Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Small ; 20(11): e2309025, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37890449

RESUMEN

Transition metal-based sulfides exhibit remarkable potential as electrocatalysts for oxygen evolution reaction (OER) due to the unique intrinsic structure and physicochemical characteristics. Nevertheless, currently available sulfide catalysts based on transition metals face a bottleneck in large-scale commercial applications owing to their unsatisfactory stability. Here, the first fabrication of (FeCoNiMn2 )S2 dual-phase medium-entropy metal sulfide (dp-MEMS) is successfully achieved, which demonstrated the expected optimization of stability in the OER process. Benefiting from the "cell wall" -like structure and the synergistic effect in medium-entropy systems, (FeCoNiMn2 )S2 dp-MEMS delivers an exceptionally low overpotential of 169 and 232 mV at current densities of 10 and 100 mA cm-2 , respectively. The enhancement mechanism of catalytic activity and stability is further validated by density functional theory (DFT) calculations. Additionally, the rechargeable Zn-air batteries integrated with FeCoNiMn2 )S2 dp-MEMS exhibit remarkable performance outperforming the commercial catalyst (Pt/C+RuO2 ). This work demonstrates that the dual-phase medium-entropy metal sulfide-based catalysts have the potential to provide a greater application value for OER and related energy conversion systems.

2.
Small ; 20(34): e2400068, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38593293

RESUMEN

Lithium-sulfur (Li-S) batteries with high theoretical energy density (2600 Wh kg-1) are considered to be one of the most promising secondary batteries. However, the practical application of Li-S batteries is limited by the polysulfides shuttling and unstable lithium metal anodes. Herein, an asymmetric separator (CACNM@PP), composed of Co-Ni/MXene (CNM) on the cathode and Cu-Ag/MXene (CAM) on the anode for high-performance Li-S batteries is reported. For the cathode, CNM provides a synergistic effect by integrating Co, Ni, and MXene, resulting in strong chemical interactions and fast conversion kinetics for polysulfides. For the anode, CAM with abundant lithiophilicity active sites can lower the nucleation barrier of Li. Moreover, LiCl/LiF layers are generated in situ as an ion conductor layer during charging and discharging, inducing a uniform deposition of Li. Therefore, the assembled cells with the CACNM@PP separators harvest excellent electrochemical performance. This work provides novel insights into the development of commercially available high-energy density Li-S batteries with asymmetric separators.

3.
Inorg Chem ; 63(32): 15081-15089, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39088261

RESUMEN

Transition metal selenides, boasting remarkable specific capacity, have emerged as a promising electrode material. However, the substantial volume fluctuations during sodium ion insertion and extraction result in inadequate cyclic stability and rate performance, impeding their practical utility. Here, we synthesized N-doped carbon three-dimensional (3D) interconnected networks encapsulating (NiCo)3Se4 nanoparticles, denoted as ((NiCo)3Se4/N-C), exhibiting a bead-like structure and carbon confinement through electrospinning and subsequent thermal treatment. The N-doped carbon 3D interconnected networks possess high porosity and ample volume buffering capacity, enhance conductivity, shorten ion diffusion paths, and mitigate mechanical stress induced by volume changes during cycling. The uniformly distributed (NiCo)3Se4 nanoparticles, featuring a stable structure, demonstrate rapid electrochemical kinetics and numerous available active sites. The distinctive structure and composition of the optimized (NiCo)3Se4/N-C material showcase a high specific capacity (656.2 mAh g-1 at 0.1 A g-1) and an outstanding rate capability. A kinetic analysis confirms that (NiCo)3Se4/N-C stimulates the pseudocapacitive Na+ storage mechanism with capacitance contributing up to 89.2% of the total capacity. This unique structure design and doping approach provide new insights into the design of electrode materials for high-performance batteries.

4.
Inorg Chem ; 63(27): 12604-12614, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38918078

RESUMEN

The development of bifunctional electrocatalysts with excellent performance in both the hydrogen evolution reaction (HER) and sulfide oxidation reaction (SOR) remains a formidable challenge. Herein, we experimentally synthesize a NiO/RuO2 p-n heterojunction nanofoam that exhibits highly desirable electrocatalytic properties for both the HER and the SOR. We further design an electrolytic cell by pairing alkaline HER with SOR utilizing the NiO/RuO2 heterojunction nanofoam as both the anode and the cathode, which demands a low applied voltage of 0.846 V to achieve a current density of 10 mA cm-2. Density functional theory calculations confirm that the formation of the NiO/RuO2 p-n heterojunction nanofoam effectively regulates the electronic structure, thereby boosting the electrocatalytic performances for both HER and SOR. This work not only provides a novel strategy to prepare an efficient and stable nanofoam electrocatalyst for hydrogen production but also highlights the potential application of oxide heterojunction electrocatalysts in treating sulfur-containing waste liquid.

5.
Angew Chem Int Ed Engl ; 63(2): e202316007, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38017308

RESUMEN

Psoriasis is a chronic skin inflammation characterized by dysregulated crosstalk between immune cells and keratinocytes. Here we show that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is a key regulator of psoriatic inflammation in a mouse model. Platinum-doped positively charged carbon dots (Pt-CDs) were designed to inhibit the cGAS-STING pathway. By inhibiting the cGAS-STING pathway with Pt-CDs, the secretion of proinflammatory cytokines in macrophages was reduced, and the proinflammatory cytokines-induced breakdown of immunological tolerance and overexpression of chemokines in keratinocytes was restored, which reversed the homeostatic imbalance through breaking these cytokines-mediated intercellular positive feedback loop. Topical Pt-CDs treatment exhibited therapeutic effects in imiquimod-induced psoriasis mice without noticeable toxicity. The reversal of elevated expression of STING, phosphorylated STING, and downstream genes within psoriatic lesions indicates that Pt-CDs effectively inhibit the cGAS-STING pathway. This work suggests a promising strategy for psoriasis treatment by targeting the cGAS-STING pathway with Pt-CDs nanoinhibitor to restore skin homeostatic balance.


Asunto(s)
Psoriasis , Transducción de Señal , Ratones , Animales , Nucleotidiltransferasas/metabolismo , Inflamación/tratamiento farmacológico , Citocinas/metabolismo , Psoriasis/tratamiento farmacológico
6.
Small ; 19(40): e2301545, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37287408

RESUMEN

Practical applications of lithium-sulfur (Li-S) batteries have been hindered by sluggish reaction kinetics and severe capacity decay during charge-discharge cycling due to the notorious shuttle effect of polysulfide and the unfavored deposition and dissolution of Li2 S. Herein, to address these issues, a double-defect engineering strategy is developed for preparing Co-doped FeP catalyst containing P vacancies on MXene, which effectively improves the bidirectional redox of Li2 S. Mechanism analysis indicates that P vacancy accelerates Li2 S nucleation via increased unsaturated sites, and Co doping generates local electric field to reduce the reaction energy barrier and accelerate Li2 S dissolution. MXene provides highly conductive channels for electron transport, and effectively captures polysulfide. The double-defect catalyst enables an impressive reversible specific capacity of 1297.9 mAh g-1 at 0.2 C, and excellent rate capability of 726.5 mAh g-1 at 4 C. Remarkably, it demonstrates excellent cycling stability with capacity retention of 533.3 mAh g-1 after 500 cycles at 2 C. The results can unlock the double-defect engineering of vacancy induction and heteroatomic doping towards practical Li-S batteries.

7.
Small ; 19(36): e2300065, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37147776

RESUMEN

Most catalysts cannot accelerate uninterrupted conversion of polysulfides, resulting in poor long-cycle and high-loading performance of lithium-sulfur (Li-S) batteries. Herein, rich p-n junction CoS2 /ZnS heterostructures embedded on N-doped carbon nanosheets are fabricated by ion-etching and vulcanization as a continuous and efficient bidirectional catalyst. The p-n junction built-in electric field in the CoS2 /ZnS heterostructure not only accelerates the transformation of lithium polysulfides (LiPSs), but also promotes the diffusion and decomposition for Li2 S the from CoS2 to ZnS avoiding the aggregation of lithium sulfide (Li2 S). Meanwhile, the heterostructure possesses a strong chemisorption ability to anchor LiPSs and superior affinity to induce homogeneous Li deposition. The assembled cell with a CoS2 /ZnS@PP separator delivers a cycling stability with a capacity decay of 0.058% per cycle at 1.0 C after 1000 cycles, and a decent areal capacity of 8.97 mA h cm-2 at an ultrahigh sulfur mass loading of 6 mg cm-2 . This work reveals that the catalyst continuously and efficiently converts polysulfides via abundant built-in electric fields to promote Li-S chemistry.

8.
Small ; 19(36): e2301750, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37127850

RESUMEN

Potassium-ion battery represents a promising alternative of conventional lithium-ion batteries in sustainable and grid-scale energy storage. Among various anode materials, elemental phosphorus (P) has been actively pursued owing to the ideal natural abundance, theoretical capacity, and electrode potential. However, the sluggish redox kinetics of elemental P has hindered fast and deep potassiation process toward the formation of final potassiation product (K3 P), which leads to inferior reversible capacity and rate performance. Here, it is shown that rational design on black/red P heterostructure can significantly improve K-ion adsorption, injection and immigration, thus for the first time unlocking K3 P as the reversible potassiation product for elemental P anodes. Density functional theory calculations reveal the fast adsorption and diffusion kinetics of K-ion at the heterostructure interface, which delivers a highly reversible specific capacity of 923 mAh g-1 at 0.05 A g-1 , excellent rate capability (335 mAh g-1 at 1 A g-1 ), and cycling performance (83.3% capacity retention at 0.8 A g-1 after 300 cycles). These results can unlock other sluggish and irreversible battery chemistries toward sustainable and high-performing energy storage.

9.
Nanotechnology ; 32(27)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33765660

RESUMEN

Both poor electron conductivity and low ion diffusion of electrode materials are two main issues limiting the rate performance of pseudocapacitors. The present work reports the design and fabrication of hierarchically nano-architectured electrodes consisting of sulfide vacancies enhanced Ni-Co-S nanoparticle covering bent nickel nano-forest (BNNF). We propose new insight into vastly increased ion-accessible active sites and fast charge storage/delivery enhanced the reaction kinetics. The Ni-Co-S@BNNF electrode exhibits extremely high rate performance with 90.1% capacity retention from 1 to 20 A g-1, and even still remains 83.6% capacity at 40 A g-1, much superior to reported NiCo2S4-based electrodes. The high rate performance is attributed to the unique nano-architecture providing increased ion availability of electrochemically active sites and high conductivity for fast electron transport. Especially the electrode achieves remarkable long-term cycle stability with more than 100% initial capacity value after 5000 cycles at 5 A g-1and exhibits excellent cycle reversibility even at 20 A g-1. Goog cycle stability should be attributed to the sulfide vacancies in Ni-Co-S nano-branches and the electrode architecture sustaining structural strain during fast redox reactions. An asymmetric pseudocapacitor applying such electrode achieves a high energy density of 99.9 W h kg-1and exhibits superior cycling stability at a high current density of 20 A g-1. This study underscores the potential importance of developing nanoarrays covered with highly redox-active materials with increasing ions/charge kinetics for energy storage.

10.
Nanotechnology ; 27(24): 245602, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27172247

RESUMEN

Research on hollow nanoshells has, for years, claimed to involve free, pre-existing nanobubbles as soft templates. It is a challenge to demonstrate this due to the difficulty of in situ observation during solution-based reactions. We show that no available free-bubble theory can describe the mysterious behavior of the bubble number density n. A new mechanism of collision coalescence of bubble-particle systems is suggested to form hollow nanoshells. By approximating relative velocity as ∼R (-z) (R is bubble radius), numerical simulations can reproduce the counterintuitive observations in the regime 1 < z < 2. We discuss the mechanism based on successful synthesis of grain-monolayer thin, fractal-like incomplete, multi-metallic nanoshells with superior catalytic activity. The behaviors of n, R, and shell thickness h are closely reproduced by z = 1.6.

11.
Nanotechnology ; 26(37): 374001, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26314271

RESUMEN

Inexpensive MnO2 is a promising material for supercapacitors (SCs), but its application is limited by poor electrical conductivity and low specific surface area. We design and fabricate hierarchical MnO2-based ternary composite nanostructures showing superior electrochemical performance via doping with electrochemically active Fe3O4 in the interior and electrically conductive SnO2 nanoparticles in the surface layer. Optimization composition results in a MnO2-Fe3O4-SnO2 composite electrode material with 5.9 wt.% Fe3O4 and 5.3 wt.% SnO2, leading to a high specific areal capacitance of 1.12 F cm(-2) at a scan rate of 5 mV s(-1). This is two to three times the values for MnO2-based binary nanostructures at the same scan rate. The low amount of SnO2 almost doubles the capacitance of porous MnO2-Fe3O4 (before SnO2 addition), which is attributed to an improved conductivity and remaining porosity. In addition, the optimal ternary composite has a good rate capability and an excellent cycling performance with stable capacitance retention of ~90% after 5000 charge/discharge cycles at 7.5 mA cm(-2). All-solid-state SCs are assembled with such electrodes using polyvinyl alcohol/Na2SO4 electrolyte. An integrated device made by connecting two identical SCs in series can power a light-emitting diode indicator for more than 10 min.

12.
ACS Appl Mater Interfaces ; 16(13): 16778-16787, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38502968

RESUMEN

Radiative cooling fabrics have gained significant attention for their ability to enhance comfort without consuming extra energy. Nevertheless, sweat accumulation on the skin and diminishing cooling efficiency usually exist in the reported polymer cooling membranes. Herein, we report a universal method to obtain a calcium (Ca)-salt-enhanced fiber membrane with high infrared emission and hydrophilicity for efficient passive cooling and flame retardancy. The modification by Ca salts (including CaSiO3, CaSO3, and CaHPO4) with strong infrared emission results in an improvement in hygrothermal management ability, especially for moisture absorption and perspiration regulation in hot and humid environments. As an example, the CaSiO3@PMMA fiber membrane exhibits exceptional reflectivity in the solar spectrum (∼94.5%), high emittance in the atmospheric window (∼96.7%), and superhydrophilicity with a contact angle of 31°. Under direct sunlight, the CaSiO3@PMMA membrane exhibits an obvious temperature drop of 11.7 °C and moisture management achieves an additional cooling of 8.9 °C, as further confirmed by the ability to reduce the rate of ice melting. Additionally, the composite membrane provides notable flame retardancy and UV resistance. This work paves a new path in developing new materials with perspiration management and flame retardancy for zero energy consumption cooling in hot and humid environments.

13.
ACS Nano ; 18(17): 11120-11129, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38626337

RESUMEN

Passive radiative cooling (PRC) has been acknowledged to be an environmentally friendly cooling technique, and especially artificial photonic materials with manipulating light-matter interaction ability are more favorable for PRC. However, scalable production of radiative cooling materials with advanced biologically inspired structures, fascinating properties, and high throughput is still challenging. Herein, we reported a bioinspired design combining surface ordered pyramid arrays and internal three-dimensional hierarchical pores for highly efficient PRC based on mimicking natural photonic structures of the white beetle Cyphochilus' wings. The biological photonic film consisting of surface ordered pyramid arrays with a bottom side length of 4 µm together with amounts of internal nano- and micropores was fabricated by using scalable phase separation and a quick hot-pressing process. Optimization of pore structures and surface-enhanced photonic arrays enables the bioinspired film to possess an average solar reflectance of ∼98% and a high infrared emissivity of ∼96%. A temperature drop of ∼8.8 °C below the ambient temperature is recorded in the daytime. Besides the notable PRC capability, the bioinspired film exhibits excellent flexibility, strong mechanical strength, and hydrophobicity; therefore, it can be applied in many complex outdoor scenarios. This work provides a highly efficient and mold replication-like route to develop highly efficient passive cooling devices.

14.
ACS Appl Mater Interfaces ; 16(28): 36354-36362, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38955841

RESUMEN

Sodium-ion batteries (SIBs), owing to their abundant resources and cost-effectiveness, have garnered considerable interest in the realm of large-scale energy storage. The properties of cathode materials profoundly affect the cycle stability and specific capacity of batteries. Herein, a series of Cu-doped spherical P2-type Na0.7Fe0.23-xCuxMn0.77O2 (x = 0, 0.05, 0.09, and 0.14, x-NFCMO) was fabricated using a convenient hydrothermal method. The successful doping of Cu efficaciously mitigated the Jahn-Teller effect, augmented the electrical conductivity of the material, and diminished the resistance to charge transfer. The distinctive spherical structure remained stable and withstood considerable volumetric strain, thereby improving the cyclic stability of the material. The optimized 0.09-NFCMO cathode exhibited a high specific capacity of 168.6 mAh g-1 at 100 mA g-1, a superior rate capability (90.9 mAh g-1 at 2000 mA g-1), and a good cycling stability. This unique structure design and doping approach provides new insights into the design of advanced electrode materials for sodium-ion batteries.

15.
Adv Sci (Weinh) ; 11(25): e2308604, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38654467

RESUMEN

As a very prospective solid-state electrolyte, Li10GeP2S12 (LGPS) exhibits high ionic conductivity comparable to liquid electrolytes. However, severe self-decomposition and Li dendrite propagation of LGPS will be triggered due to the thermodynamic incompatibility with Li metal anode. Herein, by adopting a facile chemical vapor deposition method, an artificial solid electrolyte interphase composed of Li2S is proposed as a single ionic conductor to promote the interface stability of LGPS toward Li. The good electronic insulation coupled with ionic conduction property of Li2S effectively blocks electron transfer from Li to LGPS while enabling smooth passage of Li ions. Meanwhile, the generated Li2S layer remains good interface compatibility with LGPS, which is verified by the stable Li-plating/stripping operation for over 500 h at 0.15 mA cm-2. Consequently, the all-solid-state Li-S batteries (ASSLSBs) with a Li2S layer demonstrate superb capacity retention of 90.8% at 0.2 mA cm-2 after 100 cycles. Even at the harsh condition of 90 °C, the cell can deliver a high reversible capacity of 1318.8 mAh g-1 with decent capacity retention of 88.6% after 100 cycles. This approach offers a new insight for interface modification between LGPS and Li and the realization of ASSLSBs with stable cycle life.

16.
ACS Nano ; 18(4): 3839-3849, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38227979

RESUMEN

Lithium-ion batteries, which have dominated large-scale energy storage for the past three decades, face limitations in energy density and cost. Sulfur, with its impressive capacity of 1675 mAh g-1 and high theoretical energy density of 1274 Wh kg-1, stands out as a promising cathode material, leading to a growing focus on sodium-sulfur (Na-S) batteries as an alternative to address lithium resource scarcity. Nevertheless, the development is restrained by poor conductivity, volume expansion of the sulfur cathode, and the shuttle effect of sodium polysulfides (Na2Sn) in the electrolytes. In this study, a facile method is designed to fabricate phosphor-doped carbon (phos-C), which is then used as a sulfur matrix. This micromesoporous phos-C network enhances sulfur utilization, increases overall cathode conductivity, and effectively mitigates the shuttling of Na2Sn. During the discharge process, phos-C can absorb soluble Na2Sn and increase the conductivity of sulfur, while serving as a reservoir for electrolyte and Na2Sn, thereby preventing their infiltration into the anode and reducing the loss of sodium. As a result, the well-designed sulfur-loaded phos-C (S/phos-C) cathode, employed in the Na-S battery, demonstrates a capacity of 1034 mAh g-1 at 0.1 C (1 C = 1675 mA g-1) and an excellent rate capability of 339 mAh g-1 at 10 C, coupled with a prolonged cycling life up to 2000 cycles at 1 C, exhibiting an ultralow capacity decay rate of 0.013% per cycle. Overall, this study introduces an efficient method for creating long-lasting Na-S batteries.

17.
ACS Appl Mater Interfaces ; 15(42): 49223-49232, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37838949

RESUMEN

Currently, severe shuttle effects and sluggish conversion kinetics are the main obstacles to the advancement of lithium-sulfur (Li-S) batteries. Modification of the battery separator by a catalyst is a promising approach to tackle these problems, but simultaneously obtaining rich catalytic active sites, high conductivity, and remarkable stability remains a great challenge. Herein, a flower-like MXene/MoS2/SnS@C heterostructure as the functional intercalation of Li-S batteries was prepared for accelerating the synergistic adsorption-electrocatalysis of sulfur conversion. The MXene skeleton constructs a three-dimensional conductive network that anchors polysulfides and enhances charge transfer. Meanwhile, the MoS2/SnS has rich active sites for accelerating polysulfide conversion, leading to excellent electrochemical performances. A battery with MXene/MoS2/SnS@C displays an extraordinary capacity of 836.1 mAh g-1 over 200 cycles at 0.5C and demonstrates a remarkable cycling stability with a capacity attenuation of approximately 0.051% per cycle during 1000 cycles at 2C. When the sulfur loading reaches 5.1 mg cm-2, the capacity still maintains 722.4 mAh g-1 over 50 cycles. This research proposes a novel strategy to design stable catalysts for Li-S batteries with an extended lifespan.

18.
Adv Sci (Weinh) ; 10(7): e2206176, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36638249

RESUMEN

The currently available materials cannot meet the requirements of human thermal comfort against the hot and cold seasonal temperature fluctuations. In this study, a dual-mode Janus film with a bonded interface to gain dual-mode functions of both highly efficient radiative cooling and solar heating for year-round thermal management is designed and prepared. The cooling side is achieved by embedding NaH2 PO2 particles with high infrared radiation (IR) emittance into a porous polymethyl methacrylate (PMMA) film during pore formation process, which is reported for the first time to the knowledge. A synergistic enhancement of NaH2 PO2 and 3D porous structure leads to efficient radiant cooling with high solar reflectance (R̅solar ≈ 92.6%) and high IR emittance (ε̅IR ≈ 97.2%), especially the ε̅IR value is much greater than that of the reported best porous polymer films. In outdoor environments under 750 mW cm-2 solar radiation, the dual-mode Janus film shows subambient cooling temperature of ≈8.8 °C and heating temperature reaching ≈39.3 °C, indicating excellent thermal management capacity. A wide temperature range is obtained only by flipping the dual-mode Janus film for thermal management. This work provides an advanced zero-energy-consumption human thermal management technique based on the high-performance dual-mode integrated Janus film material.

19.
ACS Appl Mater Interfaces ; 15(43): 50522-50531, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37851931

RESUMEN

An ultralight material that simultaneously combines remarkably rapid water transportation, highly efficient photothermal conversion, and excellent thermal insulation is highly desired for solar-driven interfacial desalination but was challenging. In this work, inspired by the unique natural structure of wood, we developed an ultralight aerogel by ice-templated synthesis as an integrated interfacial evaporator for solar-driven water production. The interior features vertically aligned biomimetic microscale channels facilitating rapid transportation of water molecules, while an improved photothermal interface allows high solar absorption and conversion via nonradiative relaxation and molecular vibrations. The biomimetic aerogel is ultralight with a density as low as 0.06 g/cm3, especially its fabrication is size- and shape-programmable as a whole and easily scalable. Additionally, the outstanding thermal insulation of the aerogel focuses heat precisely at the evaporation interface, reducing ineffective heat loss, while the uniformly distributed large-sized channels promote the dynamic convection of high concentration salt ions on the evaporator surface. Consequently, the evaporator shows broadband light absorption of 92.7%, leading to a water evaporation rate reaching 4.55 kg m-2 h-1 under 3 simulated solar irradiations, much higher than that of other reported evaporators with randomly distributed pores. This work provides new insight into advanced hybrid aerogels for highly efficient and durable solar-driven interfacial desalination systems.

20.
J Phys Chem Lett ; 14(5): 1156-1164, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36709444

RESUMEN

Amorphous metal-organic framework (MOF) materials have drawn extensive interest in the design of high-performance electrocatalysts for use in the electrochemical oxygen evolution reaction. However, there are limitations to the utilization of amorphous MOFs due to their low electrical conductivity and unsatisfactory stability. Herein, a novel amorphous-crystalline (AC) heterostructure is successfully constructed by synthesizing a crystalline metal sulfide (MS)-embedded amorphous Ni0.67Fe0.33-MOF, namely an MS/Ni0.67Fe0.33-MOF. It exhibits excellent catalytic performance (a low overpotential of 248 mV at 10 mA cm-2 with a small Tafel slope of 50 mV decade-1), durability, and stability (only 8% degradation of the current density at a constant voltage after 24 h). This work thus sheds light on the engineering of highly efficient catalysts with AC heterointerfaces for optimizing water-splitting systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA