Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 200: 105816, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582574

RESUMEN

The melon fly Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae) is an agricultural quarantine pest threatening fruit and vegetable production. Heat shock cognate 70 (Hsc70), which is a homolog of the heat shock protein 70 (Hsp70), was first discovered in mice testes and plays an important role in spermatogenesis. In this study, we identified and cloned five Hsc70 genes from melon fly, namely ZcHsc70_1/2/3/4/5. Phylogenetic analysis showed that these proteins are closely related to Hsc70s from other Diptera insects. Spatiotemporal expression analysis showed that ZcHsc70_1 and ZcHsc70_2 are highly expressed in Z. cucurbitae testes. Fluorescence in situ hybridization further demonstrated that ZcHsc70_1 and ZcHsc70_2 are expressed in the transformation and maturation regions of testes, respectively. Moreover, RNA interference-based suppression of ZcHsc70_1 or ZcHsc70_2 resulted in a significant decrease of 74.61% and 63.28% in egg hatchability, respectively. Suppression of ZcHsc70_1 expression delayed the transformation of sperm cells to mature sperms. Meanwhile, suppression of ZcHsc70_2 expression decreased both sperm cells and mature sperms by inhibiting the meiosis of spermatocytes. Our findings show that ZcHsc70_1/2 regulates spermatogenesis and further affects the male fertility in the melon fly, showing potential as targets for pest control in sterile insect technique by genetic manipulation of males.


Asunto(s)
Semillas , Tephritidae , Masculino , Animales , Ratones , Filogenia , Hibridación Fluorescente in Situ , Tephritidae/genética , Control de Insectos/métodos , Espermatogénesis/genética , Fertilidad/genética , Respuesta al Choque Térmico
2.
Int J Biol Macromol ; 202: 141-149, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35038465

RESUMEN

The tea aphid, Aphis aurantii (Boyer de Fonscolombe), is a serious pest that can infest many economically important plants. Tea aphids damage plants by directly sucking phloem sap, transmitting viruses, and secreting honeydew to cause sooty mold. At present, tea aphids has become one of the most important pests in tropical and subtropical tea plants. The heat shock protein 70 (Hsp70) is a key protein involved in heat stress tolerance. In this study, we cloned four Hsp70 genes that are highly expressed in tea aphids after heat shock. Bioinformatic analysis of the deduced amino acid sequences showed that these four AaHsp70s had a close genetic relationship to Hsp70 in Hemiptera insects and shared a conserved ATPase domain. After incubation at low (14 °C) or high (36 °C) temperature, the expression of four AaHsp70s was significantly up-regulated compared to the control (25 °C); however, the up-regulation of the AaHsp70s in the low-temperature treatment was far less than that of the high-temperature treatment. The ATPase activity of the four purified recombinant AaHsp70 proteins after high-temperature treatment was significantly increased compared to the control. In addition, these proteins effectively improved the heat tolerance of Escherichia coli in vivo. Our data indicate that AaHsp701, AaHsp702, AaHsp703, AaHsp704 play important roles in response to the high-temperature tolerance in tea aphids.


Asunto(s)
Áfidos , Animales , Áfidos/genética , Frío , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Calor , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA