsorption onto HA was best described using the Sips isotherm model, while the formation of a calcium folate secondary salt was evidenced at high concentration by Raman spectroscopy. Adsorption onto FeHA was instead fitted to the Langmuir model. A larger adsorptive affinity was found for the FeHA substrate compared to HA; accordingly, a faster release was noticed from HA. In vitro tests carried out on human osteosarcoma cell line (SAOS-2) allowed us to evaluate the potential of these compounds in oncology. Finally, in vivo (subcutaneous) implantations in the mouse were run to ascertain the biocompatibility of the two substrates. These results should allow a better understanding of the interactions between FA/MTX and bioinspired nanocrystalline apatites in view of applications in the field of cancer.


Asunto(s)
Antineoplásicos/farmacología , Antagonistas del Ácido Fólico/farmacología , Ácido Fólico/química , Hidroxiapatitas/química , Metotrexato/farmacología , Adsorción , Animales , Antineoplásicos/química , Materiales Biocompatibles/química , Materiales Biocompatibles/toxicidad , Línea Celular Tumoral , Liberación de Fármacos , Antagonistas del Ácido Fólico/química , Humanos , Hidroxiapatitas/toxicidad , Metotrexato/química , Ratones Endogámicos C57BL , Nanopartículas/química , Nanopartículas/toxicidad
16.
Drug Dev Ind Pharm ; 44(8): 1223-1238, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29528248

RESUMEN

Synthetic calcium phosphates (CaPs) are the most widely accepted bioceramics for the repair and reconstruction of bone tissue defects. The recent advancements in materials science have prompted a rapid progress in the preparation of CaPs with nanometric dimensions, tailored surface characteristics, and colloidal stability opening new perspectives in their use for applications not strictly related to bone. In particular, the employment of CaPs nanoparticles as carriers of therapeutic and imaging agents has recently raised great interest in nanomedicine. CaPs nanoparticles, as well as other kinds of nanoparticles, can be engineered to specifically target the site of the disease (cells or organs), thus minimizing their dispersion in the body and undesired organism-nanoparticles interactions. The most promising and efficient approach to improve their specificity is the 'active targeting', where nanoparticles are conjugated with a targeting moiety able to recognize and bind with high efficacy and selectivity to receptors that are highly expressed only in the therapeutic site. The aim of this review is to give an overview on advanced targeted nanomedicine with a focus on the most recent reports on CaP nanoparticles-based systems, specifically designed for the active targeting. The distinctive characteristics of CaP nanoparticles with respect to the other kinds of nanomaterials used in nanomedicine are also discussed.


Asunto(s)
Fosfatos de Calcio/química , Ingeniería Química/métodos , Portadores de Fármacos/química , Nanomedicina/métodos , Nanopartículas/química , Humanos
17.
Int J Mol Sci ; 19(11)2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30445700

RESUMEN

The regeneration of dental tissues is a still an unmet clinical need; in fact, no therapies have been completely successful in regenerating dental tissue complexes such as periodontium, which is also due to the lack of scaffolds that are able to guide and direct cell fate towards the reconstruction of different mineralized and non-mineralized dental tissues. In this respect, the present work develops a novel multifunctional hybrid scaffold recapitulating the different features of alveolar bone, periodontal ligament, and cementum by integrating the biomineralization process, and tape casting and electrospinning techniques. The scaffold is endowed with a superparamagnetic ability, thanks to the use of a biocompatible, bioactive superparamagnetic apatite phase, as a mineral component that is able to promote osteogenesis and to be activated by remote magnetic signals. The periodontal scaffold was obtained by engineering three different layers, recapitulating the relevant compositional and microstructural features of the target tissues, into a monolithic multifunctional graded device. Physico-chemical, morphological, and ultrastructural analyses, in association with preliminary in vitro investigations carried out with mesenchymal stem cells, confirm that the final scaffold exhibits a good mimicry of the periodontal tissue complex, with excellent cytocompatibility and cell viability, making it very promising for regenerative applications in dentistry.


Asunto(s)
Nanopartículas de Magnetita/química , Periodoncio/fisiología , Regeneración/fisiología , Andamios del Tejido/química , Proceso Alveolar/fisiología , Animales , Muerte Celular , Línea Celular , Supervivencia Celular , Colágeno/química , Cemento Dental/fisiología , Caballos , Ratones Endogámicos BALB C , Ligamento Periodontal/fisiología , Difracción de Rayos X
18.
Inorg Chem ; 56(8): 4447-4459, 2017 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-28379709

RESUMEN

Doping of biocompatible nanomaterials with magnetic phases is currently one of the most promising strategies for the development of advanced magnetic biomaterials. However, especially in the case of iron-doped magnetic hydroxyapatites, it is not clear if the magnetic features come merely from the magnetic phases/ions used as dopants or from complex mechanisms involving interactions at the nanoscale. Here, we report an extensive chemical-physical and magnetic investigation of three hydroxyapatite nanocrystals doped with different iron species and containing small or no amounts of maghemite as a secondary phase. The association of several investigation techniques such as X-ray absorption spectroscopy, Mössbauer, magnetometry, and TEM allowed us to determine that the unusual magnetic properties of Fe2+/3+-doped hydroxyapatites (FeHA) occur by a synergy of two different phenomena: i.e., (i) interacting superparamagnetism due to the interplay between iron-doped apatite and iron oxide nanoparticles as well as to the occurrence of dipolar interactions and (ii) interacting paramagnetism due to Fe3+ ions present in the superficial hydrated layer of the apatite nanophase and, to a lesser extent, paramagnetism due to isolated Fe3+ ions in the apatite lattice. We also show that a major player in the activation of the above phenomena is the oxidation of Fe2+ into Fe3+, as induced by the synthesis process, and their consequent specific positioning in the FeHA structure.


Asunto(s)
Hidroxiapatitas/química , Hierro/química , Fenómenos Magnéticos , Nanopartículas/química , Tamaño de la Partícula , Propiedades de Superficie
19.
J Struct Biol ; 196(2): 138-146, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27374321

RESUMEN

Understanding the mineralization mechanism of synthetic protein has recently aroused great interest especially in the development of advanced materials for bone regeneration. Herein, we propose the synthesis of composite materials through the mineralization of a recombinant collagen type I derived protein (RCP) enriched with RGD sequences in the presence of magnesium ions (Mg) to closer mimic bone composition. The role of both RCP and Mg ions in controlling the precipitation of the mineral phase is in depth evaluated. TEM and X-ray powder diffraction reveal the crystallization of nanocrystalline apatite (Ap) in all the evaluated conditions. However, Raman spectra point out also the precipitation of amorphous calcium phosphate (ACP). This amorphous phase is more evident when RCP and Mg are at work, indicating the synergistic role of both in stabilizing the amorphous precursor. In addition, hybrid matrices are prepared to tentatively address their effectiveness as scaffolds for bone tissue engineering. SEM and AFM imaging show an homogeneous mineral distribution on the RCP matrix mineralized in presence of Mg, which provides a surface roughness similar to that found in bone. Preliminary in vitro tests with pre-osteoblast cell line show good cell-material interaction on the matrices prepared in the presence of Mg. To the best of our knowledge this work represents the first attempt to mineralize recombinant collagen type I derived protein proving the simultaneous effect of the organic phase (RCP) and Mg on ACP stabilization. This study opens the possibility to engineer, through biomineralization process, advanced hybrid matrices for bone regeneration.


Asunto(s)
Regeneración Ósea , Calcificación Fisiológica , Ingeniería de Tejidos/métodos , Animales , Apatitas , Biomimética/métodos , Línea Celular , Colágeno Tipo I/metabolismo , Magnesio , Ratones , Minerales , Ingeniería de Proteínas
20.
Small ; 12(11): 1479-88, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26797709

RESUMEN

Scaffolds functionalized with delivery systems for the release of growth factors is a robust strategy to enhance tissue regeneration. However, after implantation, macrophages infiltrate the scaffold, eventually initiating the degradation and clearance of the delivery systems. Herein, it is hypothesized that fully embedding the poly(d,l-lactide-co-glycolide acid) microspheres (MS) in a highly structured collagen-based scaffold (concealing) can prevent their detection, preserving the integrity of the payload. Confocal laser microscopy reveals that non-embedded MS are easily internalized; when concealed, J774 and bone marrow-derived macrophages (BMDM) cannot detect them. This is further demonstrated by flow cytometry, as a tenfold decrease is found in the number of MS engulfed by the cells, suggesting that collagen can cloak the MS. This correlates with the amount of nitric oxide and tumor necrosis factor-α produced by J774 and BMDM in response to the concealed MS, comparable to that found for non-functionalized collagen scaffolds. Finally, the release kinetics of a reporter protein is preserved in the presence of macrophages, only when MS are concealed. The data provide detailed strategies for fabricating three dimensional (3D) biomimetic scaffolds able to conceal delivery systems and preserve the therapeutic molecules for release.


Asunto(s)
Materiales Biomiméticos/química , Ácido Láctico/química , Macrófagos/metabolismo , Microesferas , Ácido Poliglicólico/química , Andamios del Tejido/química , Adsorción , Animales , Endocitosis , Genes Reporteros , Mediadores de Inflamación/metabolismo , Cinética , Macrófagos/ultraestructura , Ratones , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA