Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Br J Nutr ; 131(6): 921-934, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-37905695

RESUMEN

This experiment was conducted to investigate whether dietary chenodeoxycholic acid (CDCA) could attenuate high-fat (HF) diet-induced growth retardation, lipid accumulation and bile acid (BA) metabolism disorder in the liver of yellow catfish Pelteobagrus fulvidraco. Yellow catfish (initial weight: 4·40 (sem 0·08) g) were fed four diets: the control (105·8 g/kg lipid), HF diet (HF group, 159·6 g/kg lipid), the control supplemented with 0·9 g/kg CDCA (CDCA group) and HF diet supplemented with 0·9 g/kg CDCA (HF + CDCA group). CDCA supplemented in the HF diet significantly improved growth performance and feed utilisation of yellow catfish (P < 0·05). CDCA alleviated HF-induced increment of hepatic lipid and cholesterol contents by down-regulating the expressions of lipogenesis-related genes and proteins and up-regulating the expressions of lipololysis-related genes and proteins. Compared with the control group, CDCA group significantly reduced cholesterol level (P < 0·05). CDCA significantly inhibited BA biosynthesis and changed BA profile by activating farnesoid X receptor (P < 0·05). The contents of CDCA, taurochenodeoxycholic acid and glycochenodeoxycholic acid were significantly increased with the supplementation of CDCA (P < 0·05). HF-induced elevation of cholic acid content was significantly attenuated by the supplementation of CDCA (P < 0·05). Supplementation of CDCA in the control and HF groups could improve the liver antioxidant capacity. This study proved that CDCA could improve growth retardation, lipid accumulation and BA metabolism disorder induced by HF diet, which provided new insight into understanding the physiological functions of BA in fish.


Asunto(s)
Bagres , Dieta Alta en Grasa , Animales , Dieta Alta en Grasa/efectos adversos , Ácido Quenodesoxicólico/farmacología , Ácido Quenodesoxicólico/metabolismo , Bagres/metabolismo , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Colesterol/metabolismo , Trastornos del Crecimiento
2.
Nicotine Tob Res ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38513068

RESUMEN

INTRODUCTION: Cigarette smoking remains the leading preventable cause of disease and death. Nicotine is the primary reinforcing ingredient in cigarettes sustaining addiction. Cotinine is the major metabolite of nicotine that produces a myriad of neurobehavioral effects. Previous studies showed that cotinine supported self-administration in rats and rats with a history of cotinine self-administration exhibited relapse-like drug-seeking behavior, suggesting that cotinine may also be reinforcing. To date, whether cotinine may contribute to nicotine reinforcement remains unknown. Nicotine metabolism is mainly catalyzed by hepatic CYP2B1/2 enzymes in rats and methoxsalen is a potent CYP2B1/2 inhibitor. METHODS: The study examined nicotine metabolism, self-administration, and locomotor activity. The hypothesis is that methoxsalen inhibits nicotine self-administration and cotinine replacement attenuates the inhibitory effects of methoxsalen in male rats. RESULTS: Methoxsalen decreased plasma cotinine levels following a subcutaneous nicotine injection. Repeated daily methoxsalen treatments reduced the acquisition of nicotine self-administration, leading to fewer nicotine infusions, lower nicotine intake, and lower plasma cotinine levels. However, methoxsalen did not alter the maintenance of nicotine self-administration despite a significant reduction of plasma cotinine levels. Cotinine replacement by mixing cotinine with nicotine for self-administration dose-dependently increased plasma cotinine levels and enhanced the acquisition of self-administration. Neither basal nor nicotine-induced locomotor activity was altered by methoxsalen. CONCLUSIONS: These results indicate that methoxsalen inhibition of cotinine formation impaired the acquisition of nicotine self-administration, and cotinine replacement attenuated the inhibitory effects of methoxsalen on the acquisition of self-administration, suggesting that cotinine may contribute to the initial development of nicotine reinforcement. IMPLICATIONS: Smoking cessation medications targeting nicotine's effects are only moderately effective, making it imperative to better understand the mechanisms of nicotine misuse. Methoxsalen inhibited nicotine metabolism to cotinine and impaired the acquisition of nicotine self-administration. Cotinine replacement restored plasma cotinine and attenuated the methoxsalen inhibition of nicotine self-administration in rats. These results suggest that (1) the inhibition of nicotine metabolism may be a viable strategy in reducing the development of nicotine reinforcement, (2) methoxsalen may be translationally valuable, and (3) cotinine may be a potential pharmacological target for therapeutic development given its important role in the initial development of nicotine reinforcement.

3.
Exp Cell Res ; 429(1): 113647, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37225011

RESUMEN

Immunotherapy using PD-1/PD-L1 inhibitors has been proved to be effective in triple negative breast cancer (TNBC), albeit only in a fraction of patients. Emerging evidences indicate mTOR blockade and metformin may re-orchestrate the immune system in tumors. Herein, in this study we aimed to evaluate the anti-tumor efficacy of PD-1 monoclonal antibody with mTOR inhibitor rapamycin or with the anti-diabetic drug metformin. The status of PD-1/PD-L1 and mTOR pathway was determined through analyzing the TCGA and CCLE data in TNBCs as well as by detection at mRNA and protein level. The inhibition of tumor growth and metastasis by anti-PD-1 combined with rapamycin or with metformin was evaluated in allograft mouse model of TNBC. The effects of combination therapy on the AMPK, mTOR and PD-1/PD-L1 pathways were also evaluated. The combination treatment with PD-1 McAb and rapamycin/metformin had additive effects on suppression of tumor growth and distant metastasis in mice. Compared with the control group and the monotherapy, combined PD-1 McAb with either rapamycin or metformin exhibited more obvious effects on induction of necrosis, CD8+ T lymphocytes infiltrating and inhibition of PD-L1 expression in TNBC homograft. In vitro study showed either rapamycin or metformin not only decreased PD-L1 expression, but increased p-AMPK expression and therefore led to down-regulation of p-S6. In summary, combination of PD-1 antagonist with either rapamycin or metformin led to more infiltrating TILs and decreased PD-L1 resulting in enhanced antitumor immunity and blockade of PD-1/PD-L1 pathway. Our results suggested such combination therapy may be a potential therapeutic strategy for TNBC patients.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Antígeno B7-H1/genética , Sirolimus/farmacología , Neoplasias de la Mama Triple Negativas/genética , Proteínas Quinasas Activadas por AMP , Serina-Treonina Quinasas TOR
4.
Cell Commun Signal ; 21(1): 5, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624473

RESUMEN

BACKGROUND: Phosphorus commonly reduces lipid deposition in the vertebrates. However, the underlying mechanisms involved in the process remain unclear. METHODS: Yellow catfish were given three experimental diets with dietary phosphate levels of 3.22, 6.47 and 7.99 g Pi kg- 1, respectively, for 8 weeks. The contents of triglyceride, non-esterified free fatty acids, adenosine triphosphate, nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide, enzymatic activities, mRNA and protein expression were determined in the intestinal tissues. Hematoxylin and eosin, Oil Red O staining, and transmission electron microscope were performed for intestinal tissues. Primary intestinal epithelial cells were isolated from yellow catfish intestine. Western blot analysis, Immunoprecipitation assays, Immunofluorescence staining, and RNA extraction and quantitative real-time PCR were decided. Luciferase reporter assays and electrophoretic mobility shift assay were used to evaluate the function of Sirt3, PPARα and Lcad promoters. RESULTS: High dietary phosphate intake activated intestinal phosphate absorption and excretion, and reduced lipid deposition through increasing lipolysis in the intestine. Moreover, phosphate incubation increased the mRNA and protein expression of krüppel like factor 4 (klf4), silent mating-type information regulation 2 homolog 3 (sirt3), peroxisome proliferator activated receptor alpha (pparα) and long chain acyl-CoA dehydrogenase (lcad) in the intestinal epithelial cells (IECs), and klf4 knockdown attenuated the phosphate-induced increase of protein levels of Sirt3, Pparα and Lcad. Further investigation found that Klf4 overexpression increased the activity of sirt3 and pparα promoters, which in turn reduced the acetylation and protein level of Lcad. CONCLUSION: Dietary Pi excess induced lipid degradation by the activation of the Klf4-Sirt3/Pparα-Lcad pathway in the intestine and primary IECs. Video Abstract.


Asunto(s)
Sirtuina 3 , Animales , Lípidos , Lipólisis , Oxidación-Reducción , PPAR alfa/metabolismo , ARN Mensajero/metabolismo , Sirtuina 3/genética , Bagres
5.
Environ Sci Technol ; 57(6): 2351-2361, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36728683

RESUMEN

Excessive phosphorus (Pi) contributes to eutrophication in an aquatic environment, which threatens human and fish health. However, the mechanisms by which Pi overload influences aquatic animals remain largely unexplored. In the present study, Pi supplementation increased the Pi content, inhibited lipid accumulation and lipogenesis, and stimulated lipolysis in the liver. Pi supplementation increased the phosphorylation of glycogen synthase kinase-3 ß (GSK3ß) at serine 9 (S9) but inhibited the phosphorylation of GSK3α at tyrosine 279 (Y279), GSK3ß at tyrosine 216 (Y216), and peroxisome proliferator-activated receptor α (PPARα) at serine 84 (S84) and threonine 265 (T265). Pi supplementation also upregulated PPARα protein expression and stimulated its transcriptional activity, thereby inducing lipolysis. Pi suppressed GSK3ß activity and prevented GSK3ß, but not GSK3α, from interacting with PPARα, which in turn alleviated PPARα phosphorylation. GSK3ß-induced phosphorylation of PPARα was dependent on GSK3ß S9 dephosphorylation rather than Y216 phosphorylation. Mechanistically, underphosphorylation of PPARα mediated Pi-induced lipid degradation through transcriptionally activating adipose triglyceride lipase (atgl) and very long-chain-specific acyl-CoA dehydrogenase (acadvl). Collectively, our findings uncovered a new mechanism by which Pi facilitates lipolysis via the GSK3ß-PPARα pathway and highlighted the importance of S84 and T265 phosphorylation in PPARα action.


Asunto(s)
Lipólisis , PPAR alfa , Animales , Humanos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Lípidos , Hígado/metabolismo , Fosforilación , PPAR alfa/metabolismo , Peces
6.
Eur J Appl Physiol ; 123(12): 2699-2710, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37335354

RESUMEN

PURPOSE: To investigate (1) the boosting effects immediately and 4 weeks following 2-week, 6-session repeated-sprint training in hypoxia (RSH2-wk, n = 10) on the ability of team-sport players in performing repeated sprints (RSA) during a team-sport-specific intermittent exercise protocol (RSAIEP) by comparing with normoxic counterpart (CON2-wk, n = 12), and (2) the dose effects of the RSH by comparing the RSA alterations in RSH2-wk with those resulting from a 5-week, 15-session regimen (RSH5-wk, n = 10). METHODS: Repeated-sprint training protocol consisted of 3 sets, 5 × 5-s all-out sprints on non-motorized treadmill interspersed with 25-s passive recovery under the hypoxia of 13.5% and normoxia, respectively. The within- (pre-, post-, 4-week post-intervention) and between- (RSH2-wk, RSH5-wk, CON2-wk) group differences in the performance of four sets of RSA tests held during the RSAIEP on the same treadmill were assessed. RESULTS: In comparison with pre-intervention, RSA variables, particularly the mean velocity, horizontal force, and power output during the RSAIEP enhanced significantly immediate post RSH in RSH2-wk (5.1-13.7%), while trivially in CON2-wk (2.1-6.2%). Nevertheless, the enhanced RSA in RSH2-wk diminished 4 weeks after the RSH (- 3.17-0.37%). For the RSH5-wk, the enhancement of RSA immediately following the 5-week RSH (4.2-16.3%) did not differ from that of RSH2-wk, yet the enhanced RSA was well-maintained 4-week post-RSH (0.12-1.14%). CONCLUSIONS: Two-week and five-week RSH regimens could comparably boost up the effects of repeated-sprint training in normoxia, while dose effect detected on the RSA enhancement was minimal. Nevertheless, superior residual effects of the RSH on RSA appear to be associated with prolonged regimen.


Asunto(s)
Rendimiento Atlético , Acondicionamiento Físico Humano , Carrera , Humanos , Hipoxia , Acondicionamiento Físico Humano/métodos , Ejercicio Físico
7.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36982963

RESUMEN

Left ventricular (LV) dilatation, a prominent risk factor for heart failure (HF), precedes functional deterioration and is used to stratify patients at risk for arrhythmias and cardiac mortality. Aberrant DNA methylation contributes to maladaptive cardiac remodeling and HF progression following pressure overload and ischemic cardiac insults. However, no study has examined cardiac DNA methylation upon exposure to volume overload (VO) despite being relatively common among HF patients. We carried out global methylome analysis of LV harvested at a decompensated HF stage following exposure to VO induced by aortocaval shunt. VO resulted in pathological cardiac remodeling, characterized by massive LV dilatation and contractile dysfunction at 16 weeks after shunt. Although methylated DNA was not markedly altered globally, 25 differentially methylated promoter regions (DMRs) were identified in shunt vs. sham hearts (20 hypermethylated and 5 hypomethylated regions). The validated hypermethylated loci in Junctophilin-2 (Jph2), Signal peptidase complex subunit 3 (Spcs3), Vesicle-associated membrane protein-associated protein B (Vapb), and Inositol polyphosphate multikinase (Ipmk) were associated with the respective downregulated expression and were consistently observed in dilated LV early after shunt at 1 week after shunt, before functional deterioration starts to manifest. These hypermethylated loci were also detected peripherally in the blood of the shunt mice. Altogether, we have identified conserved DMRs that could be novel epigenetic biomarkers in dilated LV upon VO exposure.


Asunto(s)
Metilación de ADN , Insuficiencia Cardíaca , Ratones , Animales , Remodelación Ventricular/genética , Corazón , Insuficiencia Cardíaca/metabolismo , Cardiomegalia/genética , Epigénesis Genética
8.
J Xray Sci Technol ; 31(1): 49-61, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36314190

RESUMEN

PURPOSE: To investigate the feasibility of predicting the early response to neoadjuvant chemotherapy (NAC) in advanced gastric cancer (AGC) based on CT radiomics nomogram before treatment. MATERIALS AND METHODS: The clinicopathological data and pre-treatment portal venous phase CT images of 180 consecutive AGC patients who received 3 cycles of NAC are retrospectively analyzed. They are randomly divided into training set (n = 120) and validation set (n = 60) and are categorized into effective group (n = 83) and ineffective group (n = 97) according to RECIST 1.1. Clinicopathological features are compared between two groups using Chi-Squared test. CT radiomic features of region of interest (ROI) for gastric tumors are extracted, filtered and minimized to select optimal features and develop radiomics model to predict the response to NAC using Pyradiomics software. Furthermore, a nomogram model is constructed with the radiomic and clinicopathological features via logistic regression analysis. The receiver operating characteristic (ROC) curve analysis is used to evaluate model performance. Additionally, the calibration curve is used to test the agreement between prediction probability of the nomogram and actual clinical findings, and the decision curve analysis (DCA) is performed to assess the clinical usage of the nomogram model. RESULTS: Four optimal radiomic features are selected to construct the radiomics model with the areas under ROC curve (AUC) of 0.754 and 0.743, sensitivity of 0.732 and 0.750, specificity of 0.729 and 0.708 in the training set and validation set, respectively. The nomogram model combining the radiomic feature with 2 clinicopathological features (Lauren type and clinical stage) results in AUCs of 0.841 and 0.838, sensitivity of 0.847 and 0.804, specificity of 0.771 and 0.794 in the training set and validation set, respectively. The calibration curve generates a concordance index of 0.912 indicating good agreement of the prediction results between the nomogram model and the actual clinical observation results. DCA shows that patients can receive higher net benefits within the threshold probability range from 0 to 1.0 in the nomogram model than in the radiomics model. CONCLUSION: CT radiomics nomogram is a potential useful tool to assist predicting the early response to NAC for AGC patients before treatment.


Asunto(s)
Terapia Neoadyuvante , Neoplasias Gástricas , Humanos , Nomogramas , Estudios Retrospectivos , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/tratamiento farmacológico , Tomografía Computarizada por Rayos X
9.
Behav Pharmacol ; 33(7): 482-491, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36148836

RESUMEN

Relapse is a defining feature of smoking and a significant challenge in cessation management. Elucidation of novel factors underlying relapse may inform future treatments. Cotinine, the major metabolite of nicotine, has been shown to support intravenous self-administration in rats, implicating it as one potential factor contributing to nicotine reinforcement. However, it remains unknown whether cotinine would induce relapse-like behaviors. The current study investigated relapse to cotinine seeking in two relapse models, the reinstatement of drug seeking and incubation of drug craving models. In the reinstatement model, rats were trained to self-administer cotinine, underwent extinction of cotinine-associated responses, and were tested for cue-, drug-, or stress-induced reinstatement. Conditioned cues associated with cotinine self-administration, cotinine (1-2 mg/kg), or the pharmacological stressor yohimbine (1.25-2.5 mg/kg) induced reinstatement of cotinine seeking. Female rats displayed more pronounced cue-induced, but not drug- or stress-induced reinstatement than male rats. In the incubation of the craving model, rats were trained to self-administer cotinine and underwent forced withdrawal in home cages. Rats were tested for cue-induced cotinine-seeking on both withdrawal day 1 and withdrawal day 18. Rats exhibited greater cue-induced cotinine-seeking on withdrawal day 18 compared to withdrawal day 1, with no difference between male and female rats. These findings indicate that cotinine induces sex-specific relapse to drug seeking in rats, suggesting that cotinine may contribute to relapse.


Asunto(s)
Cotinina , Nicotina , Animales , Condicionamiento Operante , Cotinina/farmacología , Señales (Psicología) , Extinción Psicológica , Femenino , Masculino , Nicotina/farmacología , Ratas , Ratas Sprague-Dawley , Recurrencia , Autoadministración , Yohimbina/farmacología
10.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36293101

RESUMEN

Here, we characterized the function of ctr1, ctr2 and atox1 promoters in yellow catfish Pelteobagrus fulvidraco, a common freshwater teleost in Asian countries. We obtained 1359 bp, 1842 bp and 1825 bp sequences of ctr1, ctr2 and atox1 promoters, and predicted key transcription factor binding sites on their promoters, including MRE, SREBP1, NRF2, KLF4 and STAT3. Cu differentially influenced the activities of ctr1, ctr2 and atox1 promoters from different regions. We found that the -326/-334 bp and -1232/-1240 bp locus in the atox1 promoter were functional NRF2 binding sites, which negatively controlled the activity of the atox1 promoter. The -91/-100 bp locus in the ctr1 promoter and -232/-241 bp and -699/-708 bp locus in the atox1 promoter were functional SREBP1 binding sites, which positively controlled the activities of ctr1 and atox1 promoters. Cu inhibited the NRF2 binding ability to the atox1 promoter, but promoted the SREBP1 binding ability to the ctr1 and atox1 promoters. Dietary Cu excess significantly down-regulated hepatic mRNA and total protein expression of CTR1, CTR2 and ATOX1 of yellow catfish, compared to the adequate dietary Cu group. The subcellular localization showed that CTR1 was mainly localized on the cell membrane, CTR2 in the cell membrane and the lysosome, and ATOX1 in the cytoplasm. In conclusion, we demonstrated the regulatory mechanism of three Cu transporters at the transcription levels, and found the functional NRF2 and SREBP1 response elements in ctr1, ctr2 and atox1 promoters, which provided new insights into their roles in the regulation of Cu homeostasis in fish.


Asunto(s)
Bagres , Animales , Bagres/genética , Bagres/metabolismo , Cobre/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Homeostasis , ARN Mensajero/genética
11.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35887381

RESUMEN

Zip family proteins are involved in the control of zinc (Zn) ion homeostasis. The present study cloned the promoters and investigated the transcription responses and protein subcellular localizations of three LIV-1 subfamily members (zip10, zip13, and zip14) from common freshwater teleost yellow catfish, Pelteobagrus fulvidraco, using in vitro cultured HEK293T model cells. The 2278 bp, 1917 bp, and 1989 bp sequences of zip10, zip13, and zip14 promoters, respectively, were subcloned into pGL3-Basic plasmid for promoter activity analysis. The pcDNA3.1 plasmid coding EGFP tagged pfZip10, pfZip13, and pfZip14 were generated for subsequent confocal microscope analysis. Several potential transcription factors' binding sites were predicted within the promoters. In vitro promoter analysis in the HEK293T cells showed that high Zn administration significantly reduced the transcriptional activities of the zip10, zip13, and zip14 promoters. The -2017 bp/-2004 bp MRE in the zip10 promoter, the -360 bp/-345 bp MRE in the zip13 promoter, and the -1457 bp/-1442 bp MRE in the zip14 promoter were functional loci that were involved in the regulation of the three zips. The -606 bp/-594 bp KLF4 binding site in the zip13 promoter was a functional locus responsible for zinc-responsive regulation of zip13. The -1383 bp/-1375 bp STAT3 binding site in the zip14 promoter was a functional locus responsible for zinc-responsive regulation of zip14. Moreover, confocal microscope analysis indicated that zinc incubation significantly reduced the fluorescence intensity of pfZip10-EGFP and pfZip14-EGFP but had no significant influence on pfZip13-EGFP fluorescence intensity. Further investigation found that pfZip10 localizes on cell membranes, pfZip14 colocalized with both cell membranes and lysosome, and pfZip13 colocalized with intracellular ER and Golgi. Our research illustrated the transcription regulation of zip10, zip13, and zip14 from P. fulvidraco under zinc administration, which provided a reference value for the mechanisms involved in Zip-family-mediated control of zinc homeostasis in vertebrates.


Asunto(s)
Bagres , Animales , Bagres/genética , Bagres/metabolismo , Agua Dulce , Células HEK293 , Humanos , Proteínas de Transporte de Membrana/metabolismo , ARN Mensajero/metabolismo , Zinc/metabolismo
12.
Aquac Nutr ; 2022: 2677885, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36860441

RESUMEN

Increasing dietary replacement levels of fish meal by alternative plant proteins are of value for aquaculture. Here, a 10-week feeding experiment was undertaken to explore the effects of fish meal replacement by mixed plant protein (at a 2 : 3 ratio of cottonseed meal to rapeseed meal) on growth performance, oxidative and inflammatory responses, and mTOR pathway of yellow catfish Pelteobagrus fulvidraco. Yellow catfish (2.38 ± 0.1 g, mean ± SEM) were randomly divided into 15 indoors fiberglass tanks, 30 fish each tank, and fed five isonitrogenous (44% crude protein) and isolipidic (9% crude fat) diets with fish meal replaced by mixed plant protein at 0% (the control), 10% (RM10), 20% (RM20), 30% (RM30), and 40% (RM40), respectively. Among five groups, fish fed the control, and RM10 diets tended to have higher growth performance, higher protein content, and lower lipid content in livers. Dietary mixed plant protein substitute increased hepatic free gossypol content and damaged liver histology and reduced the serum total essential amino acids, total nonessential amino acids, and total amino acid contents. Yellow catfish fed the control, and RM10 diets tended to have higher antioxidant capacity. Dietary mixed plant protein replacement tended to promote proinflammatory responses and inhibited mTOR pathway. Based on the second regression analysis of SGR against mixed plant protein substitutes, the optimal replacement level of fish meal by mixed plant protein was 8.7%.

13.
J Pharmacol Exp Ther ; 376(3): 338-347, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33361363

RESUMEN

Nicotine is the major addictive component in tobacco. Cotinine is the major metabolite of nicotine and a weak agonist for nicotinic acetylcholine receptors (nAChRs). Nicotine supports self-administration in rodents. However, it remains undetermined whether cotinine can be self-administered. This study aimed to characterize cotinine self-administration in rats, to compare effects of cotinine to those of nicotine, and to determine potential involvement of nAChRs in cotinine's effects. Adult Wistar rats were trained to self-administer cotinine or nicotine (0.0075, 0.015, 0.03, or 0.06 mg/kg per infusion) under fixed-ratio (FR) and progressive-ratio (PR) schedules. Blood nicotine and cotinine levels were determined after the last FR session. Effects of mecamylamine, a nonselective nAChR antagonist, and varenicline, a partial agonist for α4ß2* nAChRs, on cotinine and nicotine self-administration were determined. Rats readily acquired cotinine self-administration, responded more on active lever, and increased motivation to self-administer cotinine when the reinforcement requirement increased. Blood cotinine levels ranged from 77 to 792 ng/ml. Nicotine induced more infusions at lower doses during FR schedules and greater breakpoints at higher doses during the PR schedule than cotinine. There was no difference in cotinine self-administration between male and female rats. Mecamylamine and varenicline attenuated nicotine but not cotinine self-administration. These results indicate that cotinine was self-administered by rats. These effects of cotinine were less robust than nicotine and exhibited no sex difference. nAChRs appeared to be differentially involved in self-administration of nicotine and cotinine. These results suggest cotinine may play a role in the development of nicotine use and misuse. SIGNIFICANCE STATEMENT: Nicotine addiction is a serious public health problem. Cotinine is the major metabolite of nicotine, but its involvement in nicotine reinforcement remains elusive. Our findings indicate that cotinine, at doses producing clinically relevant blood cotinine levels, supported intravenous self-administration in rats. Cotinine self-administration was less robust than nicotine. Mecamylamine and varenicline attenuated nicotine but not cotinine self-administration. These results suggest cotinine may play a role in the development of nicotine use and misuse.


Asunto(s)
Cotinina/administración & dosificación , Cotinina/farmacología , Nicotina/farmacología , Animales , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Femenino , Masculino , Mecamilamina/farmacología , Nicotina/administración & dosificación , Ratas , Ratas Wistar , Receptores Nicotínicos/metabolismo , Autoadministración , Vareniclina/farmacología
14.
Sensors (Basel) ; 21(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34502612

RESUMEN

We have developed a sensor for monitoring the hemoglobin (Hb) concentration in the effluent of a continuous bladder irrigation. The Hb concentration measurement is based on light absorption within a fixed measuring distance. The light frequency used is selected so that both arterial and venous Hb are equally detected. The sensor allows the measurement of the Hb concentration up to a maximum value of 3.2 g/dL (equivalent to ≈20% blood concentration). Since bubble formation in the outflow tract cannot be avoided with current irrigation systems, a neural network is implemented that can robustly detect air bubbles within the measurement section. The network considers both optical and temporal features and is able to effectively safeguard the measurement process. The sensor supports the use of different irrigants (salt and electrolyte-free solutions) as well as measurement through glass shielding. The sensor can be used in a non-invasive way with current irrigation systems. The sensor is positively tested in a clinical study.


Asunto(s)
Inteligencia Artificial , Hemoglobinas , Redes Neurales de la Computación , Vejiga Urinaria
15.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925909

RESUMEN

The steroid hormones are required for gonadal development in fish. The present study was undertaken to characterize the cDNA and promoter sequences of TSPO and SMAD4 genes in yellow catfish Pelteobagrus fulvidraco, explored the mRNA tissue expression and deciphered their promoter regions. Yellow catfish TSPO and SMAD4 shared the similar domains to the corresponding genes from other vertebrates. The TSPO and SMAD4 mRNAs were widely expressed in the detected tissues, but at different levels. Several transcription factors were predicted, such as Sp, GATA, AP1, SOX1, SRY, STAT, HNF4α, PPARγ, Pu.1 and FOXL2. PPARγ overexpression increased but STAT3 overexpression reduced TSPO promoter activity, and FOXL2 overexpression inhibited the promoter activity of TSPO and SMAD4. The site mutation and EMSA analysis indicated that TSPO promoter possessed STAT3 and FOXL2 sites. Overall, our provided the novel understanding into the transcriptionally regulatory mechanisms of TSPO and SMAD4 in fish.


Asunto(s)
Bagres/genética , Regulación de la Expresión Génica , Receptores de GABA , Proteína Smad4 , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Regiones Promotoras Genéticas , Receptores de GABA/genética , Receptores de GABA/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo
16.
Br J Nutr ; 124(12): 1241-1250, 2020 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-32600495

RESUMEN

Dysregulation in hepatic lipid synthesis by excess dietary carbohydrate intake is often relevant with the occurrence of fatty liver; therefore, the thorough understanding of the regulation of lipid deposition and metabolism seems crucial to search for potential regulatory targets. In the present study, we examined TAG accumulation, lipid metabolism-related gene expression, the enzyme activities of lipogenesis-related enzymes, the protein levels of transcription factors or genes involving lipogenesis in the livers of yellow catfish fed five dietary carbohydrate sources, such as glucose, maize starch, sucrose, potato starch and dextrin, respectively. Generally speaking, compared with other carbohydrate sources, dietary glucose promoted TAG accumulation, up-regulated lipogenic enzyme activities and gene expressions, and down-regulated mRNA expression of genes involved in lipolysis and small ubiquitin-related modifier (SUMO) modification pathways. Further studies found that sterol regulatory element binding protein 1 (SREBP1), a key transcriptional factor relevant to lipogenic regulation, was modified by SUMO1. Mutational analyses found two important sites for SUMOylation modification (K254R and K264R) in SREBP1. Mutant SREBP lacking lysine 264 up-regulated the transactivation capacity on an SREBP-responsive promoter. Glucose reduced the SUMOylation level of SREBP1 and promoted the protein expression of SREBP1 and its target gene stearoyl-CoA desaturase 1 (SCD1), indicating that SUMOylation of SREBP1 mediated glucose-induced hepatic lipid metabolism. Our study elucidated the molecular mechanism of dietary glucose increasing hepatic lipid deposition and found that the SREBP-dependent transactivation was regulated by SUMO1 modification, which served as a new target for the transcriptional programmes governing lipid metabolism.


Asunto(s)
Carbohidratos de la Dieta/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación/efectos de los fármacos , Animales , Bagres , Dieta/métodos , Regulación hacia Abajo/efectos de los fármacos , Hígado/metabolismo , ARN Mensajero/metabolismo , Estearoil-CoA Desaturasa/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
17.
Int J Mol Sci ; 21(9)2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32344896

RESUMEN

The field of genome editing started with the discovery of meganucleases (e.g., the LAGLIDADG family of homing endonucleases) in yeast. After the discovery of transcription activator-like effector nucleases and zinc finger nucleases, the recently discovered clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated proteins (Cas) system has opened a new window of applications in the field of gene editing. Here, we review different Cas proteins and their corresponding features including advantages and disadvantages, and we provide an overview of the different endonuclease-deficient Cas protein (dCas) derivatives. These dCas derivatives consist of an endonuclease-deficient Cas9 which can be fused to different effector domains to perform distinct in vitro applications such as tracking, transcriptional activation and repression, as well as base editing. Finally, we review the in vivo applications of these dCas derivatives and discuss their potential to perform gene activation and repression in vivo, as well as their potential future use in human therapy.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas CRISPR-Cas , Endodesoxirribonucleasas/metabolismo , Epigenómica/métodos , Edición Génica/métodos , Proteína 9 Asociada a CRISPR/metabolismo , Cromatina/ultraestructura , ADN/metabolismo , Endonucleasas/metabolismo , Técnicas de Transferencia de Gen , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Imagen Óptica , ARN Guía de Kinetoplastida/genética , Proteínas Recombinantes de Fusión/análisis , Especificidad por Sustrato , Telómero/ultraestructura , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Efectores Tipo Activadores de la Transcripción/metabolismo , Transcripción Genética , Dedos de Zinc
18.
Int J Mol Sci ; 22(1)2020 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-33375507

RESUMEN

The present study was performed to clone and characterize the structures and functions of steroidogenic factor 1 (sf-1) and 17α-hydroxylase/lyase (cyp17α) promoters in yellow catfish Pelteobagrus fulvidraco, a widely distributed freshwater teleost. We successfully obtained 1981 and 2034 bp sequences of sf-1 and cyp17α promoters, and predicted the putative binding sites of several transcription factors, such as Peroxisome proliferator-activated receptor alpha (PPARα), Peroxisome proliferator-activated receptor gamma (PPARγ) and Signal transducer and activator of transcription 3 (STAT3), on sf-1 and cyp17α promoter regions, respectively. Overexpression of PPARγ significantly increased the activities of sf-1 and cyp17α promoters, but overexpression of PPARα significantly decreased the promoter activities of sf-1 and cyp17α. Overexpression of STAT3 reduced the activity of the sf-1 promoter but increased the activity of the cyp17α promoter. The analysis of site-mutation and electrophoretic mobility shift assay suggested that the sf-1 promoter possessed the STAT3 binding site, but did not the PPARα or PPARγ binding sites. In contrast, only the PPARγ site, not PPARα or STAT3 sites, was functional with the cyp17α promoter. Leptin significantly increased sf-1 promoter activity, but the mutation of STAT3 and PPARγ sites decreased leptin-induced activation of sf-1 promoter. Our findings offered the novel insights into the transcriptional regulation of sf-1 and cyp17α and suggested leptin regulated sf-1 promoter activity through STAT3 site in yellow catfish.


Asunto(s)
Bagres/genética , Regulación de la Expresión Génica/genética , Regiones Promotoras Genéticas , Esteroide 17-alfa-Hidroxilasa/genética , Factor Esteroidogénico 1/genética , Animales , Sitios de Unión , Bagres/metabolismo , Clonación Molecular , Genes Reporteros , Células HEK293 , Humanos , Leptina/metabolismo , Luciferasas/metabolismo , Mutación , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Unión Proteica , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Esteroide 17-alfa-Hidroxilasa/metabolismo , Factor Esteroidogénico 1/metabolismo , Regulación hacia Arriba
19.
Br J Nutr ; 122(11): 1201-1211, 2019 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-31782376

RESUMEN

Disturbances in lipid metabolism are at the core of several health issues facing modern society, including fatty liver and obesity. The sterol regulatory element-binding protein 1 (SREBP-1) is one important transcription factor regulating lipid metabolism, but the relevant mechanism still remains unknown. The present study determined the transcriptional regulation of SREBP-1 and its target genes (including acetyl-CoA carboxylase α (accα), fatty acid synthase (fas) and stearoyl-CoA desaturase 1 (scd1)) in a freshwater teleost, grass carp Ctenopharyngodon idella. We cloned and characterised the 1988 bp, 2043 bp, 1632 bp and 1889 bp sequences of srebp-1, accα, scd1 and fas promoters, respectively. A cluster of putative binding sites of transcription factors, such as specific protein, yin yang 1, nuclear factor Y, sterol response elements (SRE) and enhancer box (E-box) element, were predicted on their promoter regions. Overexpression of nSREBP-1 reduced srebp-1 promoter activity, increased scd1 and fas promoter activity but did not influence accα promoter activity. The site-mutation and electrophoretic mobility shift assay analysis indicated that srebp-1, fas and scd1 promoters, but not accα promoter, possessed SRE. In Ctenopharyngodon idella kidney (CIK) cells of grass carp, nSREBP-1 overexpression significantly reduced srebp-1 mRNA expression and up-regulated miR-29 mRNA expression. The 3'UTR of srebp-1 possessed the potential miR-29 binding site and miR-29 up-regulated the luciferase activity of srebp-1 3'UTR and srebp-1 mRNA expression, implying a self-activating loop of SREBP-1 and miR-29 in grass carp. Based on the above-mentioned results, we found two novel transcriptional mechanisms for SREBP-1 in grass carp: (1) the auto-regulation sited on the SREBP-1 promoter regions was suppressive and (2) there was a self-activating loop of SREBP-1 and miR-29.


Asunto(s)
Carpas/metabolismo , Lipogénesis/fisiología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/fisiología , Acetil-CoA Carboxilasa/genética , Animales , Carpas/genética , Células Cultivadas , Clonación Molecular , Ácido Graso Sintasas/genética , Regulación de la Expresión Génica , Células Hep G2 , Humanos , Riñón/química , Riñón/metabolismo , Lipogénesis/genética , MicroARNs/genética , MicroARNs/fisiología , Mutagénesis Sitio-Dirigida , Regiones Promotoras Genéticas/genética , Análisis de Secuencia de ADN/veterinaria , Estearoil-CoA Desaturasa/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Transcripción Genética/fisiología , Transfección
20.
Fish Shellfish Immunol ; 86: 906-912, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30580042

RESUMEN

Suppressors of cytokine signaling (SOCS) are important molecules that mediates the regulation of glucose homeostasis. Here, we cloned and characterized the full-length cDNA sequences of nine genes of the SOCS family (SOCS1, 2, 3, 3b, 5, 5b, 6, 7 and CISH) from yellow catfish P. fulvidraco, explored their mRNA abundance across the tissues and their mRNA changes to dietary carbohydrate levels. Structural analysis indicated that the nine members shared conserved functional domains to the orthologues of the mammalian SOCS members, such as SRC homology 2 and the SOCS domains. Their mRNAs were constitutively expressed in various tissues but changed among the tissues. Their mRNA expression in response to dietary carbohydrate levels were explored in the liver, muscle, intestine, testis and ovary. Dietary carbohydrate addition showed significant effects on the mRNA levels of the nine SOCS members. Moreover, their mRNA expressions in response to dietary carbohydrate levels were also tissue-dependent. These indicated that SOCS members potentially mediated the utilization of dietary carbohydrate in yellow catfish.


Asunto(s)
Bagres/genética , Bagres/inmunología , Carbohidratos de la Dieta/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Expresión Génica , Animales , Carbohidratos de la Dieta/administración & dosificación , Femenino , Masculino , ARN Mensajero/genética , Análisis de Secuencia de ADN/veterinaria , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA