Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(2): 1010-1021, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37934921

RESUMEN

Despite the increasing prevalence of atmospheric nanoplastics (NPs), there remains limited research on their phytotoxicity, foliar absorption, and translocation in plants. In this study, we aimed to fill this knowledge gap by investigating the physiological effects of tomato leaves exposed to differently charged NPs and foliar absorption and translocation of NPs. We found that positively charged NPs caused more pronounced physiological effects, including growth inhibition, increased antioxidant enzyme activity, and altered gene expression and metabolite composition and even significantly changed the structure and composition of the phyllosphere microbial community. Also, differently charged NPs exhibited differential foliar absorption and translocation, with the positively charged NPs penetrating more into the leaves and dispersing uniformly within the mesophyll cells. Additionally, NPs absorbed by the leaves were able to translocate to the roots. These findings provide important insights into the interactions between atmospheric NPs and crop plants and demonstrate that NPs' accumulation in crops could negatively impact agricultural production and food safety.


Asunto(s)
Antioxidantes , Microplásticos
2.
Environ Res ; 262(Pt 2): 119972, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260721

RESUMEN

Photocatalytic property of nano Ag is weak and its enhancement is important to enlarge its application. Herein, a novel strategy of constructing silver g-C3N4 biochar composite (Ag-CN@BC) as photocatalyst is developed and its photocatalytic degradation of bisphenol A (BPA) coupled with peroxydisulfate (PDS) oxidation process is characterized. Characterization result showed that silver was evenly embedded into the g-C3N4 structure of the nitrogen atoms format, impeding agglomeration of Ag by distributing stably on biochar. In optimum condition, BPA of 10 mg/L could be degraded completely at pH of 9.0 with a 0.5 g/L photocatalyst, 2 mM PDS in Ag-CN@BC-2 (Ag/melamine molar ratio of 0.5)/PDS system (99.2%, k = 4.601 h-1). Ag-CN@BC shows superior mineralization ratio in degrading BPA to CO2 and H2O via active radical way, including holes (h⁺), superoxide radicals (•O2⁻), sulfate radicals (SO4•⁻), and hydroxyl radicals (•OH). Proper amount of silver can be dispersed effectively by gC3N4, which is responsible for improving the visible-light absorbing capability and accelerate charge transfer during activation of PDS for BPA degradation, while biochar as carrier in the composite is supposed to enhance the photoelectric degradation of BPA by reducing the band gap and increasing the photocurrent of Ag-CN@BC catalyst. Ag-CN@BC exhibits excellent catalyst stability and photocatalytic activity for treatment of toxic organic contaminants in the environment.

3.
Ecotoxicol Environ Saf ; 271: 115979, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38244511

RESUMEN

Micro/nanoplastics (M/NPs) in water have raised global concern due to their potential environmental risks. To reestablish a M/NPs free world, enormous attempts have been made toward employing chemical technologies for their removal in water. This review comprehensively summarizes the advances in chemical degradation approaches for M/NPs elimination. It details and discusses promising techniques, including photo-based technologies, Fenton-based reaction, electrochemical oxidation, and novel micro/nanomotors approaches. Subsequently, critical influence factors, such as properties of M/NPs and operating factors, are analyzed in this review specifically. Finally, it concludes by addressing the current challenges and future perspectives in chemical degradation. This review will provide guidance for scientists to further explore novel strategies and develop feasible chemical methods for the improved control and remediation of M/NPs in the future.


Asunto(s)
Restauración y Remediación Ambiental , Contaminantes Químicos del Agua , Plásticos , Microplásticos , Agua , Contaminantes Químicos del Agua/análisis
4.
J Environ Manage ; 355: 120402, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38428183

RESUMEN

Interactions of microplastics (MPs) biofilm with antibiotic resistance genes (ARGs) and antibiotics in aquatic environments have made microplastic biofilm an issue of keen scholarly interest. The process of biofilm formation and the degree of ARGs enrichment in the presence of antibiotic-selective pressure and the impact on the microbial community need to be further investigated. In this paper, the selective pressure of ciprofloxacin (CIP) and illumination conditions were investigated to affect the physicochemical properties, biomass, and extracellular polymer secretion of polyvinyl chloride (PVC) microplastic biofilm. In addition, relative copy numbers of nine ARGs were analyzed by real-time quantitative polymerase chain reaction (qPCR). In the presence of CIP, microorganisms in the water and microplastic biofilm were more inclined to carry associated ARGs (2-3 times higher), which had a contributing effect on ARGs enrichment. The process of pre-microplastic biofilm formation might have an inhibitory effect on ARGs (total relative abundance up to 0.151) transfer and proliferation compared to the surrounding water (total relative abundance up to 0.488). However, in the presence of CIP stress, microplastic biofilm maintained the abundance of ARGs (from 0.151 to 0.149) better compared to the surrounding water (from 0.488 to 0.386). Therefore, microplastic biofilm act as abundance buffer island of ARGs stabilizing the concentration of ARGs. In addition, high-throughput analyses showed the presence of antibiotic-resistant (Pseudomonas) and pathogenic (Vibrio) microorganisms in biofilm under different conditions. The above research deepens our understanding of ARGs enrichment in biofilm and provides important insights into the ecological risks of interactions between ARGs, antibiotics, and microplastic biofilm.


Asunto(s)
Microplásticos , Plásticos , Genes Bacterianos , Ríos , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Ciprofloxacina , Agua , Biopelículas
5.
Environ Sci Technol ; 57(28): 10319-10330, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37369363

RESUMEN

Liquid crystal display (LCD) screens can release many organic pollutants into the indoor environment, including liquid crystal monomers (LCMs), which have been proposed as a novel class of emerging pollutants. Knowing the release pathways and mechanisms of LCMs from various components of LCD screens is important to accurately assess the LCM release and reveal their environmental transport behavior and fate in the ambient environment. A total of 47, 43, and 33 out of 64 target LCMs were detected in three disassembled parts of waste smartphone screens, including the LCM layer (LL), light guide plate (LGP), and screen protector (SP), respectively. Correlation analysis confirmed LL was the source of LCMs detected in LGP and SP. The emission factors of LCMs from waste screen, SP, and LGP parts were estimated as 2.38 × 10-3, 1.36 × 10-3, and 1.02 × 10-3, respectively. A mechanism model was developed to describe the release behaviors of LCMs from waste screens, where three characteristics parameters of released LCMs, including average mass proportion (AP), predicted subcooled vapor pressures (PL), and octanol-air partitioning coefficients (Koa), involving coexistence of absorption and adsorption mechanisms, could control the diffusion-partitioning. The released LCMs in LGP could reach diffusion-partition equilibrium more quickly than those in SP, indicating that LCM release could be mainly governed through SP diffusions.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Cristales Líquidos , Contaminantes Atmosféricos/análisis , Teléfono Inteligente , Monitoreo del Ambiente
6.
J Environ Manage ; 344: 118546, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37418916

RESUMEN

Biosynthesis of silver nanoparticles (AgNPs) by plant extracts and its antibacterial utilization has attracted great attention due to the spontaneous reducing and capping capacities of phytochemicals. However, the preferential role and mechanisms of the functional phytochemicals from different plants on AgNPs synthesis, and its catalytic and antibacterial performance remain largely unknown. This study used three widespread arbor species, including Eriobotrya japonica (EJ), Cupressus funebris (CF) and Populus (PL), as the precursors and their leaf extracts as reducing and stabilizing agents for the biosynthesis of AgNPs. A total of 18 phytochemicals in leaf extracts were identified by ultra-high liquid-phase mass spectrometer. For EJ extracts, most kinds of flavonoids participated in the generation of AgNPs by a reduced content of 5∼10%, while for CF extracts, about 15∼40% of the polyphenols were consumed to reduce Ag+ to Ag0. Notably, the more stable and homogeneous spherical AgNPs with smaller size (≈38 nm) and high catalytic capacity on Methylene blue were obtained from EJ extracts rather than CF extracts, and no AgNPs were synthesized from PL extracts, indicating that flavonoids are superior than polyphenols to act as reducer and stabilizer in AgNPs biosynthesis. The antibacterial activities against Gram-positive (Staphylococcus aureus and Bacillus mycoides) and Gram-negative bacteria (Pseudomonas putida and Escherichia coli) were higher in EJ-AgNPs than that in CF-AgNPs, which confirmed the synergistic antibacterial effects of flavonoids combined with AgNPs in EJ-AgNPs. This study provides a significant reference on the biosynthesis of AgNPs with efficient antibacterial utilization underlying effect of abundant flavonoids in plant extracts.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Plata/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Antibacterianos/química , Polifenoles , Flavonoides , Espectroscopía Infrarroja por Transformada de Fourier , Pruebas de Sensibilidad Microbiana
7.
J Environ Manage ; 317: 115441, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35661879

RESUMEN

Despite the fact that microplastic pollution in terrestrial ecosystems has received increasing attention, there are few studies on the potential effects of different microplastics on terrestrial plants. In this study, the toxicity of polystyrene (PS), polyethylene (PE) and polypropylene (PP) microplastics with different concentrations (0, 10, 100, 500 and 1000 mg/L) to tomato (Lycopersicon esculentum L.) were studied by a hydroponic experiment. The results showed that the three microplastics had inhibitory effects on seed germination when the concentration was less than or equal to 500 mg/L, and the inhibition rate ranged from 10.1% to 23.6%. Interestingly, the inhibition effect was alleviated under 1000 mg/L microplastic treatment. Generally, PE was more toxic to seedling growth than PS and PP. Additionally, it was confirmed that microplastics could cause oxidative stress in plants, and PP was relatively less toxic to antioxidant enzymes than PS and PE. These results can provide a theoretical basis and data support for further investigation on the toxicity of microplastics to tomatoes, and contribute to understanding the type specificity of microplastics' toxic effects on plants.


Asunto(s)
Solanum lycopersicum , Contaminantes Químicos del Agua , Ecosistema , Microplásticos/toxicidad , Plásticos , Polietileno , Polipropilenos/toxicidad , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
8.
J Environ Sci (China) ; 113: 12-25, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34963522

RESUMEN

Biochar, carbonaceous material produced from biomass pyrolysis, has been demonstrated to have electron transfer property (associated with redox active groups and multi condensed aromatic moiety), and to be also involved in biogeochemical redox reactions. In this study, the enhanced removal of Cr(VI) by Shewanella oneidensis MR-1(MR-1) in the presence of biochars with different pyrolysis temperatures (300 to 800 °C) was investigated to understand how biochar interacts with Cr(VI) reducing bacteria under anaerobic condition. The promotion effects of biochar (as high as 1.07~1.47 fold) were discovered in this process, of which the synergistic effect of BMBC700(ball milled biochar) and BMBC800 with MR-1 was noticeable, in contrast, the synergistic effect of BMBCs (300-600 °C) with MR-1 was not recognized. The more enhanced removal effect was observed with the increase of BMBC dosage for BMBC700+MR-1 group. The conductivity and conjugated O-containing functional groups of BMBC700 particles themselves has been proposed to become a dominant factor for the synergistic action with this strain. And, the smallest negative Zeta potential of BMBC700 and BMBC800 is thought to favor decreasing the distance from microbe than other BMBCs. The results are expected to provide some technical considerations and scientific insight for the optimization of bioreduction by useful microbes combining with biochar composites to be newly developed.


Asunto(s)
Electrones , Shewanella , Carbón Orgánico , Cromo
9.
J Mol Recognit ; 34(2): e2874, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32893930

RESUMEN

Due to the rapid development of industrial society, air pollution is becoming a serious problem which has being a huge threat to human health. Ultrafine particles (UFPs), one of the major air pollutants, are often the culprits of human diseases. At present, most of the toxicological studies of UFPs focus on their biological effects on lung cells and tissues, but there are less researches taking aim at the negative effects on functional proteins within the body. Therefore, we experimentally explored the effects of ultrafine carbon black (UFCB) on the structure and function of trypsin. After a short-term exposure to UFCB, the trypsin aromatic amino acid microenvironment, protein backbone and secondary structure were changed significantly, and the enzyme activity showed a trend that rose at first, then dropped. In addition, UFCB interacts with trypsin in the form of a complex. These studies demonstrated the negative effects of UFCB on trypsin, evidencing potential effects on animals and humans.


Asunto(s)
Material Particulado/toxicidad , Hollín/toxicidad , Tripsina/química , Tripsina/metabolismo , Animales , Bovinos , Dicroismo Circular , Regulación de la Expresión Génica/efectos de los fármacos , Modelos Moleculares , Tamaño de la Partícula , Estructura Secundaria de Proteína/efectos de los fármacos , Análisis Espectral , Tripsina/efectos de los fármacos
10.
Ecotoxicol Environ Saf ; 213: 112041, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33601174

RESUMEN

Awareness of risks posed by widespread presence of nanoplastics (NPs) and bioavailability and potential to interact with organic pollutants has been increasing. Inhalation is one of the more important pathways of exposure of humans to NPs. In this study, combined toxicity of concentrations of polystyrene NPs and various phthalate esters (PAEs), some of the most common plasticizers, including dibutyl phthalate (DBP) and di-(2-ethyl hexyl) phthalate (DEHP) on human lung epithelial A549 cells were investigated. When co-exposed, 20 µg NPs/mL increased viabilities of cells exposed to either DBP or DEHP and the modulation of toxic potency of DEHP was greater than that of DBP, while the 200 µg NPs/mL resulted in lesser viability of cells. PAEs sorbed to NPs decreased free phase concentrations (Cfree) of PAEs, which resulted in a corresponding lesser bioavailability and joint toxicity at the lesser concentration of NPs. The opposite effect was observed at the greater concentration of NPs, which may result from the dominated role of NPs in the combined toxicity. Furthermore, our data showed that oxidative stress and inflammatory reactions were mechanisms for combined cytotoxicities of PAEs and NPs on A549 cells. Results of this study emphasized the combined toxic effects and mechanisms on human lung cells, which are helpful for assessing the risk of the co-exposure of NPs and organic contaminants in humans.


Asunto(s)
Contaminantes Ambientales/toxicidad , Microplásticos/toxicidad , Ácidos Ftálicos/toxicidad , Poliestirenos/toxicidad , Células A549 , China , Dibutil Ftalato/toxicidad , Dietilhexil Ftalato , Ésteres , Humanos , Pulmón , Estrés Oxidativo , Plastificantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA