Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Opt Express ; 29(10): 14799-14814, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33985194

RESUMEN

A single metallic nanodisk is the simplest plasmonic nanostructure, but it is robust enough to generate a Fano resonance in the forward and backward scattering spectra by the increment of nanodisk height in the symmetric and asymmetric dielectric environment. Thanks to the phase retardation effect, the non-uniform distribution of electric field along the height of aluminum (Al) nanodisk generates the out-of-plane higher-order modes, which interfere with the dipolar mode and subsequently result in the Fano-lineshape scattering spectra. Meanwhile, the symmetry-breaking effect by the dielectric substrate and the increment of refractive index of the symmetric dielectric environment further accelerate the phase retardation effect and contribute to the appearance of out-of-plane modes. The experimental results on the periodic Al nanodisk arrays with different heights confirm the retardation-induced higher modes in the asymmetric and symmetric environment. The appearance of higher modes and blueshifted main dips in the transmission spectra prove the dominant role of out-of-plane higher modes on the plasmonic resonances of the taller Al nanodisk.

2.
Opt Express ; 28(18): 25989-25997, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32906876

RESUMEN

Plasmonic color using metallic nanostructures has attracted considerable interest because of its subwavelength resolution and long sustainability. Significant efforts have been devoted to expanding the gamut of plasmonic color generation by tuning the composition, shape, and components in the primary pixel. In this study, we develop a novel and straightforward strategy for aluminum plasmonic color printing aimed at practical commercial applications. An array of aluminum nanodisks is designed for the broadband scattering of white pixels instead of the three primary colors. Examples presented include trademark and QR codes, which are common in the market of consumer advertising and item identification, that are encoded and fabricated in experiments with aluminum white color pixels to demonstrate feasibility. This simple and efficient strategy is compatible with cost-effective industrial fabrication methods, such as photolithography and nanoimprinting, and requires relatively simpler manufacturing procedures. Therefore, a new path is opened for the future with the extensive use of plasmonic color printing.

3.
Opt Express ; 28(2): 886-897, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-32121809

RESUMEN

Upconversion photoluminescence (UCPL) of rare-earth ions has attracted much attention due to its potential application in cell labeling, anti-fake printing, display, solar cell and so forth. In spite of high internal quantum yield, they suffer from very low external quantum yield due to poor absorption cross-section of rare-earth ions. In the present work, to increase the absorption by rare earth ions, we place the emitter layer on a diffractive array of Al nanocylinders. The array is designed to trap the near infrared light in the emitter layer via excitation of the plasmonic-photonic hybrid mode, a collective resonance of localized surface plasmons in nanocylinders via diffractive coupling. The trapped near-infrared light is absorbed by the emitter, and consequently the intensity of UCPL increases. In sharp contrast to the pure localized surface plasmons which are bound to the surface, the hybridization with diffraction allows the mode to extend into the layer, and the enhancement up to 9 times is achieved for the layer with 5.7 µm thick. This result explicitly demonstrates that coupling the excitation light to plasmonic-photonic hybrid modes is a sensible strategy to enhance UCPL from a thick layer.

4.
Opt Express ; 27(4): 5083-5096, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30876112

RESUMEN

Thin films containing light emitters act as light-to-light converters that absorb the incident light and emit luminescence. This well-known phenomenon is photoluminescence (PL). When a photoluminescent film is notably thinner than the absorption length of emitters, it exhibits weak absorption of incident light. The absorption can be increased by depositing the thin film on a plasmonic array of metallic nanocylinders arranged with a specific periodicity. The array couples the incident light into the thin film, facilitating the plasmon-enhanced absorption by the emitters in the film. In this study, we demonstrate both experimentally and numerically the plasmon-enhanced absorption of a rhodamine 6G-containing film that is thinner than its absorption length using a periodic array of Al nanocylinders. The experimental results demonstrate that the spectrally integrated PL intensity is increased up to 3.78 times. In addition to enhanced absorption, the array is also found to diffract the PL into a direction determined by the periodicity, thereby facilitating the multiplied enhancement of PL. The combination of the two factors yields a PL intensity enhanced up to 10 times at a specific angle and wavelength. Numerical simulations combining the carrier kinetics with full-wave electromagnetics in the time-domain support the experimental observations.

5.
J Am Chem Soc ; 140(46): 15690-15700, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30347981

RESUMEN

Hybrid improper ferroelectricity, which utilizes nonpolar but ubiquitous rotational/tilting distortions to create polarization, offers an attractive route to the discovery of new ferroelectric and multiferroic materials because its activity derives from geometric rather than electronic origins. Design approaches blending group theory and first principles can be utilized to explore the crystal symmetries of ferroelectric ground states, but in general, they do not make accurate predictions for some important parameters of ferroelectrics, such as Curie temperature ( TC). Here, we establish a predictive and quantitative relationship between TC and the Goldschmidt tolerance factor, t, by employing n = 2 Ruddlesden-Popper (RP) A3B2O7 as a prototypical example of hybrid improper ferroelectrics. The focus is placed on an RP system, (Sr1- xCa x)3Sn2O7 ( x = 0, 0.1, and 0.2), which allows for the investigation of the purely geometric (ionic size) effect on ferroelectric transitions, due to the absence of the second-order Jahn-Teller active (d0 and 6s2) cations that often lead to ferroelectric distortions through electronic mechanisms. We observe a ferroelectric-to-paraelectric transition with TC = 410 K for Sr3Sn2O7. We also find that the TC increases linearly up to 800 K upon increasing the Ca2+ content, i.e., upon decreasing the value of t. Remarkably, this linear relationship is applicable to the suite of all known A3B2O7 hybrid improper ferroelectrics, indicating that the  TC correlates with the simple crystal chemistry descriptor, t, based on the ionic size mismatch. This study provides a predictive guideline for estimating the TC of a given material, which would complement the convergent group-theoretical and first-principles design approach.

6.
Opt Express ; 26(5): 5970-5982, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29529793

RESUMEN

A periodic array of plasmonic nanocylinders can sustain both surface plasmon polaritons (SPPs) and optical diffraction in the plane of the array. Thus the optical energy can be efficiently trapped in the plane of the array, providing a good platform for controlling light. Plasmonic arrays have been investigated in the visible range, while studies in the ultraviolet (UV) range have been limited due to material-related restrictions and higher precision required for optical diffraction in the UV compared to that in the visible range. In this study, we fabricated periodic arrays of Al nanocylinders with periods comparable to optical wavelengths in the UV for simultaneous excitation of both SPPs and optical diffraction in the UV spectral region. We deposited UV-absorbing and highly luminous dielectric films on the arrays, observed enhanced photoluminescence of the film under UV laser excitation, and demonstrated that such periodic arrays can trap the UV light energy. Our findings show that periodic arrays of Al nanocylinders are useful for controlling UV light.

7.
Inorg Chem ; 56(18): 11113-11122, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-28880082

RESUMEN

Perovskite rare-earth cobaltites ACoO3 (A = Sc, Y, La-Lu) have been of enduring interest for decades due to their unusual structural and physical properties associated with the spin-state transitions of low-spin Co3+ ions. Herein, we have synthesized a non-rare-earth perovskite cobaltite, InCoO3, at 15 GPa and 1400 °C and investigated its crystal structure and magnetic ground state. Under the same high-pressure and high-temperature conditions, we also prepared a perovskite-type ScCoO3 with an improved cation stoichiometry in comparison to that in a previous study, where synthesis at 6 GPa and 1297 °C yielded a perovskite cobaltite with cation mixing on the A-site, (Sc0.95Co0.05)CoO3. The two perovskite phases have nearly stoichiometric cation compositions, crystallizing in the orthorhombic Pnma space group. In the present investigation, comprehensive studies on newly developed and well-known Pnma ACoO3 perovskites (A = In, Sc, Y, Pr-Lu) show that InCoO3 does not fulfill the general evolution of crystal metrics with A-site cation size, indicating that InCoO3 and rare-earth counterparts have different chemistry for stabilizing the Pnma structures. Detailed structural analyses combined with first-principles calculations reveal that the origin of the anomaly for InCoO3 is ascribed to the A-site cation displacements that accompany octahedral tilts; despite the highly tilted CoO6 network, the In-O covalency makes In3+ ions reluctant to move from their ideal cubic-symmetry position, leading to less orthorhombic distortion than would be expected from electrostatic/ionic size mismatch effects. Magnetic studies demonstrate that InCoO3 and ScCoO3 are diamagnetic with a low-spin state of Co3+ below 300 K, in contrast to the case of (Sc0.95Co0.05)CoO3, where the high-spin Co3+ ions on the A-site generate a large paramagnetic moment. The present work extends the accessible composition range of the low-spin orthocobaltite series and thus should help to establish a more comprehensive understanding of the structure-property relation.

8.
J Am Chem Soc ; 138(49): 15950-15955, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960353

RESUMEN

By using a high-pressure reaction, we prepared a new oxynitride ZnTaO2N that crystallizes in a centrosymmetric (R3̅c) high-temperature LiNbO3-type structure (HTLN-type). The stabilization of the HTLN-type structure down to low temperatures (at least 20 K) makes it possible to investigate not only the stability of this phase, but also the phase transition to a noncentrosymmetric (R3c) LiNbO3-type structure (LN-type) which is yet to be clarified. Synchrotron and neutron diffraction studies in combination with transmission electron microscopy show that Zn is located at a disordered 12c site instead of 6a, implying an order-disorder mechanism of the phase transition. It is found that the closed d-shell of Zn2+, as well as the high-valent Ta5+ ion, is responsible for the stabilization of the HTLN-type structure, affording a novel quasitriangular ZnO2N coordination. Interestingly, only 3% Zn substitution for MnTaO2N induces a phase transition from LN- to HTLN-type structure, implying the proximity in energy between the two structural types, which is supported by the first-principles calculations.

9.
J Am Chem Soc ; 138(9): 3211-7, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26855196

RESUMEN

We present how the introduction of anion vacancies in oxyhydrides enables a route to access new oxynitrides, by conducting ammonolysis of perovskite oxyhydride EuTiO3-xHx (x ∼ 0.18). At 400 °C, similar to our studies on BaTiO3-xHx, hydride lability enables a low temperature direct ammonolysis of EuTi(3.82+)O2.82H0.18, leading to the N(3-)/H(-)-exchanged product EuTi(4+)O2.82N0.12□0.06. When the ammonolysis temperature was increased up to 800 °C, we observed a further nitridation involving N(3-)/O(2-) exchange, yielding a fully oxidized Eu(3+)Ti(4+)O2N with the GdFeO3-type distortion (Pnma) as a metastable phase, instead of pyrochlore structure. Interestingly, the same reactions using the oxide EuTiO3 proceeded through a 1:1 exchange of N(3-) with O(2-) only above 600 °C and resulted in incomplete nitridation to EuTiO2.25N0.75, indicating that anion vacancies created during the initial nitridation process of EuTiO2.82H0.18 play a crucial role in promoting anion (N(3-)/O(2-)) exchange at high temperatures. Hence, by using (hydride-induced) anion-deficient precursors, we should be able to expand the accessible anion composition of perovskite oxynitrides.

10.
Opt Express ; 24(2): 1143-53, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26832498

RESUMEN

We have fabricated two-dimensional periodic arrays of titanium nitride (TiN) nanoparticles from epitaxial thin films. The thin films of TiN, deposited on sapphire and single crystalline magnesium oxide substrates by a pulsed laser deposition, are metallic and show reasonably small optical loss in the visible and near infrared regions. The thin films prepared were structured to the arrays of nanoparticles with the pitch of 400 nm by the combination of nanoimprint lithography and reactive ion etching. Optical transmission indicates that the arrays support the collective plasmonic modes, where the localized surface plasmon polaritons in TiN nanoparticles are radiatively coupled through diffraction. Numerical simulation visualizes the intense fields accumulated both in the nanoparticles and in between the particles, confirming that the collective mode originates from the simultaneous excitation of localized surface plasmon polaritons and diffraction. This study experimentally verified that the processing of TiN thin films with the nanoimprint lithography and reactive ion etching is a powerful and versatile way of preparing plasmonic nanostructures.

11.
Inorg Chem ; 54(4): 1501-7, 2015 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-25594721

RESUMEN

We have prepared the oxyhydride perovskite EuTiO(3-x)H(x) (x ≤ 0.3) by a low temperature CaH2 reduction of pyrochlore Eu2Ti2O7 and perovskite EuTiO3. The reduced EuTiO(3-x)H(x) crystallizes in the ideal cubic perovskite (Pm3̅m), where O/H anions are randomly distributed. As a result of electron doping by the aliovalent anion exchange, the resistivity of EuTiO(3-x)H(x) shows metallic temperature dependence. Moreover, an antiferromagnetic-to-ferromagnetic transition is observed even when a small amount of hydride (x ∼ 0.07) is introduced. The Curie temperature TC of 12 K is higher than those of any other EuTiO3-derived ferromagnets. The ferromagnetism can be explained by the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between the Eu(2+) spins mediated by the itinerant Ti 3d electrons. The present study shows that controlling the oxide/hydride ratio is a versatile method to tune magnetic and transport properties.

12.
Angew Chem Int Ed Engl ; 54(37): 10870-4, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26211745

RESUMEN

Of particular interest is a peculiar motion of guest atoms or ions confined to nanospace in cage compounds, called rattling. While rattling provides unexplored physical properties through the guest-host interactions, it has only been observed in a very limited class of materials. Herein, we introduce an A-site-ordered quadruple perovskite, CuCu3 V4 O12 , as a new family of cage compounds. This novel AA'3 B4 O12 -type perovskite has been obtained by a high-pressure synthesis technique and structurally characterized to have cubic Im$\bar 3$ symmetry with an ionic model of Cu(2+) Cu(2+) 3 V(4+) 4 O12 . The thermal displacement parameter of the A-site Cu(2+) ion is as large as Uiso ≈0.045 Å(2) at 300 K, indicating its large-amplitude thermal oscillations in the oversized icosahedral cages. Remarkably, the presence of localized phonon modes associated with rattling of the A-site Cu(2+) ion manifests itself in the low-temperature specific heat data. This work sheds new light on the structure-property relations in perovskites.

13.
Angew Chem Int Ed Engl ; 54(2): 516-21, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25417894

RESUMEN

The synthesis, structure, and magnetic properties of a polar and magnetic oxynitride MnTaO2N are reported. High-pressure synthesis at 6 GPa and 1400 °C allows for the stabilization of a high-density structure containing middle-to-late transition metals. Synchrotron X-ray and neutron diffraction studies revealed that MnTaO2N adopts the LiNbO3-type structure, with a random distribution of O(2-) and N(3-) anions. MnTaO2N with an "orbital-inactive" Mn(2+) ion (d(5); S=5/2) exhibits a nontrivial helical spin order at 25 K with a propagation vector of [0,0,δ] (δ≈0.3), which is different from the conventional G-type order observed in other orbital-inactive perovskite oxides and LiNbO3-type oxides. This result suggests the presence of strong frustration because of the heavily tilted MnO4N2 octahedral network combined with the mixed O(2-)/N(3-) species that results in a distribution of (super)-superexchange interactions.

14.
J Am Chem Soc ; 136(43): 15291-9, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25335092

RESUMEN

Multiferroic materials have been the subject of intense study, but it remains a great challenge to synthesize those presenting both magnetic and ferroelectric polarizations at room temperature. In this work, we have successfully obtained LiNbO3-type ScFeO3, a metastable phase converted from the orthorhombic perovskite formed under 15 GPa at elevated temperatures. A combined structure analysis by synchrotron X-ray and neutron powder diffraction and high-angle annular dark-field scanning transmission electron microscopy imaging reveals that this compound adopts the polar R3c symmetry with a fully ordered arrangement of trivalent Sc and Fe ions, forming highly distorted ScO6 and FeO6 octahedra. The calculated spontaneous polarization along the hexagonal c-axis is as large as 100 µC/cm(2). The magnetic studies show that LiNbO3-type ScFeO3 is a weak ferromagnet with TN = 545 K due to a canted G-type antiferromagnetic ordering of Fe(3+) spins, representing the first example of LiNbO3-type oxides with magnetic ordering far above room temperature. A comparison of the present compound and rare-earth orthorhombic perovskites RFeO3 (R = La-Lu and Y), all of which possess the corner-shared FeO6 octahedral network, allows us to find a correlation between TN and the Fe-O-Fe bond angle, indicating that the A-site cation-size-dependent octahedral tilting dominates the magnetic transition through the Fe-O-Fe superexchange interaction. This work provides a general and versatile strategy to create materials in which ferroelectricity and ferromagnetism coexist at high temperatures.

15.
Phys Rev Lett ; 112(18): 187602, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24856722

RESUMEN

Rotations of oxygen octahedra are ubiquitous, but they cannot break inversion symmetry in simple perovskites. However, in a layered oxide structure, this is possible, as we demonstrate here in A-site ordered Ruddlesden-Popper NaRTiO4 (R denotes rare-earth metal), previously believed to be centric. By revisiting this series via synchrotron x-ray diffraction, optical second-harmonic generation, piezoresponse force microscopy, and first-principles phonon calculations, we find that the low-temperature phase belongs to the acentric space group P42(1)m, which is piezoelectric and nonpolar. The mechanism underlying this large new family of acentric layered oxides is prevalent, and could lead to many more families of acentric oxides.

16.
Inorg Chem ; 53(14): 7635-41, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24956446

RESUMEN

The effective magneto-optical properties of novel nonanuclear Tb(III) complexes with Tb-O lattice (specifically, [Tb9(sal-R)16(µ-OH)10](+)NO3(-), where sal-R = alkyl salicylate (R = -CH3 (Me), -C2H5 (Et), -C3H7 (Pr), or -C4H9 (Bu)) are reported. The geometrical structures of these nonanuclear Tb(III) complexes were characterized using X-ray single-crystal analysis and shape-measure calculation. Optical Faraday rotation was observed in nonanuclear Tb(III) complexes in the visible region. The Verdet constant per Tb(III) ion of the Tb9(sal-Me) complex is 150 times larger than that of general Tb(III) oxide glass. To understand their large Faraday rotation, electron paramagnetic resonance measurements of Gd(III) complexes were carried out. In this Report, the magneto-optical relation to the coordination geometry of Tb ions is discussed.

17.
Nano Lett ; 13(9): 4106-12, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-23915034

RESUMEN

A SPASER, short for surface plasmon amplification by stimulated emission of radiation, is key to accessing coherent optical fields at the nanoscale. Nevertheless, the realization of a SPASER in the visible range still remains a great challenge because of strong dissipative losses. Here, we demonstrate that room-temperature SPASER emission can be achieved by amplifying longitudinal surface plasmon modes supported in gold nanorods as plasmon nanocavities and utilizing laser dyes to supply optical gain for compensation of plasmon losses. By choosing a particular organic dye and adjusting the doping level, the resonant wavelength of the SPASER emission can be tuned from 562 to 627 nm with a spectral line width narrowed down to 5-11 nm. This work provides a versatile route toward SPASERs at extended wavelength regimes.


Asunto(s)
Oro/química , Nanotubos/química , Resonancia por Plasmón de Superficie , Transferencia de Energía , Óptica y Fotónica , Radiación
18.
Nutrients ; 16(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38794648

RESUMEN

In Japan, many workers are exposed to chronic stress, sleep deprivation, and nutritional imbalance. They tend still to go to work when ill, leading to decreased work performance and productivity, which has become a major social problem. We conducted a human entry study with the aim of finding a link between these two factors and proposing an optimized diet, believing that a review of diet may lead to an improvement in labor productivity. In this study, we used subjective accomplishment (SA) as a measure of productivity. First, we compared nutrient intake between groups with high and low SA using data from a health survey of 1564 healthy male and female adults. Significant differences were found in the intake of 13 nutrients in males and 15 nutrients in females, including potassium, vitamin A, insoluble fiber, and biotin. Recommended daily intake of these nutrients was determined from survey data. Next, we designed test meals containing sufficient amounts of 17 nutrients and conducted a single-arm intervention study (registration code UMIN000047054) in Kameyama City, Mie Prefecture, Japan. Healthy working adults (males and females aged 20-79 years) were recruited and supplied with test meals, which were eaten once a day 5 days a week for 8 weeks. SA was significantly higher and daytime sleepiness (DS) was significantly lower after lunch on workdays in younger participants (under 60 years) when they ate the test meals as breakfast or lunch. Our results suggest that SA and DS, which change daily, are strongly influenced by the meal eaten before work, and that taking the 17 nutrients may help prevent presenteeism and improve labor productivity.


Asunto(s)
Encuestas Epidemiológicas , Nutrientes , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Japón , Anciano , Nutrientes/análisis , Adulto Joven , Eficiencia , Dieta/métodos , Dieta/estadística & datos numéricos , Rendimiento Laboral , Comidas
19.
J Am Chem Soc ; 135(7): 2659-66, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23343325

RESUMEN

Novel EuS nanocrystals containing paramagnetic Mn(II), Co(II), or Fe(II) ions have been reported as advanced semiconductor materials with effective optical rotation under a magnetic field, Faraday rotation. EuS nanocrystals with transition-metal ions, EuS:M nanocrystals, were prepared by the reduction of the Eu(III) dithiocarbamate complex tetraphenylphosphonium tetrakis(diethyldithiocarbamate)europium(III) with transition-metal complexes at 300 °C. The EuS:M nanocrystals thus prepared were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), inductively coupled plasma atomic emission spectroanalysis (ICP-AES), and a superconducting quantum interference device (SQUID) magnetometer. Enhanced Faraday rotations of the EuS:M nanocrystals were observed around 550 nm, and their enhanced spin polarization was estimated using electron paramagnetic resonance (EPR) measurements. In this report, the magneto-optical relationship between the Faraday rotation efficiency and spin polarization is discussed.

20.
Chemistry ; 19(43): 14438-45, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24105639

RESUMEN

Remarkable magneto-optical properties of a new isolator material, that is, europium sulfide nanocrystals with gold (EuS-Au nanosystem), has been demonstrated for a future photo-information technology. Attachment of gold particles that exhibit surface plasmon resonance leads to amplification of the magneto-optical properties of the EuS nanocrystals. To construct the EuS-Au nanosystems, cubic EuS and spherical Au nanocrystals have been joined by a variety of organic linkers, that is, 1,2-ethanedithiol (EDT), 1,6-hexanedithiol (HDT), 1,10-decanedithiol (DDT), 1,4-bisethanethionaphthalene (NpEDT), or 1,4-bisdecanethionaphthalene (NpDDT) . Formation of these systems was observed by XRD, TEM, and absorption spectra measurements. The magneto-optical properties of the EuS-Au nanosystem have been characterized by using Faraday rotation spectroscopy. The Faraday rotation angle of the EuS-Au nanosystem is dependent on the Au particle size and interparticle distance between EuS and Au nanocrystals. Enhancement of the Faraday rotation of EuS-Au nanosystems was observed. The spin configuration in the excited state of the EuS-Au nanosystem was also investigated using photo-assisted electron paramagnetic resonance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA