Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 209(2): 238-249, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705251

RESUMEN

Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease that is estimated to affect 35 million people worldwide and is characterized by lymphocytic infiltration, elevated circulating autoantibodies, and proinflammatory cytokines. The key immune cell subset changes and the TCR/BCR repertoire alterations in pSS patients remain unclear. In this study, we sought to comprehensively characterize the transcriptional changes in PBMCs of pSS patients by single-cell RNA sequencing and single-cell V(D)J sequencing. Naive CD8+ T cells and mucosal-associated invariant T cells were markedly decreased but regulatory T cells were increased in pSS patients. There were a large number of differentially expressed genes shared by multiple subpopulations of T cells and B cells. Abnormal signaling pathways, including Ag processing and presentation, the BCR signaling pathway, the TCR signaling pathway, and Epstein-Barr virus infection, were highly enriched in pSS patients. Moreover, there were obvious differences in the CD30, FLT3, IFN-II, IL-1, IL-2, IL-6, IL-10, RESISTIN, TGF-ß, TNF, and VEGF signaling networks between pSS patients and healthy controls. Single-cell TCR and BCR repertoire analysis showed that there was a lower diversity of T cells in pSS patients than in healthy controls; however, there was no significant difference in the degree of clonal expansion, CDR3 length distribution, or degree of sequence sharing. Notably, our results further emphasize the functional importance of αß pairing in determining Ag specificity. In conclusion, our analysis provides a comprehensive single-cell map of gene expression and TCR/BCR profiles in pSS patients for a better understanding of the pathogenesis, diagnosis, and treatment of pSS.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Síndrome de Sjögren , Linfocitos T CD8-positivos/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Herpesvirus Humano 4/genética , Humanos , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos T/genética
2.
Kidney Blood Press Res ; 49(1): 430-442, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38797171

RESUMEN

BACKGROUND: N-glycosylation is one of the most common posttranslational modifications in humans, and these alterations are associated with kidney diseases. METHODS: A novel technological approach, single-cell N-acetyllactosamine sequencing (scLacNAc-seq), was applied to simultaneously detect N-glycosylation expression and the transcriptome at single-cell resolution in three human kidney tissues from zero-time biopsy. Cell clusters, glycation abundance in each cell cluster, functional enrichment analysis, cell-cell crosstalk, and pseudotime analysis were applied. RESULTS: Using scLacNAc-seq, 24,247 cells and 22 cell clusters were identified, and N-glycan abundance in each cell was obtained. Transcriptome analysis revealed a close connection between capillary endothelial cells (CapECs) and parietal epithelial cells (PECs). PECs and CapECs communicate with each other through several pairs of ligand receptors (e.g., TGFB1-EGFR, GRN-EGFR, TIMP1-FGFR2, VEGFB-FLT1, ANGPT2-TEK, and GRN-TNFRSF1A). Finally, a regulatory network of cell-cell crosstalk between PECs and CapECs was constructed, which is involved in cell development. CONCLUSIONS: We here, for the first time, constructed the glycosylation profile of 22 cell clusters in the human kidney from zero-time biopsy. Moreover, cell-cell communication between PECs and CapECs through the ligand-receptor system may play a crucial regulatory role in cell proliferation.


Asunto(s)
Comunicación Celular , Células Endoteliales , Células Epiteliales , Riñón , Humanos , Glicosilación , Células Endoteliales/metabolismo , Células Epiteliales/metabolismo , Riñón/metabolismo , Riñón/citología , Análisis de la Célula Individual
3.
Mol Cell Proteomics ; 21(12): 100434, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36309313

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by immune complex deposition in multiple organs. Despite the severe symptoms caused by it, the underlying mechanisms of SLE, especially phosphorylation-dependent regulatory networks remain elusive. Herein, by combining high-throughput phosphoproteomics with bioinformatics approaches, we established the global phosphoproteome landscape of the peripheral blood mononuclear cells from a large number of SLE patients, including the remission stage (SLE_S), active stage (SLE_A), rheumatoid arthritis, and healthy controls, and thus a deep mechanistic insight into SLE signaling mechanism was yielded. Phosphorylation upregulation was preferentially in patients with SLE (SLE_S and SLE_A) compared with healthy controls and rheumatoid arthritis populations, resulting in an atypical enrichment in cell adhesion and migration signatures. Several specifically upregulated phosphosites were identified, and the leukocyte transendothelial migration pathway was enriched in the SLE_A group by expression pattern clustering analysis. Phosphosites identified by 4D-label-free quantification unveiled key kinases and kinase-regulated networks in SLE, then further validated by parallel reaction monitoring. Some of these validated phosphosites including vinculin S275, vinculin S579 and transforming growth factor beta-1-induced transcript 1 S68, primarily were phosphorylation of Actin Cytoskeleton -related proteins. Some predicted kinases including MAP3K7, TBK1, IKKß, and GSK3ß, were validated by Western blot using kinases phosphorylation sites-specific antibodies. Taken together, the study has yielded fundamental insights into the phosphosites, kinases, and kinase-regulated networks in SLE. The map of the global phosphoproteomics enables further understanding of this disease and will provide great help for seeking more potential therapeutic targets for SLE.


Asunto(s)
Artritis Reumatoide , Lupus Eritematoso Sistémico , Humanos , Vinculina/metabolismo , Leucocitos Mononucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Artritis Reumatoide/metabolismo
4.
Proteome Sci ; 21(1): 18, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833721

RESUMEN

BACKGROUND: End-stage renal disease (ESRD) is a condition that is characterized by the loss of kidney function. ESRD patients suffer from various endothelial dysfunctions, inflammation, and immune system defects. Lysine malonylation (Kmal) is a recently discovered post-translational modification (PTM). Although Kmal has the ability to regulate a wide range of biological processes in various organisms, its specific role in ESRD is limited. METHODS: In this study, the affinity enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques have been used to create the first global proteome and malonyl proteome (malonylome) profiles of peripheral blood mononuclear cells (PBMCs) from twenty patients with ESRD and eighty-one controls. RESULTS: On analysis, 793 differentially expressed proteins (DEPs) and 12 differentially malonylated proteins (DMPs) with 16 Kmal sites were identified. The Rap1 signaling pathway and platelet activation pathway were found to be important in the development of chronic kidney disease (CKD), as were DMPs TLN1 and ACTB, as well as one malonylated site. One conserved Kmal motif was also discovered. CONCLUSIONS: These findings provided the first report on the Kmal profile in ESRD, which could be useful in understanding the potential role of lysine malonylation modification in the development of ESRD.

5.
Proteome Sci ; 21(1): 22, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041078

RESUMEN

Lung tissue is an important organ of the fetus, and genomic research on its development has improved our understanding of the biology of this tissue. However, the proteomic research of developing fetal lung tissue is still very scarce. We conducted comprehensive analysis of two developmental stages of fetal lung tissue of proteomics. It showed the developmental characteristics of lung tissue, such as the down-regulation of metabolism-related protein expression, the up-regulation of cell cycle-related proteins, and the regulation in proteins and pathways related to lung development. In addition, we also discovered some key core proteins related to lung development, and provided some key crotonylation modification sites that regulation during lung tissue development. Our comprehensive analysis of lung proteomics can provide a more comprehensive understanding of the developmental status of lung tissue, and provide a certain reference for future research and epigenetics of lung tissue.

6.
Inflamm Res ; 72(8): 1603-1620, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37474625

RESUMEN

OBJECTIVE: We aimed to reveal a spatial proteomic and immune signature of kidney function regions in lupus nephritis (LN). MATERIAL AND METHODS: The laser capture microdissection (LCM) was used to isolate the glomerulus, tubules, and interstitial of the kidney from paraffin samples. The data-independent acquisition (DIA) method was used to collect proteomics data. The bioinformatic analysis was performed. RESULTS: A total of 49,658 peptides and 4056 proteins were quantitated. Our results first showed that a high proportion of activated NK cells, naive B cells, and neutrophils in the glomerulus, activated NK cells in interstitial, and resting NK cells were accumulated in tubules in LN. The immune-related function analysis of differential expression proteins in different regions indicated that the glomerulus and interstitial were major sites of immune disturbance and regulation connected with immune response activation. Furthermore, we identified 7, 8, and 9 hub genes in LN's glomerulus, renal interstitial, and tubules. These hub genes were significantly correlated with the infiltration of immune cell subsets. We screened out ALB, CTSB, LCN2, A2M, CDC42, VIM, LTF, and CD14, which show higher performance as candidate biomarkers after correlation analysis with clinical indexes. The function within three regions of the kidney was analyzed. The differential expression proteins (DEGs) between interstitial and glomerulus were significantly enriched in the immune-related biological processes, and myeloid leukocyte-mediated immunity and cellular response to hormone stimulus. The DEGs between tubules and glomerulus were significantly enriched in cell activation and leukocyte-mediated immunity. While the DEGs between tubules and interstitial were enriched in response to lipid, antigen processing, and presentation of peptide antigen response to oxygen-containing compound, the results indicated a different function within kidney regions. CONCLUSIONS: Collectively, we revealed spatial proteomics and immune signature of LN kidney regions by combined using LCM and DIA.


Asunto(s)
Nefritis Lúpica , Humanos , Nefritis Lúpica/metabolismo , Proteómica , Riñón/metabolismo , Glomérulos Renales/metabolismo , Rayos Láser
7.
World J Surg Oncol ; 21(1): 301, 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37741973

RESUMEN

PURPOSE: Oral adenoid cystic carcinoma (OACC) has high rates of both local-regional recurrence and distant metastasis. The objective of this study is to investigate the impact of Khib on OACC and its potential as a targeted therapeutic intervention. EXPERIMENTAL DESIGN: We investigated the DEPs (differentially expressed proteins) and DHMPs between OACC-T and OACC-N using LC-MS/MS-based quantitative proteomics and using several bioinformatics methods, including GO enrichment analysis, KEGG pathway analysis, subcellular localization prediction, MEA (motif enrichment analysis), and PPI (protein-protein interaction networks) to illustrate how Khib modification interfere with OACC evolution. RESULTS: Compared OACC-tumor samples (OACC-T) with the adjacent normal samples (OACC-N), there were 3243 of the DEPs and 2011 Khib sites were identified on 764 proteins (DHMPs). DEPs and DHMPs were strongly associated to glycolysis pathway. GAPDH of K254, ENO of K228, and PGK1 of K323 were modified by Khib in OACC-T. Khib may increase the catalytic efficiency to promote glycolysis pathway and favor OACC progression. CONCLUSIONS AND CLINICAL RELEVANCE: Khib may play a significant role in the mechanism of OACC progression by influencing the enzyme activity of the glycolysis pathway. These findings may provide new therapeutic options of OACC.


Asunto(s)
Carcinoma Adenoide Quístico , Proteoma , Humanos , Proteoma/análisis , Proteoma/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Procesamiento Proteico-Postraduccional , Glucólisis
8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(8): 1021-1027, 2023 Aug 10.
Artículo en Zh | MEDLINE | ID: mdl-37532505

RESUMEN

OBJECTIVE: To investigate the clinical features and genetic etiology of a case of Turner syndrome (TS) with rapidly progressive puberty. METHODS: A child who had presented at the Pediatric Endocrinology Clinic of the Shenzhen People's Hospital on January 19, 2022 was selected as the study subject. Clinical data of the child were collected. Peripheral blood sample of the child was subjected to chromosomal microarray analysis (CMA) and multiple ligation-dependent probe amplification (MLPA). Previous studies related to TS with rapidly progressive puberty were retrieved from the CNKI, Wanfang Data Knowledge Service Platform, Boku, CBMdisc and PubMed databases with Turner syndrome and rapidly progressive puberty as the keywords. The duration for literature retrieval was set from November 9, 2021 to May 31, 2022. The clinical characteristics and karyotypes of the children were summarized. RESULTS: The child was a 13-year-and-2-month-old female. She was found to have breast development at 9, short stature at 10, and menarche at 11. At 13, she was found to have a 46,X,i(X)(q10) karyotype. At the time of admission, she had a height of 143.5 cm (< P3), with 6 ~ 8 nevi over her face and right clavicle. She also had bilateral simian creases but no saddle nasal bridge, neck webbing, cubitus valgus, shield chest or widened breast distance. She had menstruated for over 2 years, and her bone age has reached 15.6 years. CMA revealed that she had a 58.06 Mb deletion in the Xp22.33p11.1 region and a 94.49 Mb duplication in the Xp11.1q28 region. MLPA has confirmed monosomy Xp and trisomy Xq. A total of 13 reports were retrieved from the CNKI, Wanfang Data Knowledge Service Platform, Boku, CBMdisc and PubMed databases, which had included 14 similar cases. Analysis of the 15 children suggested that their main clinical manifestations have included short stature and growth retardation, and their chromosomal karyotypes were mainly mosaicisms. CONCLUSION: The main clinical manifestations of TS with rapidly progressive puberty are short stature and growth retardation. Deletion in the Xp22.33p11.1 and duplication in the Xp11.1q28 probably underlay the TS with rapid progression in this child, which has provided a reference for clinical diagnosis and genetic counselling for her.


Asunto(s)
Pubertad , Síndrome de Turner , Humanos , Femenino , Adolescente , Síndrome de Turner/genética , Cromosomas Humanos X , Cariotipificación
9.
Mod Rheumatol ; 33(4): 739-750, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35796437

RESUMEN

OBJECTIVES: Assays for transposase-accessible chromatin with single-cell sequencing (scATAC-seq) contribute to the progress in epigenetic studies. The purpose of our project was to discover the transcription factors (TFs) that were involved in the pathogenesis of rheumatoid arthritis (RA) at a single-cell resolution using epigenetic technology. METHODS: Peripheral blood mononuclear cells of seven RA patients and seven natural controls were extracted nuclei suspensions for library construction. Subsequently, scATAC-seq was performed to generate a high-resolution map of active regulatory DNA for bioinformatics analysis. RESULTS: We obtained 22 accessible chromatin patterns. Then, 10 key TFs were involved in RA pathogenesis by regulating the activity of mitogen-activated protein kinase. Consequently, two genes (PTPRC and SPAG9) regulated by 10 key TFs were found, which may be associated with RA disease pathogenesis, and these TFs were obviously enriched in RA patients (P < .05, fold change value > 1.2). With further quantitative polymerase chain reaction validation on PTPRC and SPAG9 in monocytes, we found differential expression of these two genes, which were regulated by eight TFs [ZNF384, HNF1B, DMRTA2, MEF2A, NFE2L1, CREB3L4 (var. 2), FOSL2::JUNB (var. 2), and MEF2B], showing highly accessible binding sites in RA patients. CONCLUSIONS: These findings demonstrate the value of using scATAC-seq to reveal transcriptional regulatory variation in RA-derived peripheral blood mononuclear cells, providing insights into therapy from an epigenetic perspective.


Asunto(s)
Artritis Reumatoide , Secuenciación de Inmunoprecipitación de Cromatina , Leucocitos Mononucleares , Humanos , Redes Reguladoras de Genes , Artritis Reumatoide/genética , Artritis Reumatoide/patología , Cromatina , Estudios de Casos y Controles , Factores de Transcripción , Adulto , Persona de Mediana Edad , Anciano , Masculino , Femenino
10.
Proteomics ; 22(22): e2200124, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36097143

RESUMEN

Gestational diabetes mellitus (GDM) and preeclampsia (PE) are associated with maternal and infant health. Although the pathogenesis of PE and GDM remains controversial, oxidative stress is involved in the underlying pathology of GDM and PE. Protein lysine acetylation (Kac) plays an important regulatory role in biological processes. There is little data regarding the association of the maternal acetylome with GDM and PE. This study aimed to assess the potential value of the proteome and acetylome for GDM and PE. In our study, we included placental tissues from healthy individuals (n = 6), GDM patients (n = 6), and PE patients (n = 6) to perform 4D-label free quantification proteomics analysis and PRM analysis. We identified 22 significantly regulated proteins and 192 significantly regulated acetylated proteins between the GDM and PE groups. Furthermore, 192 significantly regulated acetylated proteins were mainly enriched in endoplasmic reticulum stress (ERS) and ferroptosis pathways. Seventeen acetylated sites in these two pathways were verified by PRM analysis. Our comprehensive analysis revealed key features of GDM/PE-significantly regulated acetylated proteins in the placentas from GDM and PE. The results of signaling pathway analysis focused on ERS and ferroptosis. These findings may help explore the underlying pathology, new biomarkers, and therapeutic targets of GDM and PE.


Asunto(s)
Diabetes Gestacional , Preeclampsia , Humanos , Femenino , Embarazo , Diabetes Gestacional/metabolismo , Proteoma/metabolismo , Placenta , Proteómica
11.
J Transl Med ; 20(1): 445, 2022 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-36184622

RESUMEN

BACKGROUND: According to the Global Cancer Statistics in 2020, the incidence and mortality of colorectal cancer (CRC) rank third and second among all tumors. The disturbance of ubiquitination plays an important role in the initiation and development of CRC, but the ubiquitinome of CRC cells and the survival-relevant ubiquitination are poorly understood. METHODS: The ubiquitinome of CRC patients (n = 6) was characterized using our own data sets of proteomic and ubiquitin-proteomic examinations. Then, the probable survival-relevant ubiquitination was searched based on the analyses of data sets from public databases. RESULTS: For the ubiquitinomic examination, we identified 1690 quantifiable sites and 870 quantifiable proteins. We found that the highly-ubiquitinated proteins (n ≥ 10) were specifically involved in the biological processes such as G-protein coupling, glycoprotein coupling, and antigen presentation. Also, we depicted five motif sequences frequently recognized by ubiquitin. Subsequently, we revealed that the ubiquitination content of 1172 proteins were up-regulated and 1700 proteins were down-regulated in CRC cells versus normal adjacent cells. We demonstrated that the differentially ubiquitinated proteins were relevant to the pathways including metabolism, immune regulation, and telomere maintenance. Then, integrated with the proteomic datasets from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) (n = 98), we revealed that the increased ubiquitination of FOCAD at Lys583 and Lys587 was potentially associated with patient survival. Finally, we depicted the mutation map of FOCAD and elucidated its potential functions on RNA localization and translation in CRC. CONCLUSIONS: The findings of this study described the ubiquitinome of CRC cells and identified abnormal ubiquitination(s) potentially affecting the patient survival, thereby offering new probable opportunities for clinical treatment.


Asunto(s)
Neoplasias Colorrectales , Proteínas Ubiquitinadas , Neoplasias Colorrectales/patología , Humanos , Proteómica , ARN/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación
12.
J Transl Med ; 20(1): 420, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104729

RESUMEN

Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) worldwide. SGLT2 inhibitors are clinically effective in halting DKD progression. However, the underlying mechanisms remain unclear. The serum and kidneys of mice with DKD were analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based metabolomic and proteomic analyses. Three groups were established: placebo-treated littermate db/m mice, placebo-treated db/db mice and EMPA-treated db/db mice. Empagliflozin (EMPA) and placebo (10 mg/kg/d) were administered for 12 weeks. EMPA treatment decreased Cys-C and urinary albumin excretion compared with placebo by 78.60% and 57.12%, respectively (p < 0.001 in all cases). Renal glomerular area, interstitial fibrosis and glomerulosclerosis were decreased by 16.47%, 68.50% and 62.82%, respectively (p < 0.05 in all cases). Multi-omic analysis revealed that EMPA treatment altered the protein and metabolic profiles in the db/db group, including 32 renal proteins, 51 serum proteins, 94 renal metabolites and 37 serum metabolites. Five EMPA-related metabolic pathways were identified by integrating proteomic and metabolomic analyses, which are involved in renal purine metabolism; pyrimidine metabolism; tryptophan metabolism; nicotinate and nicotinamide metabolism, and glycine, serine and threonine metabolism in serum. In conclusion, this study demonstrated metabolic reprogramming in mice with DKD. EMPA treatment improved kidney function and morphology by regulating metabolic reprogramming, including regulation of renal reductive stress, alleviation of mitochondrial dysfunction and reduction in renal oxidative stress reaction.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Compuestos de Bencidrilo , Cromatografía Liquida , Diabetes Mellitus/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Glucósidos , Riñón/metabolismo , Ratones , Proteómica , Inhibidores del Cotransportador de Sodio-Glucosa 2/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Espectrometría de Masas en Tándem
13.
J Transl Med ; 20(1): 510, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335368

RESUMEN

BACKGROUND: Diabetic kidney disease (DKD) is among the most important causes for chronic kidney disease. Anthocyanins (ANT) are polyphenolic compounds present in various food and play an important role in ameliorating hyperglycemia and insulin sensitivity. However, the effects of ANT in DKD are still poorly understood. This study aimed to investigate the effect of ANT (cyanidin-3-O-glucoside [C3G]) on the renal function of DKD, and whether the anti-DKD effect of ANT is related to metabolic pathways. METHODS: To explore the role of ANT in DKD, we performed the examination of blood glucose, renal function, and histopathology. As for the mechanism, we designed the label-free quantification proteomics and nontargeted metabolomics analysis for kidney and serum. Subsequently, we revealed the anti-DKD effect of ANT through the bioinformatic analysis. RESULTS: We showed that the fasting blood glucose level (- 6.1 mmol/L, P = 0.037), perimeter of glomerular lesions (- 24.1 µm, P = 0.030), fibrosis score of glomerular (- 8.8%, P = 0.002), and kidney function (Cystatin C: - 701.4 pg/mL, P = 0.043; urine creatinine: - 701.4 mmol/L, P = 0.032) were significantly alleviated in DKD mice after ANT treatment compared to untreated in the 20th week. Further, proteins and metabolites in the kidneys of DKD mice were observed to be dramatically altered due to changes in amino acid metabolism with ANT treatment; mainly, taurine and hypotaurine metabolism pathway was upregulated (P = 0.0001, t value = 5.97). Furthermore, upregulated tryptophan metabolism (P < 0.0001, t value = 5.94) and tyrosine metabolism (P = 0.0037, t value = 2.91) pathways had effects on serum of DKD mice as responsed ANT regulating. CONCLUSIONS: Our results suggested that prevention of the progression of DKD by ANT could be related to the regulation of amino acid metabolism. The use of dietary ANT may be one of the dietary strategies to prevent and treat DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/metabolismo , Antocianinas/farmacología , Antocianinas/uso terapéutico , Glucemia , Riñón/patología , Aminoácidos , Diabetes Mellitus/patología
14.
Cancer Cell Int ; 22(1): 366, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36419080

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the deadliest cancers and is mainly developed from chronic liver diseases such as hepatitis-B infection-associated liver cirrhosis (LC). The progression from LC to HCC makes the detection of diagnostic biomarkers to be challenging. Hence, there have been constant efforts to improve on identifying the critical and predictive changes accompanying the disease progression. METHODS: In this study, we looked to using the mass spectrometry mediated spatial metabolomics technique to simultaneous examine hundreds of metabolites in an untargeted fashion. Additionally, metabolic profiles were compared between six subregions within the HCC tissue to collect spatial information. RESULTS: Through those metabolites, altered metabolic pathways in LC and HCC were identified. Specifically, the amino acid metabolisms and the glycerophospholipid metabolisms experienced the most changes. Many of the altered metabolites and metabolic pathways were able to be connected through the urea cycle. CONCLUSIONS: The identification of the key metabolites and pathways can expand our knowledge on HCC metabolic reprogramming and help us exam potential biomarkers for earlier detection of the malignant disease progression.

15.
Hum Genomics ; 15(1): 40, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193281

RESUMEN

BACKGROUND: Trisomy 18 syndrome (Edwards syndrome, ES) is a type of aneuploidy caused by the presence of an extra chromosome 18. Aneuploidy is the leading cause of early pregnancy loss, intellectual disability, and multiple congenital anomalies. The research of trisomy 18 is progressing slowly, and the molecular characteristics of the disease mechanism and phenotype are still largely unclear. RESULTS: In this study, we used the commercial Chromium platform (10× Genomics) to perform sc-ATAC-seq to measure chromatin accessibility in 11,611 single umbilical cord blood cells derived from one trisomy 18 syndrome patient and one healthy donor. We obtained 13 distinct major clusters of cells and identified them as 6 human umbilical cord blood mononuclear cell types using analysis tool. Compared with the NC group, the ES group had a lower ratio of T cells to NK cells, the ratio of monocytes/DC cell population did not change significantly, and the ratio of B cell nuclear progenitor and megakaryocyte erythroid cells was higher. The differential genes of ME-0 are enriched in Human T cell leukemia virus 1 infection pathway, and the differential peak genes of ME-1 are enriched in apopotosis pathway. We found that CCNB2 and MCM3 may be vital to the development of trisomy 18. CCNB2 and MCM3, which have been reported to be essential components of the cell cycle and chromatin. CONCLUSIONS: We have identified 6 cell populations in cord blood. Disorder in megakaryocyte erythroid cells implicates trisomy 18 in perturbing fetal hematopoiesis. We identified a pathway in which the master differential regulatory pathway in the ME-0 cell population involves human T cell leukemia virus 1 infection, a pathway that is dysregulated in patients with trisomy 18 and which may increase the risk of leukemia in patients with trisomy 18. CCNB2 and MCM3 in progenitor may be vital to the development of trisomy 18. CCNB2 and MCM3, which have been reported to be essential components of the cell cycle and chromatin, may be related to chromosomal abnormalities in trisomy 18.


Asunto(s)
Cromatina/genética , Ciclina B2/genética , Componente 3 del Complejo de Mantenimiento de Minicromosoma/genética , Síndrome de la Trisomía 18/genética , Adulto , Aberraciones Cromosómicas , Femenino , Sangre Fetal/citología , Genómica , Hematopoyesis/genética , Humanos , Embarazo , Análisis de la Célula Individual , Síndrome de la Trisomía 18/patología
16.
Cell Commun Signal ; 20(1): 28, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264186

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) and their released extracellular vesicles (Evs) have shown protective effects against kidney diseases. This study aims to study the functions of umbilical cord MSCs-released Evs (ucMSC-Evs) and their implicated molecules in mesangial proliferative glomerulonephritis (MsPGN). METHODS: A rat model of MsPGN was induced by anti-Thy-1.1, and rat mesangial cells (rMCs) HBZY-1 were treated with PDGF-BB/DD to mimic MsPGN condition in vitro. Rats and cells were treated with different doses of ucMSC-Evs, and then the pathological changes in renal tissues and proliferation of rMCs were determined. Differentially expressed microRNAs (miRNAs) after Evs treatment were screened by microarray analysis. The interactions among miR-378, PSMD14, and TGFBR1 were analyzed. Gain- and loss-of function studies of miR-378 and PSMD14 were performed to explore their effects on tissue hyperplasia and rMC proliferation and their interactions with the TGF-ß1/Smad2/3 signaling pathway. RESULTS: The ucMSC-Evs treatment ameliorated mesangial hyperplasia and fibrosis in rat renal tissues and suppressed the aberrant proliferation of rMCs in a dose-dependent manner. miR-378 was the most upregulated miRNA in tissues and cells after ucMSC-Evs treatment. miR-378 directly targeted PSMD14, and PSMD14 maintained the stability of TGFBR1 through deubiquitination modification, which led to TGF-ß1/Smad2/3 activation. Either miR-378 knockdown or PSMD14 overexpression diminished the protective functions of ucMSC-Evs by activating the TGF-ß1/Smad2/3 signaling pathway. CONCLUSION: UcMSC-Evs ameliorate pathological process in MsPGN through the delivery of miR-378, which suppresses PSMD14-mediated TGFBR1 stability and inactivates the TGF-ß1/Smad2/3 signaling pathway to reduce tissue hyperplasia and rMC proliferation. Video abstract.


Asunto(s)
Vesículas Extracelulares , Glomerulonefritis , Células Madre Mesenquimatosas , MicroARNs , Animales , Vesículas Extracelulares/metabolismo , Glomerulonefritis/metabolismo , Glomerulonefritis/patología , Hiperplasia/metabolismo , Hiperplasia/patología , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Transactivadores/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Cordón Umbilical/citología
17.
Exp Cell Res ; 409(1): 112895, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34717918

RESUMEN

Ankylosing spondylitis (AS) is a chronic inflammatory disease significantly decreasing the quality of life. Platelets play an important and active role in the development of AS. Accumulating evidence demonstrated platelets contain diverse RNA repository inherited from megakaryocytes or microvesicles. Platelet RNAs are dynamically affected by pathological conditions and could be used as diagnostic or prognostic biomarkers. However, the role of the platelet RNAs in AS is elusive. In this study, we compared mRNA and circRNA profiles in platelets between AS patients and healthy controls using RNA sequencing and bioinformatic analysis, and found 4996 mRNAs and 2942 circRNAs were differently expressed. The significantly over-expressed mRNAs in AS patients are involved in platelet activity, gap junction, focal adhesion, rap1 and toll and Imd signaling pathway. The previous identified platelet-derived immune mediators such as P2Y1, P2Y12, PF4, GPIbα, CD40L, ICAM2, CCL5 (RANTES), TGF-ß (TGF-ß1 and TGF-ß2) and PDGF (PDGFB and PDGFA) are also included in these over expressed mRNAs, implying these factors may trigger inflammatory cascades and promote the development of AS. Additionally, we found two down-regulated circRNA (circPTPN22 and circFCHSD2) from the intersection analyses of platelets and spinal ligament tissues of AS patients. The circRNA-miRNA-mRNA regulatory network of these two circRNAs was constructed, and the target mRNAs were enriched in Th17 cell differentiation, inflammatory bowel disease, cell adhesion molecules, cytokine-cytokine receptor interaction, Jak-STAT and Wnt signaling pathway, all these pathways participate in the bone remodeling and pro/anti-inflammatory immune regulation in AS. Then, qRT-PCR was performed to validate the expression of selected key mRNAs and circRNAs and the results demonstrated that the expression levels of P2Y12, GPIbα, circPTPN22 and circFCHSD2 were consistent with the sequencing analysis. In addition, the high expression of five predicted miRNAs interacting with circPTPN22 and circFCHSD2 were also detected in AS by qRT-PCR. Taken together, our study presents a comprehensive overview of mRNAs and circRNAs in platelets in AS patients and offers new insight into the mechanisms of platelet involving in the pathogenesis of AS. The mRNAs and circRNAs identified in this study may serve as candidates for diagnosis and targeted treatment of AS.


Asunto(s)
Plaquetas/fisiología , ARN Mensajero/genética , Espondilitis Anquilosante/genética , Diferenciación Celular/genética , Biología Computacional/métodos , Citocinas/genética , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/genética , Humanos , Inflamación/genética , MicroARNs/genética , Calidad de Vida , ARN Circular , Análisis de Secuencia de ARN/métodos , Transducción de Señal/genética , Regulación hacia Arriba/genética
18.
Curr Genomics ; 23(2): 109-117, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36778976

RESUMEN

Background: Extracellular vehicles (EVs) contain different proteins that relay information between tumor cells, thus promoting tumorigenesis. Therefore, EVs can serve as an ideal marker for tumor pathogenesis and clinical application. Objective: Here, we characterised EV-specific proteins in hepatocellular carcinoma (HCC) samples and established their potential protein-protein interaction (PPI) networks. Materials and Methods: We used multi-dimensional bioinformatics methods to mine a network module to use as a prognostic signature and validated the model's prediction using additional datasets. The relationship between the prognostic model and tumor immune cells or the tumor microenvironment status was also examined. Results: 1134 proteins from 316 HCC samples were mapped to the exoRBase database. HCC-specific EVs specifically expressed a total of 437 proteins. The PPI network revealed 321 proteins and 938 interaction pathways, which were mined to identify a three network module (3NM) with significant prognostic prediction ability. Validation of the 3NM in two more datasets demonstrated that the model outperformed the other signatures in prognostic prediction ability. Functional analysis revealed that the network proteins were involved in various tumor-related pathways. Additionally, these findings demonstrated a favorable association between the 3NM signature and macrophages, dendritic, and mast cells. Besides, the 3NM revealed the tumor microenvironment status, including hypoxia and inflammation. Conclusion: These findings demonstrate that the 3NM signature reliably predicts HCC pathogenesis. Therefore, the model may be used as an effective prognostic biomarker in managing patients with HCC.

19.
J Cell Mol Med ; 25(15): 7101-7109, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34160884

RESUMEN

Protein post-translational modifications (PTMs) of histones are ubiquitous regulatory mechanisms involved in many biological processes, including replication, transcription, DNA damage repair and ontogenesis. Recently, many short-chain acylation histone modifications have been identified by mass spectrometry (MS). Lysine succinylation (Ksuc or Ksucc) is a newly identified histone PTM that changes the chemical environment of histones and is similar to other acylation modifications; lysine succinylation appears to accumulate at transcriptional start sites and to correlate with gene expression. Although numerous studies are ongoing, there is a lack of reviews on the Ksuc of histones. Here, we review lysine succinylation sites on histones, including the chemical characteristics and the mechanism by which lysine succinylation influences nucleosomal structure, chromatin dynamics and several diseases and then discuss lysine succinylation regulation to identify theoretical and experimental proof of Ksuc on histones and in diseases to inspire further research into histone lysine succinylation as a target of disease treatment in the future.


Asunto(s)
Código de Histonas , Nucleosomas/metabolismo , Succinatos/metabolismo , Animales , Humanos
20.
J Cell Mol Med ; 25(22): 10614-10626, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34697885

RESUMEN

Preeclampsia (PE) is a dangerous hypertensive disorder that occurs during pregnancy. The specific aetiology and pathogenesis of PE have yet to be clarified. To better reveal the specific pathogenesis of PE, we characterized the proteome and acetyl proteome (acetylome) profile of placental tissue from PE and normal-term pregnancy by label-free quantification proteomics technology and PRM analysis. In this research, 373 differentially expressed proteins (DEPs) were identified by proteome analysis. Functional enrichment analysis revealed significant enrichment of DEPs related to angiogenesis and the immune system. COL12A1, C4BPA and F13A1 may be potential biomarkers for PE diagnosis and new therapeutic targets. Additionally, 700 Kac sites were identified on 585 differentially acetylated proteins (DAPs) by acetylome analyses. These DAPs may participate in the occurrence and development of PE by affecting the complement and coagulation cascades pathway, which may have important implications for better understand the pathogenesis of PE. In conclusion, this study systematically analysed the reveals critical features of placental proteins in pregnant women with PE, providing a resource for exploring the contribution of lysine acetylation modification to PE.


Asunto(s)
Lisina/metabolismo , Placenta/metabolismo , Preeclampsia/etiología , Preeclampsia/metabolismo , Proteoma , Proteómica , Acetilación , Biomarcadores , Cromatografía Liquida , Biología Computacional/métodos , Susceptibilidad a Enfermedades , Femenino , Ontología de Genes , Humanos , Preeclampsia/diagnóstico , Embarazo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteómica/métodos , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA