Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Cell ; 59(5): 755-67, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26257282

RESUMEN

Genome/chromosome organization is highly ordered and controls various nuclear events, although the molecular mechanisms underlying the functional organization remain largely unknown. Here, we show that the TATA box-binding protein (TBP) interacts with the Cnd2 kleisin subunit of condensin to mediate interphase and mitotic chromosomal organization in fission yeast. TBP recruits condensin onto RNA polymerase III-transcribed (Pol III) genes and highly transcribed Pol II genes; condensin in turn associates these genes with centromeres. Inhibition of the Cnd2-TBP interaction disrupts condensin localization across the genome and the proper assembly of mitotic chromosomes, leading to severe defects in chromosome segregation and eventually causing cellular lethality. We propose that the Cnd2-TBP interaction coordinates transcription with chromosomal architecture by linking dispersed gene loci with centromeres. This chromosome arrangement can contribute to the efficient transmission of physical force at the kinetochore to chromosomal arms, thereby supporting the fidelity of chromosome segregation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/química , Centrómero/genética , Centrómero/metabolismo , Segregación Cromosómica , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genes Fúngicos , Mitosis , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación Puntual , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe/química , Proteína de Unión a TATA-Box/química
2.
Mol Cell ; 48(4): 532-46, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23084836

RESUMEN

Complex genome organizations participate in various nuclear processes including transcription, DNA replication, and repair. However, the mechanisms that generate and regulate these functional genome structures remain largely unknown. Here, we describe how the Ku heterodimer complex, which functions in nonhomologous end joining, mediates clustering of long terminal repeat retrotransposons at centromeres in fission yeast. We demonstrate that the CENP-B subunit, Abp1, functions as a recruiter of the Ku complex, which in turn loads the genome-organizing machinery condensin to retrotransposons. Intriguingly, histone H3 lysine 56 (H3K56) acetylation, which functions in DNA replication and repair, interferes with Ku localization at retrotransposons without disrupting Abp1 localization and, as a consequence, dissociates condensin from retrotransposons. This dissociation releases condensin-mediated genomic associations during S phase and upon DNA damage. ATR (ATM- and Rad3-related) kinase mediates the DNA damage response of condensin-mediated genome organization. Our study describes a function of H3K56 acetylation that neutralizes condensin-mediated genome organization.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ciclo Celular , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Genoma , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Complejos Multiproteicos/metabolismo , Acetilación , Adenosina Trifosfatasas/genética , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Microfilamentos/metabolismo , Complejos Multiproteicos/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nucleic Acids Res ; 38(22): 8164-77, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21030438

RESUMEN

We have comprehensively mapped long-range associations between chromosomal regions throughout the fission yeast genome using the latest genomics approach that combines next generation sequencing and chromosome conformation capture (3C). Our relatively simple approach, referred to as enrichment of ligation products (ELP), involves digestion of the 3C sample with a 4 bp cutter and self-ligation, achieving a resolution of 20 kb. It recaptures previously characterized genome organizations and also identifies new and important interactions. We have modeled the 3D structure of the entire fission yeast genome and have explored the functional relationships between the global genome organization and transcriptional regulation. We find significant associations among highly transcribed genes. Moreover, we demonstrate that genes co-regulated during the cell cycle tend to associate with one another when activated. Remarkably, functionally defined genes derived from particular gene ontology groups tend to associate in a statistically significant manner. Those significantly associating genes frequently contain the same DNA motifs at their promoter regions, suggesting that potential transcription factors binding to these motifs are involved in defining the associations among those genes. Our study suggests the presence of a global genome organization in fission yeast that is functionally similar to the recently proposed mammalian transcription factory.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Schizosaccharomyces/genética , Transcripción Genética , Ciclo Celular/genética , ADN de Hongos/química , Sitios Genéticos , Genómica/métodos , Hibridación Fluorescente in Situ , Modelos Moleculares , Mapeo Físico de Cromosoma , Retroelementos , Schizosaccharomyces/metabolismo , Secuencias Repetidas Terminales
4.
Biochemistry ; 49(49): 10381-93, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21067162

RESUMEN

YddV from Escherichia coli (Ec) is a novel globin-coupled heme-based oxygen sensor protein displaying diguanylate cyclase activity in response to oxygen availability. In this study, we quantified the turnover numbers of the active [Fe(III), 0.066 min(-1); Fe(II)-O(2) and Fe(II)-CO, 0.022 min(-1)] [Fe(III), Fe(III)-protoporphyrin IX complex; Fe(II), Fe(II)-protoporphyrin IX complex] and inactive forms [Fe(II) and Fe(II)-NO, <0.01 min(-1)] of YddV for the first time. Our data indicate that the YddV reaction is the rate-determining step for two consecutive reactions coupled with phosphodiesterase Ec DOS activity on cyclic di-GMP (c-di-GMP) [turnover number of Ec DOS-Fe(II)-O(2), 61 min(-1)]. Thus, O(2) binding and the heme redox switch of YddV appear to be critical factors in the regulation of c-di-GMP homeostasis. The redox potential and autoxidation rate of heme of the isolated heme domain of YddV (YddV-heme) were determined to be -17 mV versus the standard hydrogen electrode and 0.0076 min(-1), respectively. The Fe(II) complexes of Y43A and Y43L mutant proteins (residues at the heme distal side of the isolated heme-bound globin domain of YddV) exhibited very low O(2) affinities, and thus, their Fe(II)-O(2) complexes were not detected on the spectra. The O(2) dissociation rate constant of the Y43W protein was >150 s(-1), which is significantly larger than that of the wild-type protein (22 s(-1)). The autoxidation rate constants of the Y43F and Y43W mutant proteins were 0.069 and 0.12 min(-1), respectively, which are also markedly higher than that of the wild-type protein. The resonance Raman frequencies representing ν(Fe-O(2)) (559 cm(-1)) of the Fe(II)-O(2) complex and ν(Fe-CO) (505 cm(-1)) of the Fe(II)-CO complex of Y43F differed from those (ν(Fe-O(2)), 565 cm(-1); ν(Fe-CO), 495 cm(-1)) of the wild-type protein, suggesting that Tyr43 forms hydrogen bonds with both O(2) and CO molecules. On the basis of the results, we suggest that Tyr43 located at the heme distal side is important for the O(2) recognition and stability of the Fe(II)-O(2) complex, because the hydroxyl group of the residue appears to interact electrostatically with the O(2) molecule bound to the Fe(II) complex in YddV. Our findings clearly support a role of Tyr in oxygen sensing, and thus modulation of overall conversion from GTP to pGpG via c-di-GMP catalyzed by YddV and Ec DOS, which may be applicable to other globin-coupled oxygen sensor enzymes.


Asunto(s)
Proteínas de Escherichia coli/química , Globinas/química , Hemoproteínas/química , Oxígeno/metabolismo , Liasas de Fósforo-Oxígeno/química , Tirosina/química , Secuencia de Aminoácidos , Sitios de Unión/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Globinas/genética , Globinas/metabolismo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Ligandos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Estabilidad Proteica , Sistemas de Mensajero Secundario/genética , Tirosina/fisiología
5.
Biochemistry ; 47(50): 13438-46, 2008 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19053256

RESUMEN

Phosphodiesterase (Ec DOS) from Escherichia coli is a gas-sensor enzyme in which binding of gas molecules, such as O(2), CO, and NO, to the Fe(II)-protoporphyrin IX complex in the sensor domain stimulates phosphodiesterase activity toward cyclic-di-GMP. In this study, we report that external axial ligands, such as cyanide or imidazole, bind to Fe(III)-protoporphyrin IX in the sensor domain and induce a 10- to 11-fold increase (from 8.1 up to 86 min(-1)) in catalysis, which is more substantial than that (6.3 to 7.2-fold) observed for other gas-stimulated Fe(II) heme-bound enzymes. Catalytic activity (50 min(-1)) of the heme-free mutant, H77A, was comparable to that of the ligand-stimulated enzymes. Accordingly, we propose that the heme at the sensor domain inhibits catalysis and that ligand binding to the heme iron complex releases this catalytic suppression. Furthermore, mutations of Met95, Arg97, and Phe113 at the putative heme distal side suppressed the ligand effects on catalysis. The rate constants (19,000 x 10(-5) microM(-1)min(-1)) for cyanide binding to the M95A and M95L mutants of the full-length enzyme were 633-fold higher than that to wild-type Ec DOS (30 x 10(-5) microM(-1)min(-1)). The absorption spectrum of the F113Y mutant suggests that the Tyr O(-) group directly coordinates to the Fe(III) complex and that the cyanide binding rate to the mutant is very slow, compared with those of the wild-type and other mutant proteins. We observed a similar trend in the binding behavior of imidazole to full-length mutant enzymes. Therefore, while Met95 and Phe113 are not direct axial ligands for the Fe(III) complex, catalytic, spectroscopic, and ligand binding evidence suggests that these residues are located in the vicinity of the heme.


Asunto(s)
GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Compuestos Férricos/metabolismo , Hemo/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Protoporfirinas/metabolismo , Animales , Arginina/química , Catálisis , Bovinos , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Compuestos Férricos/química , Hemo/química , Ligandos , Metionina/química , Mutagénesis Sitio-Dirigida , Fenilalanina/química , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Unión Proteica , Estructura Terciaria de Proteína
6.
Biochemistry ; 47(34): 8874-84, 2008 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-18672892

RESUMEN

The catalytic activity of heme-regulated phosphodiesterase from Escherichia coli (Ec DOS) on cyclic di-GMP is markedly enhanced upon binding of gas molecules, such as O2 and CO, to the heme iron complex in the sensor domain. Arg97 interacts directly with O2 bound to Fe(II) heme in the crystal structure of the isolated heme-bound sensor domain with the PAS structure (Ec DOS-PAS) and may thus be critical in ligand recognition. To establish the specific role of Arg97, we generated Arg97Ala, Arg97Glu, and Arg97Ile mutant Ec DOS-PAS proteins and examined binding to O2, CO, and cyanide, as well as redox potentials. The autoxidation rates of the Arg97Ala and Arg97Glu mutant proteins were up to 2000-fold higher, while the O2 dissociation rate constant for dissociation from the Fe(II)-O2 heme complex of the Arg97Ile mutant was 100-fold higher than that of the wild-type protein. In contrast, the redox potential values of the mutant proteins were only slightly different from that of the wild type (within 10 mV). Accordingly, we propose that Arg97 plays critical roles in recognition of the O2 molecule and redox switching by stabilizing the Fe(II)-O2 complex, thereby anchoring O2 to the heme iron and lowering the autoxidation rate to prevent formation of Fe(III) hemin species not regulated by gas molecules. Arg97 mutations significantly influenced interactions with the internal ligand Met95, during CO binding to the Fe(II) complex. Moreover, the binding behavior of cyanide to the Fe(III) complexes of the Arg mutant proteins was similar to that of O2, which is evident from the Kd values, suggestive of electrostatic interactions between cyanide and Arg97.


Asunto(s)
Arginina/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Hemo/metabolismo , Arginina/química , Arginina/genética , Monóxido de Carbono/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Cristalografía por Rayos X , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , Hemo/química , Hierro/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Óxido Nítrico/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Hidrolasas Diéster Fosfóricas , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad
7.
J Inorg Biochem ; 109: 66-71, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22387619

RESUMEN

Ec DOS, a heme-regulated phosphodiesterase from Escherichia coli, is an oxygen sensor enzyme composed of a heme-bound O(2) sensor domain at the N-terminus and a catalytic domain at the C-terminus. The catalytic activity of Ec DOS is substantially enhanced with the formation of a Fe(II) heme-O(2) complex. The physiological importance of H(2)S as a fourth signaling gas molecule in addition to O(2), CO and NO is an emerging focus of research, since H(2)S participates in various physiological functions. In the present study, we showed that catalysis by Ec DOS is markedly increased by H(2)S under aerobic conditions. Absorption spectral findings suggest that SH(-)-modified heme iron complexes, such as Fe(III)-SH(-) and Fe(II)-O(2) complexes, represent the active species for H(2)S-induced catalysis. We further examined the role of Cys residues in H(2)S-induced catalysis using Cys→Ala mutant enzymes. Based on the collective data, we speculate that H(2)S-induced catalytic enhancement is facilitated by an admixture of Fe(III)-SH(-) and Fe(II)-O(2) complexes formed during catalysis and modification of specific Cys residue(s) in the catalytic domain.


Asunto(s)
Escherichia coli/enzimología , Hemo/metabolismo , Sulfuro de Hidrógeno/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Catálisis , GMP Cíclico/metabolismo , Escherichia coli/genética , Mutagénesis Sitio-Dirigida , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Espectrofotometría Ultravioleta
8.
Mol Biol Cell ; 21(2): 254-65, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19910488

RESUMEN

The eukaryotic genome is a complex three-dimensional entity residing in the nucleus. We present evidence that Pol III-transcribed genes such as tRNA and 5S rRNA genes can localize to centromeres and contribute to a global genome organization. Furthermore, we find that ectopic insertion of Pol III genes into a non-Pol III gene locus results in the centromeric localization of the locus. We show that the centromeric localization of Pol III genes is mediated by condensin, which interacts with the Pol III transcription machinery, and that transcription levels of the Pol III genes are negatively correlated with the centromeric localization of Pol III genes. This centromeric localization of Pol III genes initially observed in interphase becomes prominent during mitosis, when chromosomes are condensed. Remarkably, defective mitotic chromosome condensation by a condensin mutation, cut3-477, which reduces the centromeric localization of Pol III genes, is suppressed by a mutation in the sfc3 gene encoding the Pol III transcription factor TFIIIC subunit, sfc3-1. The sfc3-1 mutation promotes the centromeric localization of Pol III genes. Our study suggests there are functional links between the process of the centromeric localization of dispersed Pol III genes, their transcription, and the assembly of condensed mitotic chromosomes.


Asunto(s)
Centrómero/enzimología , Centrómero/genética , ADN Polimerasa III/genética , Genes Fúngicos/genética , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/metabolismo , Proteínas de Unión al ADN/genética , Interfase , Mitosis , Complejos Multiproteicos/genética , Mutación/genética , Unión Proteica , Transporte de Proteínas , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Cohesinas
9.
J Biochem ; 148(6): 693-703, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20861024

RESUMEN

A phosphodiesterase (PDE) from Escherichia coli (Ec DOS) is a novel haem-based oxygen sensor enzyme. Binding of O(2) to the reduced haem in the sensor domain enhances PDE activity exerted by the catalytic domain. Kinetic analysis of oxygen-dependent catalytic enhancement showed a sigmoidal curve with a Hill coefficient value of 2.8. To establish the molecular mechanism underlying allosteric regulation, we analysed binding of the O(2) ligand following reduction of haem in the isolated dimeric sensor domain using pulse radiolysis. Spectral changes accompanying O(2) binding were composed of two phases as a result of reduction of two haem complexes when high-dose electron beams were applied. In contrast, upon reduction of the dimer with a low-dose beam, the kinetics of O(2) ligation displayed single-phase behaviour as a result of the reduction of one haem complex within dimer. Based on these results, we propose that the faster phase corresponds to binding of the first O(2) molecule to one subunit of the dimer, followed by binding of the second O(2) molecule to the other subunit. Notably, for the haem axial ligand mutant proteins, M95A and M95L, O(2) binding displayed single-phase kinetics and was independent of electron beam dose.


Asunto(s)
Proteínas Bacterianas , Biocatálisis , Escherichia coli , Hemo/metabolismo , Oxígeno/metabolismo , Hidrolasas Diéster Fosfóricas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clonación Molecular , Escherichia coli/enzimología , Cinética , Ligandos , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Unión Proteica , Multimerización de Proteína/fisiología , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Radiólisis de Impulso
10.
J Inorg Biochem ; 103(7): 989-96, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19482359

RESUMEN

The heme-based oxygen-sensor enzyme from Escherichia coli (Ec DOS) is a heme-regulated phosphodiesterase with activity on cyclic-di-GMP and is composed of an N-terminal heme-bound sensor domain with the PAS structure and a C-terminal functional domain. The activity of Ec DOS is substantially enhanced by the binding of O(2) to the Fe(II)-protoporphyrin IX complex [Fe(II) complex] in the sensor domain. The binding of O(2) to the Fe(II) complex changes the structure of the sensor domain, and this altered structure becomes a signal that is transduced to the functional domain to trigger catalysis. The first step in intra-molecular signal transduction is the binding of O(2) to the Fe(II) complex, and detailed elucidation of this molecular mechanism is thus worthy of exploration. The X-ray crystal structure reveals that Phe113 is located close to the O(2) molecule bound to the Fe(II) complex in the sensor domain. Here, we found that the O(2) association rate constants (>200x10(-3) microM(-1)s(-1): F113L; 26x10(-3) microM(-1)s(-1): F113Y) of the Fe(II) complexes of Phe113 mutants were markedly different from that (51x10(-3) microM(-1)s(-1)) of the wild-type enzyme, and auto-oxidation rates (0.00068 min(-1): F113L; 0.039 min(-1): F113Y) of the Phe113 mutants also differed greatly from that (0.0062 min(-1)) of the wild-type enzyme. We thus suggest that Phe113, residing near the O(2) molecule, has a critical role in optimizing the Fe(II)-O(2) complex for effective regulation of catalysis by the oxygen-sensor enzyme. Interactions of CO and cyanide anion with the mutant proteins were also studied.


Asunto(s)
Monóxido de Carbono/metabolismo , Cianuros/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Hemo/metabolismo , Fenilalanina/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Datos de Secuencia Molecular , Estructura Molecular , Oxígeno/metabolismo , Fenilalanina/química , Fenilalanina/genética , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética
11.
J Biol Chem ; 283(27): 19000-10, 2008 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-18450754

RESUMEN

The direct oxygen sensor protein isolated from Escherichia coli (Ec DOS) is a heme-based signal transducer protein responsible for phosphodiesterase (PDE) activity. Binding of O(2), CO, or NO to a reduced heme significantly enhances the PDE activity toward 3',5'-cyclic diguanylic acid. We report stationary and time-resolved resonance Raman spectra of the wild-type and several mutants (Glu-93 --> Ile, Met-95 --> Ala, Arg-97 --> Ile, Arg-97 --> Ala, Arg-97 --> Glu, Phe-113 --> Leu, and Phe-113 --> Thr) of the heme-containing PAS domain of Ec DOS. For the CO- and NO-bound forms, both the hydrogen-bonded and non-hydrogen-bonded conformations were found, and in the former Arg-97 forms a hydrogen bond with the heme-bound external ligand. The resonance Raman results revealed significant interactions of Arg-97 and Phe-113 with a ligand bound to the sixth coordination site of the heme and profound structural changes in the heme propionates upon dissociation of CO. Mutation of Phe-113 perturbed the PDE activities, and the mutation of Arg-97 and Phe-113 significantly influenced the transient binding of Met-95 to the heme upon photodissociation of CO. This suggests that the electrostatic interaction of Arg-97 and steric interaction of Phe-113 are crucial for regulating the competitive recombination of Met-95 and CO to the heme. On the basis of these results, we propose a model for the role of the heme propionates in communicating the heme structural changes to the protein moiety.


Asunto(s)
Arginina/química , Proteínas Portadoras/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Hemo/química , Modelos Moleculares , Fenilalanina/química , Sustitución de Aminoácidos , Arginina/genética , Arginina/metabolismo , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hemo/genética , Hemo/metabolismo , Enlace de Hidrógeno , Ligandos , Mutagénesis Sitio-Dirigida , Mutación Missense , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Fenilalanina/genética , Fenilalanina/metabolismo , Hidrolasas Diéster Fosfóricas , Estructura Terciaria de Proteína/genética , Espectrometría Raman
12.
J Biol Chem ; 282(29): 21301-7, 2007 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-17535805

RESUMEN

Heme-regulated phosphodiesterase from Escherichia coli (Ec DOS) is a gas-sensor enzyme that hydrolyzes cyclic dinucleotide-GMP, and it is activated by O(2) or CO binding to the Fe(II) heme. In contrast to other well known heme-regulated gas-sensor enzymes or proteins, Ec DOS is not specific for a single gas ligand. Because Arg(97) in the heme distal side in Ec DOS interacts with the O(2) molecule and Met(95) serves as the axial ligand on the distal side of the Fe(II) heme-bound PAS domain of Ec DOS, we explored the effect of mutating these residues on the activity and gas specificity of Ec DOS. We found that R97A, R97I, and R97E mutations do not significantly affect regulation of the phosphodiesterase activities of the Fe(II)-CO and Fe(II)-NO complexes. The phosphodiesterase activities of the Fe(II)-O(2) complexes of the mutants could not be detected due to rapid autoxidation and/or low affinity for O(2). In contrast, the activities even of the gas-free M95A and M95L mutants were similar to that of the gas-activated wild-type enzyme. Interestingly, the activity of the M95H mutant was partially activated by O(2), CO, and NO. Spectroscopic analysis indicated that the Fe(II) heme is in the 5-coordinated high-spin state in the M95A and M95L mutants but that in the M95H mutant, like wild-type Ec DOS, it is in the 6-coordinated low-spin state. These results suggest that Met(95) coordination to the Fe(II) heme is critical for locking the system and that global structural changes around Met(95) caused by the binding of the external ligands or mutations at Met(95) releases the catalytic lock and activates catalysis.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/química , GMP Cíclico/química , Escherichia coli/enzimología , Hemo/química , Metionina/química , Monóxido de Carbono/química , Catálisis , Hierro/química , Ligandos , Modelos Moleculares , Óxido Nítrico/química , Oxígeno/química , Hidrolasas Diéster Fosfóricas/química , Unión Proteica , Conformación Proteica
13.
Biochemistry ; 46(20): 6086-96, 2007 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-17469799

RESUMEN

FixL is a heme-based O2 sensor protein, which responds to low O2 concentrations by activating the transcriptional activator FixJ. Signal transduction is initiated by the dissociation of O2 from the sensor domain of FixL, resulting in protein conformational changes that are transmitted to a histidine kinase domain. To gain insight into the FixL sensing mechanism, we monitored changes in the protein's structure in the picosecond to millisecond time frame, following the dissociation of the ligand using time-resolved resonance Raman spectroscopy. This study presents the time-resolved resonance Raman spectra of Sinorhizobium meliloti FixL upon O2 dissociation, as well as upon CO dissociation. The FixL spectra show that there are three steps in the dynamic structural changes that result from ligand dissociation. Ligand-dependent structural dynamics are observed in the earliest step. On the basis of comparisons of these structural changes, a scheme for the signal transduction of FixL is proposed which supports the FG loop switch mechanism. Similar spectral changes were observed both for the sensor domain and for the full-length protein, although structural changes occurred faster with the former than with the latter. This difference in rate suggests that the structural changes occurring in the heme pocket are coupled to those of the kinase domain. The implications of these results for FixL's sensing mechanism are discussed.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Hemoproteínas/química , Hemoproteínas/fisiología , Transducción de Señal/fisiología , Termodinámica , Proteínas Bacterianas/metabolismo , Monóxido de Carbono/metabolismo , Hemo/química , Hemoproteínas/metabolismo , Histidina Quinasa , Ligandos , Oxígeno/metabolismo , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína , Sinorhizobium meliloti/química , Sinorhizobium meliloti/fisiología , Espectrometría Raman
14.
Biochemistry ; 45(8): 2515-23, 2006 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-16489744

RESUMEN

FixL is a heme-based O(2) sensor, in which the autophosphorylation is regulated by the binding of exogenous ligands such as O(2) and CN(-). In this study, mutants of the heme distal Arg200, Arg208, Ile209, Ile210, and Arg214 residues of SmFixL were characterized biochemically and physicochemically, because it has been suggested that they are significant residues in ligand-linked kinase regulation. Measurements of the autoxidation rate, affinities, and kinetics of ligand binding revealed that all of the above residues are involved in stabilization of the O(2)-heme complex of FixL. However, Arg214 was found to be the only residue that is directly relevant to the ligand-dependent regulation of kinase activity. Although the wild type and R214K and R214Q mutants exhibited normal kinase regulation, R214A, R214M, R214H, and R214Y did not. (13)C and (15)N NMR analyses for (13)C(15)N(-) bound to the truncated heme domains of the Arg214 mutants indicated that, in the wild type and the foregoing two mutants, the heme moiety is present in a single conformation, but in the latter four, the conformations fluctuate possibly because of the lack of an interaction between the iron-bound ligand and residue 214. It is likely that such a rigid conformation of the ligand-bound form is important for the downregulation of histidine kinase activity. Furthermore, a comparison of the NMR data between the wild type and R214K and R214Q mutants suggests that a strong electrostatic interaction between residue 214 and the iron-bound ligand is not necessarily required for the single convergent structure and eventually for the downregulation of FixL.


Asunto(s)
Proteínas Bacterianas/química , Regulación hacia Abajo/fisiología , Hemo/química , Hemoproteínas/química , Oxígeno/metabolismo , Proteínas Quinasas/metabolismo , Arginina/genética , Arginina/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cianuros/metabolismo , Hemo/genética , Hemo/metabolismo , Hemoproteínas/metabolismo , Histidina Quinasa , Enlace de Hidrógeno , Imidazoles/metabolismo , Hierro/metabolismo , Isoleucina/genética , Isoleucina/metabolismo , Cinética , Ligandos , Espectroscopía de Resonancia Magnética , Mutación , Oxidación-Reducción , Oxígeno/química , Fosforilación , Conformación Proteica , Sinorhizobium meliloti/metabolismo , Espectrometría Raman
15.
Biochem Biophys Res Commun ; 304(1): 136-42, 2003 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-12705897

RESUMEN

FixL, a rhizobial heme-based O2-sensing histidine kinase, catalyzes autophosphorylation in the deoxy form at low O2 tension, while the kinase activity is inhibited in the case of the O2-bound form. The present study unambiguously shows that the binding of CO and NO does not significantly inhibit the kinase activity of dithiothreitol (DTT)-reduced ferrous FixL from Sinorhizobium meliloti, which is inconsistent with the spin state mechanism previously reported. Kinase inactivation is caused by aberrant disulfide (S-S) bond formation at Cys301 in the ferric homodimer, which explains these contradictory observations. The addition of DTT cleaved the S-S bond, leading to restoration of kinase activity in the ferric form as well as heme reduction, but, sodium hydrosulfite treatment produced the kinase-inactive deoxy form without S-S cleavage. On the basis of these experimental results, it can be concluded that ferrous FixL discriminates O2 from CO and NO, and signals the O2-bound state by downregulating the phosphoryl transfer reaction.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hemoproteínas/metabolismo , Oxígeno/fisiología , Sinorhizobium meliloti/enzimología , Proteínas Bacterianas/química , Monóxido de Carbono/metabolismo , Cisteína/química , Ditiotreitol/farmacología , Regulación hacia Abajo , Compuestos Férricos/metabolismo , Compuestos Ferrosos/metabolismo , Hemoproteínas/química , Histidina Quinasa , Ligandos , Óxido Nítrico/metabolismo , Oxidación-Reducción , Fosforilación , Sulfitos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA