RESUMEN
Apart from the canonical serotonin (5-hydroxytryptamine [5-HT])-receptor signaling transduction pattern, 5-HT-involved post-translational serotonylation has recently been noted. Here, we report a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serotonylation system that promotes the glycolytic metabolism and antitumor immune activity of CD8+ T cells. Tissue transglutaminase 2 (TGM2) transfers 5-HT to GAPDH glutamine 262 and catalyzes the serotonylation reaction. Serotonylation supports the cytoplasmic localization of GAPDH, which induces a glycolytic metabolic shift in CD8+ T cells and contributes to antitumor immunity. CD8+ T cells accumulate intracellular 5-HT for serotonylation through both synthesis by tryptophan hydroxylase 1 (TPH1) and uptake from the extracellular compartment via serotonin transporter (SERT). Monoamine oxidase A (MAOA) degrades 5-HT and acts as an intrinsic negative regulator of CD8+ T cells. The adoptive transfer of 5-HT-producing TPH1-overexpressing chimeric antigen receptor T (CAR-T) cells induced a robust antitumor response. Our findings expand the known range of neuroimmune interaction patterns by providing evidence of receptor-independent serotonylation post-translational modification.
Asunto(s)
Linfocitos T CD8-positivos , Serotonina , Linfocitos T CD8-positivos/metabolismo , Serotonina/metabolismo , Serotonina/farmacología , Procesamiento Proteico-Postraduccional , Transducción de SeñalRESUMEN
Neural networks based on memristive devices1-3 have the ability to improve throughput and energy efficiency for machine learning4,5 and artificial intelligence6, especially in edge applications7-21. Because training a neural network model from scratch is costly in terms of hardware resources, time and energy, it is impractical to do it individually on billions of memristive neural networks distributed at the edge. A practical approach would be to download the synaptic weights obtained from the cloud training and program them directly into memristors for the commercialization of edge applications. Some post-tuning in memristor conductance could be done afterwards or during applications to adapt to specific situations. Therefore, in neural network applications, memristors require high-precision programmability to guarantee uniform and accurate performance across a large number of memristive networks22-28. This requires many distinguishable conductance levels on each memristive device, not only laboratory-made devices but also devices fabricated in factories. Analog memristors with many conductance states also benefit other applications, such as neural network training, scientific computing and even 'mortal computing'25,29,30. Here we report 2,048 conductance levels achieved with memristors in fully integrated chips with 256 × 256 memristor arrays monolithically integrated on complementary metal-oxide-semiconductor (CMOS) circuits in a commercial foundry. We have identified the underlying physics that previously limited the number of conductance levels that could be achieved in memristors and developed electrical operation protocols to avoid such limitations. These results provide insights into the fundamental understanding of the microscopic picture of memristive switching as well as approaches to enable high-precision memristors for various applications. Fig. 1 HIGH-PRECISION MEMRISTOR FOR NEUROMORPHIC COMPUTING.: a, Proposed scheme of the large-scale application of memristive neural networks for edge computing. Neural network training is performed in the cloud. The obtained weights are downloaded and accurately programmed into a massive number of memristor arrays distributed at the edge, which imposes high-precision requirements on memristive devices. b, An eight-inch wafer with memristors fabricated by a commercial semiconductor manufacturer. c, High-resolution transmission electron microscopy image of the cross-section view of a memristor. Pt and Ta serve as the bottom electrode (BE) and top electrode (TE), respectively. Scale bars, 1 µm and 100 nm (inset). d, Magnification of the memristor material stack. Scale bar, 5 nm. e, As-programmed (blue) and after-denoising (red) currents of a memristor are read by a constant voltage (0.2 V). The denoising process eliminated the large-amplitude RTN observed in the as-programmed state (see Methods). f, Magnification of three nearest-neighbour states after denoising. The current of each state was read by a constant voltage (0.2 V). No large-amplitude RTN was observed, and all of the states can be clearly distinguished. g, An individual memristor on the chip was tuned into 2,048 resistance levels by high-resolution off-chip driving circuitry, and each resistance level was read by a d.c. voltage sweeping from 0 to 0.2 V. The target resistance was set from 50 µS to 4,144 µS with a 2-µS interval between neighbouring levels. All readings at 0.2 V are less than 1 µS from the target conductance. Bottom inset, magnification of the resistance levels. Top inset, experimental results of an entire 256 × 256 array programmed by its 6-bit on-chip circuitry into 64 32 × 32 blocks, and each block is programmed into one of the 64 conductance levels. Each of the 256 × 256 memristors has been previously switched over one million cycles, demonstrating the high endurance and robustness of the devices.
RESUMEN
Advanced beyond-silicon electronic technology requires both channel materials and also ultralow-resistance contacts to be discovered1,2. Atomically thin two-dimensional semiconductors have great potential for realizing high-performance electronic devices1,3. However, owing to metal-induced gap states (MIGS)4-7, energy barriers at the metal-semiconductor interface-which fundamentally lead to high contact resistance and poor current-delivery capability-have constrained the improvement of two-dimensional semiconductor transistors so far2,8,9. Here we report ohmic contact between semimetallic bismuth and semiconducting monolayer transition metal dichalcogenides (TMDs) where the MIGS are sufficiently suppressed and degenerate states in the TMD are spontaneously formed in contact with bismuth. Through this approach, we achieve zero Schottky barrier height, a contact resistance of 123 ohm micrometres and an on-state current density of 1,135 microamps per micrometre on monolayer MoS2; these two values are, to the best of our knowledge, the lowest and highest yet recorded, respectively. We also demonstrate that excellent ohmic contacts can be formed on various monolayer semiconductors, including MoS2, WS2 and WSe2. Our reported contact resistances are a substantial improvement for two-dimensional semiconductors, and approach the quantum limit. This technology unveils the potential of high-performance monolayer transistors that are on par with state-of-the-art three-dimensional semiconductors, enabling further device downscaling and extending Moore's law.
RESUMEN
Anxiety is a remarkably common condition among patients with pharyngitis, but the relationship between these disorders has received little research attention, and the underlying neural mechanisms remain unknown. Here, we show that the densely innervated pharynx transmits signals induced by pharyngeal inflammation to glossopharyngeal and vagal sensory neurons of the nodose/jugular/petrosal (NJP) superganglia in mice. Specifically, the NJP superganglia project to norepinephrinergic neurons in the nucleus of the solitary tract (NTSNE). These NTSNE neurons project to the ventral bed nucleus of the stria terminalis (vBNST) that induces anxiety-like behaviors in a murine model of pharyngeal inflammation. Inhibiting this pharynxâNJPâNTSNEâvBNST circuit can alleviate anxiety-like behaviors associated with pharyngeal inflammation. This study thus defines a pharynx-to-brain axis that mechanistically links pharyngeal inflammation and emotional response.
Asunto(s)
Faringitis , Faringe , Humanos , Animales , Ratones , Ansiedad , Encéfalo , Células Receptoras Sensoriales , InflamaciónRESUMEN
Solid-state defects are attractive platforms for quantum sensing and simulation, e.g., in exploring many-body physics and quantum hydrodynamics. However, many interesting properties can be revealed only upon changes in the density of defects, which instead is usually fixed in material systems. Increasing the interaction strength by creating denser defect ensembles also brings more decoherence. Ideally one would like to control the spin concentration at will while keeping fixed decoherence effects. Here, we show that by exploiting charge transport, we can take some steps in this direction, while at the same time characterizing charge transport and its capture by defects. By exploiting the cycling process of ionization and recombination of NV centers in diamond, we pump electrons from the valence band to the conduction band. These charges are then transported to modulate the spin concentration by changing the charge state of material defects. By developing a wide-field imaging setup integrated with a fast single photon detector array, we achieve a direct and efficient characterization of the charge redistribution process by measuring the complete spectrum of the spin bath with micrometer-scale spatial resolution. We demonstrate a two-fold concentration increase of the dominant spin defects while keeping the T2 of the NV center relatively unchanged, which also provides a potential experimental demonstration of the suppression of spin flip-flops via hyperfine interactions. Our work paves the way to studying many-body dynamics with temporally and spatially tunable interaction strengths in hybrid charge-spin systems.
RESUMEN
In 2013 to 2017, avian influenza A(H7N9) virus has caused five severe epidemic waves of human infections in China. The role of live bird markets (LBMs) in the transmission dynamics of H7N9 remains unclear. Using a Bayesian phylodynamic approach, we shed light on past H7N9 transmission events at the human-LBM interface that were not directly observed using case surveillance data-based approaches. Our results reveal concurrent circulation of H7N9 lineages in Yangtze and Pearl River Delta regions, with evidence of local transmission during each wave. Our results indicate that H7N9 circulated in humans and LBMs for weeks to months before being first detected. Our findings support the seasonality of H7N9 transmission and suggest a high number of underreported infections, particularly in LBMs. We provide evidence for differences in virus transmissibility between low and highly pathogenic H7N9. We demonstrate a regional spatial structure for the spread of H7N9 among LBMs, highlighting the importance of further investigating the role of local live poultry trade in virus transmission. Our results provide estimates of avian influenza virus (AIV) transmission at the LBM level, providing a unique opportunity to better prepare surveillance plans at LBMs for response to future AIV epidemics.
Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Teorema de Bayes , Aves de Corral , China/epidemiologíaRESUMEN
MOTIVATION: It is difficult to generate new molecules with desirable bioactivity through ligand-based de novo drug design, and receptor-based de novo drug design is constrained by disease target information availability. The combination of artificial intelligence and phenotype-based de novo drug design can generate new bioactive molecules, independent from disease target information. Gene expression profiles can be used to characterize biological phenotypes. The Transformer model can be utilized to capture the associations between gene expression profiles and molecular structures due to its remarkable ability in processing contextual information. RESULTS: We propose TransGEM (Transformer-based model from gene expression to molecules), which is a phenotype-based de novo drug design model. A specialized gene expression encoder is used to embed gene expression difference values between diseased cell lines and their corresponding normal tissue cells into TransGEM model. The results demonstrate that the TransGEM model can generate molecules with desirable evaluation metrics and property distributions. Case studies illustrate that TransGEM model can generate structurally novel molecules with good binding affinity to disease target proteins. The majority of genes with high attention scores obtained from TransGEM model are associated with the onset of the disease, indicating the potential of these genes as disease targets. Therefore, this study provides a new paradigm for de novo drug design, and it will promote phenotype-based drug discovery. AVAILABILITY AND IMPLEMENTATION: The code is available at https://github.com/hzauzqy/TransGEM.
Asunto(s)
Diseño de Fármacos , Humanos , Fenotipo , Perfilación de la Expresión Génica/métodos , Inteligencia Artificial , Algoritmos , Expresión Génica , LigandosRESUMEN
Natural transformation is one of the major mechanisms of horizontal gene transfer. Although it is usually studied using purified DNA in the laboratory, recent studies showed that many naturally competent bacteria acquired exogenous DNA from neighboring donor cells. Our previous work indicates that cell-to-cell natural transformation (CTCNT) using two different Bacillus subtilis strains is a highly efficient process; however, the mechanism is unclear. In this study, we further characterized CTCNT and mapped the transferred DNA in the recombinants using whole genome sequencing. We found that a recombinant strain generated by CTCNT received up to 66 transferred DNA segments; the average length of acquired continuous DNA stretches was approximately 27 kb with a maximum length of 347 kb. Moreover, up to 1.54 Mb genomic DNA (37% of the chromosome) was transferred from the donors into one recipient cell. These results suggest that B. subtilis CTCNT facilitates horizontal gene transfer by increasing the transfer of DNA segments and fostering the exchange of large continuous genomic regions. This indicates that the potency of bacterial natural transformation is underestimated using traditional approaches and reveals that DNA donor cells may play an important role in the transformation process in natural environments.
Asunto(s)
Bacillus subtilis , Transformación Bacteriana , Bacillus subtilis/genética , ADN/genética , ADN Bacteriano/genética , Genoma , GenómicaRESUMEN
Lymph node status is a key factor in determining stage, treatment, and prognosis in cancers. Small lymph nodes in fat-rich gastrointestinal and breast cancer specimens are easily missed in conventional sampling methods. This study examined the effectiveness of the degreasing pretreatment with dimethyl sulfoxide (DMSO) in lymph node detection and its impact on the analysis of clinical treatment-related proteins and molecules. Thirty-three cases of gastrointestinal cancer specimens from radical gastrectomy and 63 cases of breast cancer specimens from modified radical mastectomy were included. After routine sampling of lymph nodes, the specimens were immersed in DMSO for 30 minutes for defatting. We assessed changes in the number of detected lymph nodes and pN staging in 33 gastrointestinal cancer specimens and 37 breast cancer specimens. In addition, we analyzed histologic characteristics, Masson trichrome special staining, and immunohistochemistry (gastrointestinal cancer: MMR, HER2, and PD-L1; breast cancer: ER, PR, AR, HER2, Ki-67, and PD-L1). Molecular status was evaluated for colorectal cancer (KRAS, NRAS, BRAF, and microsatellite instability) and breast cancer (HER2) in gastrointestinal cancer specimens and the remaining 26 breast cancer specimens. Compared with conventional sampling, DMSO pretreatment increased the detection rate of small lymph nodes (gastrointestinal cancer: P < .001; breast cancer: P < .001) and improved pN staging in 1 case each of gastric cancer, colon cancer, and rectal cancer (3/33; 9.1%). No significant difference in the morphology, special staining, protein, and molecular status of cancer tissue after DMSO treatment was found. Based on these results and our institutional experience, we recommend incorporating DMSO degreasing pretreatment into clinical pathologic sampling practices.
Asunto(s)
Neoplasias de la Mama , Dimetilsulfóxido , Neoplasias Gastrointestinales , Inmunohistoquímica , Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Persona de Mediana Edad , Neoplasias Gastrointestinales/patología , Neoplasias Gastrointestinales/metabolismo , Neoplasias Gastrointestinales/tratamiento farmacológico , Dimetilsulfóxido/farmacología , Anciano , Adulto , Masculino , Ganglios Linfáticos/patología , Ganglios Linfáticos/metabolismo , Manejo de Especímenes/métodos , Metástasis Linfática , Anciano de 80 o más AñosRESUMEN
BACKGROUND: Osteoarthritis (OA), the most common joint disease, is linked with chondrocyte apoptosis and extracellular matrix (ECM) degradation. Charged multivesicular body protein 5 (CHMP5), a member of the multivesicular body, has been reported to serve as an anti-apoptotic protein to participate in leukemia development. However, the effects of CHMP5 on apoptosis and ECM degradation in OA remain unclear. METHODS: In this study, quantitative proteomics was performed to analyze differential proteins between normal and OA patient articular cartilages. The OA mouse model was constructed by the destabilization of the medial meniscus (DMM). In vitro, interleukin-1 beta (IL-1ß) was used to induce OA in human chondrocytes. CHMP5 overexpression and silencing vectors were created using an adenovirus system. The effects of CHMP5 on IL-1ß-induced chondrocyte apoptosis were investigated by CCK-8, flow cytometry, and western blot. The effects on ECM degradation were examined by western blot and immunofluorescence. The potential mechanism was explored by western blot and Co-IP assays. RESULTS: Downregulated CHMP5 was identified by proteomics in OA patient cartilages, which was verified in human and mouse articular cartilages. CHMP5 overexpression repressed cell apoptosis and ECM degradation in OA chondrocytes. However, silencing CHMP5 exacerbated OA chondrocyte apoptosis and ECM degradation. Furthermore, we found that the protective effect of CHMP5 against OA was involved in nuclear factor kappa B (NF-κB) signaling pathway. CONCLUSIONS: This study demonstrated that CHMP5 repressed IL-1ß-induced chondrocyte apoptosis and ECM degradation and blocked NF-κB activation. It was shown that CHMP5 might be a novel potential therapeutic target for OA in the future.
Asunto(s)
Apoptosis , Condrocitos , Matriz Extracelular , Hialuronoglucosaminidasa , FN-kappa B , Osteoartritis , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Cartílago Articular/metabolismo , Cartílago Articular/patología , Condrocitos/metabolismo , Condrocitos/patología , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/genética , Proteómica/métodosRESUMEN
Mitochondrial DNA G-quadruplexes (mtDNA G4s) play potential regulatory roles in mitochondrial functions. Fluorescent probes for imaging mtDNA G4s may provide useful information to unveil their regulating dynamics and functions. However, the existing probes for mtDNA G4s still exhibit short absorption and emission wavelengths and limited sensitivity. Here, we develop a new isaindigotone-derived near-infrared (NIR) fluorogenic probe for imaging mtDNA G4s in live cells and in vivo. Different fluorescent probes are engineered by conjugating the isaindigotone scaffold with varying electron-donating groups. It is shown that the probe ISAP using dimethylaminophenyl as the electron-donating group exhibits near-infrared absorption/emission and a high fluorescence activation fold in response to G4s. Molecular docking simulations reveal that ISAP binds to c-Myc G4 via multiple π-π stacking and hydrogen-bond interaction. Cellular studies show that ISAP exhibits an excellent mitochondrial targeting ability and allows specific imaging of mtDNA G4s. We further employed ISAP to image the dynamics of mtDNA G4s under glycolysis and oxidative stresses in live cells. Its capability to mtDNA G4s in vivo is showcased using a tumor-bearing mice model. This probe may serve as a useful tool to image mtDNA G4s and interrogate their biological roles in living systems.
RESUMEN
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer with limited treatment options. The PI3K/AKT/mTOR pathway is commonly activated in PDAC and plays a critical role in its progression. METHODS AND RESULTS: In this study, the effect of taselisib (a selective PI3K inhibitor) on PDAC cell proliferation was investigated, and a significant decrease in viability was observed with increasing concentrations of taselisib. Differential analysis on samples from the Genotype-Tissue Expression and The Cancer Genome Atlas databases revealed 24 dysregulated PI3K/AKT/mTOR pathway-related genes (PRGs). Unsupervised clustering-based analysis of transcriptome cohorts revealed two clusters with high consistency between RNA-seq and microarray cohorts. Cluster B had higher enrichment of immune cells, particularly CD8+ T cells, and lower levels of immunosuppressive Treg cells. Moreover, we investigated the relationship between drug sensitivity and different clusters and found that cluster A had a better response to PI3K/AKT/mTOR pathway-related inhibitors and chemotherapy. Finally, cluster A exhibited significant activation of PI3K/AKT/mTOR and related oncogenic pathways, contributing to poor prognosis. The study also developed a risk score based on the expression profiles of PRGs and machine learning, which showed a significant increase in overall survival time among patients in the low-risk group. Importantly, the PI3K/AKT/mTOR pathway could be used to better predict individual risk scores, as evidenced by stratified survival analysis. CONCLUSIONS: These findings suggest that targeting the PI3K/AKT/mTOR pathway may have therapeutic potential in PDAC, and distinct pathway states, immune modulation and tumor microenvironments have prognostic value.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transcriptoma , Linfocitos T CD8-positivos/metabolismo , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proliferación Celular/genética , Microambiente TumoralRESUMEN
Ferrimagnetic oxide thin films are important material platforms for spintronic devices. Films grown on low symmetry orientations such as (110) exhibit complex anisotropy landscapes that can provide insight into novel phenomena such as spin-torque auto-oscillation and spin superfluidity. Using spin-Hall magnetoresistance measurements, the in-plane (IP) and out-of-plane (OOP) uniaxial anisotropy energies are determined for a thickness series (5-50 nm) of europium iron garnet (EuIG) and thulium iron garnet (TmIG) films epitaxially grown on a gadolinium gallium substrate with (110) orientation and capped with Pt. Pt/EuIG/GGG exhibits an (001) easy plane of magnetization perpendicular to the substrate, whereas Pt/TmIG/GGG exhibits an (001) hard plane of magnetization perpendicular to the substrate with an IP easy axis. Both IP and OOP surface anisotropy energies comparable in magnitude to the bulk anisotropy are observed. The temperature dependence of the surface anisotropies is consistent with first-order predictions of a simplified Néel surface anisotropy model. By taking advantage of the thickness and temperature dependence demonstrated in these ferrimagnetic oxides grown on the low symmetry (110) orientations, the complex anisotropy landscapes can be tuned to act as a platform to explore rich spin textures and dynamics.
RESUMEN
The electrocatalytic conversion of nitrate (NO3 -) to NH3 (NO3RR) at ambient conditions offers a promising alternative to the Haber-Bosch process. The pivotal factors in optimizing the proficient conversion of NO3 - into NH3 include enhancing the adsorption capabilities of the intermediates on the catalyst surface and expediting the hydrogenation steps. Herein, the Cu/Cu2O/Pi NWs catalyst is designed based on the directed-evolution strategy to achieve an efficient reduction of NO3â¾. Benefiting from the synergistic effect of the OV-enriched Cu2O phase developed during the directed-evolution process and the pristine Cu phase, the catalyst exhibits improved adsorption performance for diverse NO3RR intermediates. Additionally, the phosphate group anchored on the catalyst's surface during the directed-evolution process facilitates water electrolysis, thereby generating Hads on the catalyst surface and promoting the hydrogenation step of NO3RR. As a result, the Cu/Cu2O/Pi NWs catalyst shows an excellent FE for NH3 (96.6%) and super-high NH3 yield rate of 1.2 mol h-1 gcat. -1 in 1 m KOH and 0.1 m KNO3 solution at -0.5 V versus RHE. Moreover, the catalyst's stability is enhanced by the stabilizing influence of the phosphate group on the Cu2O phase. This work highlights the promise of a directed-evolution approach in designing catalysts for NO3RR.
RESUMEN
IMPORTANCE: Although Micropterus salmoides rhabdovirus (MSRV) causes serious fish epidemics worldwide, the detailed mechanism of MSRV entry into host cells remains unknown. Here, we comprehensively investigated the mechanism of MSRV entry into epithelioma papulosum cyprinid (EPC) cells. This study demonstrated that MSRV enters EPC cells via a low pH, dynamin-dependent, microtubule-dependent, and clathrin-mediated endocytosis. Subsequently, MSRV transports from early endosomes to late endosomes and further into lysosomes in a microtubule-dependent manner. The characterization of MSRV entry will further advance the understanding of rhabdovirus cellular entry pathways and provide novel targets for antiviral drug against MSRV infection.
Asunto(s)
Lubina , Rhabdoviridae , Animales , Rhabdoviridae/metabolismo , Lubina/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Endocitosis , Dinaminas/metabolismo , Microtúbulos/metabolismo , Clatrina/metabolismo , Concentración de Iones de Hidrógeno , Internalización del VirusRESUMEN
Precursor supply plays a significant role in the production of secondary metabolites. In Streptomyces bacteria, propionyl-, malonyl-, and methylmalonyl-CoA are the most common precursors used for polyketide biosynthesis. Although propionyl-CoA synthetases participate in the propionate assimilation pathway and directly convert propionate into propionyl-CoA, malonyl- and methylmalonyl-CoA cannot be formed using common acyl-CoA synthetases. Therefore, both acetyl- and propionyl-CoA carboxylation, catalyzed by acyl-CoA carboxylases, should be considered when engineering a microorganism chassis to increase polyketide production. In this study, we identified a transcriptional regulator of the TetR family, BkdR, in Streptomyces albus B4, which binds directly to the promoter region of the neighboring pccAB operon. This operon encodes acetyl/propionyl-CoA carboxylase and negatively regulates its transcription. In addition to acetate and propionate, the binding of BkdR to pccAB is disrupted by acetyl- and propionyl-CoA ligands. We identified a 16-nucleotide palindromic BkdR-binding motif (GTTAg/CGGTCg/TTAAC) in the intergenic region between pccAB and bkdR. When bkdR was deleted, we found an enhanced supply of malonyl- and methylmalonyl-CoA precursors in S. albus B4. In this study, spinosad production was detected in the recombinant strain after introducing the entire artificial biosynthesized gene cluster into S. albus B4. When supplemented with propionate to provide propionyl-CoA, the novel bkdR-deleted strain produced 29.4% more spinosad than the initial strain in trypticase soy broth (TSB) medium. IMPORTANCE: In this study, we describe a pccAB operon involved in short-chain acyl-CoA carboxylation in S. albus B4 chassis. The TetR family regulator, BkdR, represses this operon. Our results show that BkdR regulates the precursor supply needed for heterologous spinosad biosynthesis by controlling acetyl- and propionyl-CoA assimilation. The deletion of the BkdR-encoding gene exerts an increase in heterologous spinosad yield. Our research reveals a regulatory mechanism in short-chain acyl-CoA metabolism and suggests new possibilities for S. albus chassis engineering to enhance heterologous polyketide yield.
Asunto(s)
Proteínas Bacterianas , Combinación de Medicamentos , Macrólidos , Streptomyces , Macrólidos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Ingeniería Metabólica , Operón , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Acilcoenzima A/metabolismoRESUMEN
The dry tropics occupy ~40% of the tropical land surface and play a dominant role in the trend and interannual variability of the global carbon cycle. Previous studies have reported considerable changes in the dry tropical precipitation seasonality due to climate change, however, the accompanied changes in the length of the vegetation growing season (LGS)-the key period of carbon sequestration-have not been examined. Here, we used long-term satellite observations along with in-situ flux measurements to investigate phenological changes in the dry tropics over the past 40 years. We found that only ~18% of the dry tropics show a significant (p ≤ .1) increasing trend in LGS, while ~13% show a significant decreasing trend. The direction of the LGS change depended not only on the direction of precipitation seasonality change but also on the vegetation water use strategy (i.e. isohydricity) as an adaptation to the long-term average precipitation seasonality (i.e. whether the most of LGS is in the wet season or dry season). Meanwhile, we found that the rate of LGS change was on average ~23% slower than that of precipitation seasonality, caused by a buffering effect from soil moisture. This study uncovers potential mechanisms driving phenological changes in the dry tropics, offering guidance for regional vegetation and carbon cycle studies.
Asunto(s)
Cambio Climático , Ecosistema , Estaciones del Año , Ciclo del Carbono , Secuestro de CarbonoRESUMEN
Quantum theory allows information to flow through a single device in a coherent superposition of two opposite directions, resulting into situations where the input-output direction is indefinite. Here we introduce a theoretical method to witness input-output indefiniteness in a single quantum device, and we experimentally demonstrate it by constructing a photonic setup that exhibits input-output indefiniteness with a statistical significance exceeding 69 standard deviations. Our results provide a way to characterize input-output indefiniteness as a resource for quantum information and photonic quantum technologies and enable tabletop simulations of hypothetical scenarios exhibiting quantum indefiniteness in the direction of time.
RESUMEN
Distributed quantum computing is a promising computational paradigm for performing computations that are beyond the reach of individual quantum devices. Privacy in distributed quantum computing is critical for maintaining confidentiality and protecting the data in the presence of untrusted computing nodes. In this Letter, we introduce novel blind quantum machine learning protocols based on the quantum bipartite correlator algorithm. Our protocols have reduced communication overhead while preserving the privacy of data from untrusted parties. We introduce robust algorithm-specific privacy-preserving mechanisms with low computational overhead that do not require complex cryptographic techniques. We then validate the effectiveness of the proposed protocols through complexity and privacy analysis. Our findings pave the way for advancements in distributed quantum computing, opening up new possibilities for privacy-aware machine learning applications in the era of quantum technologies.
RESUMEN
Osteoarthritis (OA) is a common aging-related disease affecting entire joint structures, encompassing articular cartilage and subchondral bone. Although senescence and dysfunction of chondrocytes are considered crucial factors in the occurrence of OA, the exact pathogenesis remains to be investigated. In our study, chondrocytes were incubated with a conditioned medium obtained from osteoclasts at different differentiation stages, suggesting that osteoclasts and osteoclast precursors suppressed anabolism and promoted the catabolism of chondrocytes in vitro. In contrast, the function of osteoclasts was more significant than osteoclast precursors. Further blocking of osteoclast exosome secretion by using GW4869 abolished the effect of osteoclasts on chondrocytes. Functionally, exosomal transfer of osteoclast-derived miR-212-3p inhibited Smad2 to mediate chondrocyte dysfunction, thus accelerating cartilage matrix degradation in OA via TGF-ß1/Smad2 signaling. The mechanism was also confirmed within the articular cartilage in OA patients and surgery-induced OA mice. Our study provides new information on intercellular interactions in the bone microenvironment within articular cartilage and subchondral bone during OA progression. The miR-212-3p/Smad2 axis is a potential target for the prevention and therapy of OA.