Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Magn Reson Med ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775035

RESUMEN

PURPOSE: Metabolite-specific balanced SSFP (MS-bSSFP) sequences are increasingly used in hyperpolarized [1-13C]Pyruvate (HP 13C) MRI studies as they improve SNR by refocusing the magnetization each TR. Currently, pharmacokinetic models used to fit conversion rate constants, kPL and kPB, and rate constant maps do not account for differences in the signal evolution of MS-bSSFP acquisitions. METHODS: In this work, a flexible MS-bSSFP model was built that can be used to fit conversion rate constants for these experiments. The model was validated in vivo using paired animal (healthy rat kidneys n = 8, transgenic adenocarcinoma of the mouse prostate n = 3) and human renal cell carcinoma (n = 3) datasets. Gradient echo (GRE) acquisitions were used with a previous GRE model to compare to the results of the proposed GRE-bSSFP model. RESULTS: Within simulations, the proposed GRE-bSSFP model fits the simulated data well, whereas a GRE model shows bias because of model mismatch. For the in vivo datasets, the estimated conversion rate constants using the proposed GRE-bSSFP model are consistent with a previous GRE model. Jointly fitting the lactate T2 with kPL resulted in less precise kPL estimates. CONCLUSION: The proposed GRE-bSSFP model provides a method to estimate conversion rate constants, kPL and kPB, for MS-bSSFP HP 13C experiments. This model may also be modified and used for other applications, for example, estimating rate constants with other hyperpolarized reagents or multi-echo bSSFP.

2.
Exp Eye Res ; 242: 109860, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467174

RESUMEN

Recent studies have highlighted that retinal neurodegeneration precedes microvascular changes in diabetic retinopathy (DR), but the specific mechanisms remain unclear. Given the pivotal role of dysfunctional mitochondria and oxidative stress in early DR, our objective was to observe mitochondria-related alterations in the neural retina of type one diabetic mellitus mice with no evidence of DR (T1DM-NDR). We aimed to identify the key mitochondrial-related proteins contributing to mitochondrial injury. Our study revealed that T1DM-NDR mice exhibited outer retina thinning, including the ellipsoid zone, inner segment, and outer segment. Additionally, there was an impaired amplitude of the b-wave in electroretinogram (ERG) and a disorganized arrangement of the photoreceptor layer. In both the retina of DM mice and high glucose (HG)-treated 661w cells, mitochondria appeared swollen and fragmented, with disrupted cristae, disorganized or shortened branches in the mitochondrial network, and decreased mitochondrial membrane potential. Among the mitochondrial-related proteins, dynamin-related protein 1 (Drp1) was upregulated, and the ratio of phosphorylated Drp1 protein at serine 616 (S616) and serine 637 (S637) sites significantly increased in the retina of DM mice. The administration of Mdivi-1 ameliorated high-glucose-induced dysfunctional mitochondria, thereby protecting T1DM-NDR mice retina from morphological and functional injuries. Our findings suggest that hyperglycemia promotes Drp1-mediated mitochondrial dysfunction, which may be a significant factor in the development of DR. The inhibition of high-glucose-induced mitochondrial fission emerges as a potential and innovative intervention strategy for preventing DR.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Retinopatía Diabética , Dinaminas , Electrorretinografía , Ratones Endogámicos C57BL , Mitocondrias , Animales , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Ratones , Dinaminas/metabolismo , Dinaminas/genética , Mitocondrias/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/complicaciones , Células Fotorreceptoras de Vertebrados/patología , Células Fotorreceptoras de Vertebrados/metabolismo , Masculino , Potencial de la Membrana Mitocondrial , Estrés Oxidativo , Western Blotting
3.
Phys Rev Lett ; 130(17): 176802, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37172248

RESUMEN

The mechanism on ferroelectric phase transitions is mainly attributed to the displacive and/or order-disorder transition of internal components since the discovery of the ferroelectricity in 1920, rather than the breaking and recombination of chemical bonds. Here, we demonstrate how to utilize the chemical bond rearrangement in a diarylethene-based crystal to realize the light-driven mm2F1-type ferroelectric phase transition. Such a photoinduced phase transition is entirely driven by switchable covalent bonds with breaking and reformation, enabling the reversible light-controllable ferroelectric polarization switching, dielectric and nonlinear optical bistability. Moreover, light as quantized energy can achieve contactless, nondestructive, and remote-control operations. This work proposes a new mechanism of ferroelectric phase transition, and highlights the significance of photochromic molecules in designing new ferroelectrics for photocontrol data storage and sensing.

4.
J Cardiovasc Magn Reson ; 25(1): 77, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38093285

RESUMEN

BACKGROUND: The heart has metabolic flexibility, which is influenced by fed/fasting states, and pathologies such as myocardial ischemia and hypertrophic cardiomyopathy (HCM). Hyperpolarized (HP) 13C-pyruvate MRI is a promising new tool for non-invasive quantification of myocardial glycolytic and Krebs cycle flux. However, human studies of HP 13C-MRI have yet to demonstrate regional quantification of metabolism, which is important in regional ischemia and HCM patients with asymmetric septal/apical hypertrophy. METHODS: We developed and applied methods for whole-heart imaging of 13C-pyruvate, 13C-lactate and 13C-bicarbonate, following intravenous administration of [1-13C]-pyruvate. The image acquisition used an autonomous scanning method including bolus tracking, real-time magnetic field calibrations and metabolite-specific imaging. For quantification of metabolism, we evaluated 13C metabolite images, ratio metrics, and pharmacokinetic modeling to provide measurements of myocardial lactate dehydrogenase (LDH) and pyruvate dehydrogenase (PDH) mediated metabolic conversion in 5 healthy volunteers (fasting & 30 min following oral glucose load). RESULTS: We demonstrate whole heart coverage for dynamic measurement of pyruvate-to-lactate conversion via LDH and pyruvate-to-bicarbonate conversion via PDH at a resolution of 6 × 6 × 21 mm3 (13C-pyruvate) and 12 × 12 × 21 mm3 (13C-lactate, 13C-bicarbonate). 13C-pyruvate and 13C-lactate were detected simultaneously in the RV blood pool, immediately after intravenous injection, reflecting LDH activity in blood. In healthy volunteers, myocardial 13C-pyruvate-SNR, 13C-lactate-SNR, 13C-bicarbonate-SNR, 13C-lactate/pyruvate ratio, 13C-pyruvate-to-lactate conversion rate, kPL, and 13C-pyruvate-to-bicarbonate conversion rate, kPB, all had statistically significant increases following oral glucose challenge. kPB, reflecting PDH activity and pyruvate entering the Krebs Cycle, had the highest correlation with blood glucose levels and was statistically significant. CONCLUSIONS: We demonstrate first-in-human regional quantifications of cardiac metabolism by HP 13C-pyruvate MRI that aims to reflect LDH and PDH activity.


Asunto(s)
Bicarbonatos , Ácido Pirúvico , Humanos , Valor Predictivo de las Pruebas , Imagen por Resonancia Magnética/métodos , Glucosa , Ácido Láctico/metabolismo , Isótopos de Carbono
5.
Inorg Chem ; 62(49): 19930-19936, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37990884

RESUMEN

Organic-inorganic hybrid perovskites (OIHPs) have been emerging as a hot research topic due to their potential applications in energy storage, semiconductors, and electronic devices. Herein, we systematically investigated the synthesis and phase transition behaviors of the enantiomeric OIHPs, (R) and (S)-N,N-dimethyl-3-fluoropyrrolidinium cadmium bromide ([DMFP][CdBr3]), and the hybrid trigonal structure [DMFP]3 (CdBr3)(CdBr4). The enantiomers have a mirror-symmetric structure and enhanced solid-state phase transition points of 417 and 443 K, in contrast to the nonfluorinated parent compound, N,N-dimethyl-pyrrolidinium cadmium bromide ([DMP][CdBr3], 385 K). Moreover, racemic H/F substitution on the pyrrolidinium cations leads to the formation of a trigonal compound, showing above-room-temperature structural phase transition and dominant ferroelasticity. This work discovers chiral enantiomeric OIHPs through H/F substitution, demonstrating a useful chemical synthesis strategy for exploring novel phase transition materials.

6.
J Am Chem Soc ; 144(42): 19559-19566, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36222219

RESUMEN

Chirality exists everywhere from natural amino acids to particle physics. The introduction of point chirality has recently been shown to be an efficient strategy for the construction of molecular ferroelectrics. In contrast to point chirality, however, axial chirality is rarely used to design ferroelectrics so far. Here, based on optically active 1,1'-bi-2-naphthol (BINOL), which has been applied extensively as a versatile chiral reagent in asymmetric catalysis, chiral recognition, and optics, we successfully design a pair of axial-chiral BINOL multiferroics, (R)-BINOL-DIPASi and (S)-BINOL-DIPASi. They experience a 2F1-type full ferroelectric/ferroelastic phase transition at a high temperature of 362 and 363 K, respectively. Piezoelectric force microscopy and polarization-voltage hysteresis loops demonstrate their ferroelectric domains and domain switching, and polarized light microscopy visualizes the evolution of stripe-shaped ferroelastic domains. The axial-chiral BINOL building block promotes the generation of the polar structure and ferroelectricity, and the organosilicon component increases the rotational energy barrier and thus the phase transition temperature. This work presents the first axial-chiral high-temperature multiferroic crystals, offering an efficient path for designing molecular multiferroics through the introduction of axial chirality.

7.
Magn Reson Med ; 88(3): 1039-1054, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35526263

RESUMEN

PURPOSE: This study aimed to develop and demonstrate the in vivo feasibility of a 3D stack-of-spiral balanced steady-state free precession(3D-bSSFP) urea sequence, interleaved with a metabolite-specific gradient echo (GRE) sequence for pyruvate and metabolic products, for improving the SNR and spatial resolution of the first hyperpolarized 13 C-MRI human study with injection of co-hyperpolarized [1-13 C]pyruvate and [13 C,15 N2 ]urea. METHODS: A metabolite-specific bSSFP urea imaging sequence was designed using a urea-specific excitation pulse, optimized TR, and 3D stack-of-spiral readouts. Simulations and phantom studies were performed to validate the spectral response of the sequence. The image quality of urea data acquired by the 3D-bSSFP sequence and the 2D-GRE sequence was evaluated with 2 identical injections of co-hyperpolarized [1-13 C]pyruvate and [13 C,15 N2 ]urea formula in a rat. Subsequently, the feasibility of the acquisition strategy was validated in a prostate cancer patient. RESULTS: Simulations and phantom studies demonstrated that 3D-bSSFP sequence achieved urea-only excitation, while minimally perturbing other metabolites (<1%). An animal study demonstrated that compared to GRE, bSSFP sequence provided an ∼2.5-fold improvement in SNR without perturbing urea or pyruvate kinetics, and bSSFP approach with a shorter spiral readout reduced blurring artifacts caused by J-coupling of [13 C,15 N2 ]urea. The human study demonstrated the in vivo feasibility and data quality of the acquisition strategy. CONCLUSION: The 3D-bSSFP urea sequence with a stack-of-spiral acquisition demonstrated significantly increased SNR and image quality for [13 C,15 N2 ]urea in co-hyperpolarized [1-13 C]pyruvate and [13 C,15 N2 ]urea imaging studies. This work lays the foundation for future human studies to achieve high-quality and high-SNR metabolism and perfusion images.


Asunto(s)
Ácido Pirúvico , Urea , Animales , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Masculino , Perfusión , Ácido Pirúvico/metabolismo , Ratas
8.
Magn Reson Med ; 87(1): 138-149, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34374471

RESUMEN

PURPOSE: The combined hyperpolarized (HP) 13 C pyruvate and urea MRI has provided a simultaneous assessment of glycolytic metabolism and tissue perfusion for improved cancer diagnosis and therapeutic evaluation in preclinical studies. This work aims to translate this dual-probe HP imaging technique to clinical research. METHODS: A co-polarization system was developed where [1-13 C]pyruvic acid (PA) and [13 C, 15 N2 ]urea in water solution were homogeneously mixed and polarized on a 5T SPINlab system. Physical and chemical characterizations and toxicology studies of the combined probe were performed. Simultaneous metabolic and perfusion imaging was performed on a 3T clinical MR scanner by alternatively applying a multi-slice 2D spiral sequence for [1-13 C]pyruvate and its downstream metabolites and a 3D balanced steady-state free precession (bSSFP) sequence for [13 C, 15 N2 ]urea. RESULTS: The combined PA/urea probe has a glass-formation ability similar to neat PA and can generate nearly 40% liquid-state 13 C polarization for both pyruvate and urea in 3-4 h. A standard operating procedure for routine on-site production was developed and validated to produce 40 mL injection product of approximately 150 mM pyruvate and 35 mM urea. The toxicology study demonstrated the safety profile of the combined probe. Dynamic metabolite-specific imaging of [1-13 C]pyruvate, [1-13 C]lactate, [1-13 C]alanine, and [13 C, 15 N2 ]urea was achieved with adequate spatial (2.6 mm × 2.6 mm) and temporal resolution (4.2 s), and urea images showed reduced off-resonance artifacts due to the JCN coupling. CONCLUSION: The reported technical development and translational studies will lead to the first-in-human dual-agent HP MRI study and mark the clinical translation of the first HP 13 C MRI probe after pyruvate.


Asunto(s)
Ácido Pirúvico , Urea , Isótopos de Carbono , Humanos , Ácido Láctico , Imagen por Resonancia Magnética , Imagen de Perfusión
9.
Inorg Chem ; 61(15): 5836-5843, 2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35388698

RESUMEN

Hybrid organic-inorganic perovskites (HOIPs) have emerged as multifunctional materials with remarkable optical and electronic properties. In particular, 2D-layered lead iodide-based HOIPs possess great practical application potential in the photoelectric field. In this work, we report H/F substitution-induced 1D-to-2D increment of lead iodide HOIPs. The enantiomeric HOIPs, S- and R-FPPbI3 (FP = 3-fluoropyrrolidinium), were achieved by monofluoride substitution on the spacer cations of the parent HOIP, PyPbI3 (Py = pyrrolidinium), showing mirror image structural relationship and reversible solid-state phase transition. A 2D-layered HOIP, (DFP)2PbI4 (DFP = 3,3-difluoropyrrolidinium), was achieved with a low band gap of 2.09 eV through difluoride substitution, thanks to the expansion of the Pb-I network from 1D to 2D. This work highlights the exploration of 1D chiral and 2D-layered HOIP materials with reversible phase transitions through H/F substitution strategies.


Asunto(s)
Yoduros , Cationes , Electrónica
10.
Cancer ; 127(15): 2693-2704, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33844280

RESUMEN

BACKGROUND: Optimal treatment selection for localized renal tumors is challenging because of their variable biologic behavior and limitations in the preoperative assessment of tumor aggressiveness. The authors investigated the emerging hyperpolarized (HP) 13 C magnetic resonance imaging (MRI) technique to noninvasively assess tumor lactate production, which is strongly associated with tumor aggressiveness. METHODS: Eleven patients with renal tumors underwent HP 13 C pyruvate MRI before surgical resection. Tumor 13 C pyruvate and 13 C lactate images were acquired dynamically. Five patients underwent 2 scans on the same day to assess the intrapatient reproducibility of HP 13 C pyruvate MRI. Tumor metabolic data were compared with histopathology findings. RESULTS: Eight patients had tumors with a sufficient metabolite signal-to-noise ratio for analysis; an insufficient tumor signal-to-noise ratio was noted in 2 patients, likely caused by poor tumor perfusion and, in 1 patient, because of technical errors. Of the 8 patients, 3 had high-grade clear cell renal cell carcinoma (ccRCC), 3 had low-grade ccRCC, and 2 had chromophobe RCC. There was a trend toward a higher lactate-to-pyruvate ratio in high-grade ccRCCs compared with low-grade ccRCCs. Both chromophobe RCCs had relatively high lactate-to-pyruvate ratios. Good reproducibility was noted across the 5 patients who underwent 2 HP 13 C pyruvate MRI scans on the same day. CONCLUSIONS: The current results demonstrate the feasibility of HP 13 C pyruvate MRI for investigating the metabolic phenotype of localized renal tumors. The initial data indicate good reproducibility of metabolite measurements. In addition, the metabolic data indicate a trend toward differentiating low-grade and high-grade ccRCCs, the most common subtype of renal cancer. LAY SUMMARY: Renal tumors are frequently discovered incidentally because of the increased use of medical imaging, but it is challenging to identify which aggressive tumors should be treated. A new metabolic imaging technique was applied to noninvasively predict renal tumor aggressiveness. The imaging results were compared with tumor samples taken during surgery and showed a trend toward differentiating between low-grade and high-grade clear cell renal cell carcinomas, which are the most common type of renal cancers.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/patología , Humanos , Neoplasias Renales/patología , Imagen por Resonancia Magnética/métodos , Ácido Pirúvico/metabolismo , Reproducibilidad de los Resultados
11.
J Magn Reson Imaging ; 53(3): 686-702, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32039520

RESUMEN

MRI with hyperpolarized carbon-13 agents has created a new type of noninvasive, in vivo metabolic imaging that can be applied in cell, animal, and human studies. The use of 13 C-labeled agents, primarily [1-13 C]pyruvate, enables monitoring of key metabolic pathways with the ability to image substrate and products based on their chemical shift. Over 10 sites worldwide are now performing human studies with this new approach for studies of cancer, heart disease, liver disease, and kidney disease. Hyperpolarized metabolic imaging studies must be performed within several minutes following creation of the hyperpolarized agent due to irreversible decay of the net magnetization back to equilibrium, so fast imaging methods are critical. The imaging methods must include multiple metabolites, separated based on their chemical shift, which are also undergoing rapid metabolic conversion (via label exchange), further exacerbating the challenges of fast imaging. This review describes the state-of-the-art in fast imaging methods for hyperpolarized metabolic imaging. This includes the approach and tradeoffs between three major categories of fast imaging methods-fast spectroscopic imaging, model-based strategies, and metabolite specific imaging-as well additional options of parallel imaging, compressed sensing, tailored RF flip angles, refocused imaging methods, and calibration methods that can improve the scan coverage, speed, signal-to-noise ratio (SNR), resolution, and/or robustness of these studies. To date, these approaches have produced extremely promising initial human imaging results. Improvements to fast hyperpolarized metabolic imaging methods will provide better coverage, SNR, resolution, and reproducibility for future human imaging studies. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 1.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Animales , Isótopos de Carbono , Humanos , Ácido Pirúvico , Reproducibilidad de los Resultados , Relación Señal-Ruido
12.
MAGMA ; 34(1): 57-72, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33502669

RESUMEN

OBJECTIVE: Magnetic resonance imaging with hyperpolarized contrast agents can provide unprecedented in vivo measurements of metabolism, but yields images that are lower resolution than that achieved with proton anatomical imaging. In order to spatially localize the metabolic activity, the metabolic image must be interpolated to the size of the proton image. The most common methods for choosing the unknown values rely exclusively on values of the original uninterpolated image. METHODS: In this work, we present an alternative method that uses the higher-resolution proton image to provide additional spatial structure. The interpolated image is the result of a convex optimization algorithm which is solved with the fast iterative shrinkage threshold algorithm (FISTA). RESULTS: Results are shown with images of hyperpolarized pyruvate, lactate, and bicarbonate using data of the heart and brain from healthy human volunteers, a healthy porcine heart, and a human with prostate cancer.


Asunto(s)
Imagen por Resonancia Magnética , Algoritmos , Animales , Encéfalo , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Ácido Pirúvico , Porcinos
13.
Entropy (Basel) ; 23(6)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203737

RESUMEN

Pulmonary hypertension (PH) is a fatal disease-even with state-of-the-art medical treatment. Non-invasive clinical tools for risk stratification are still lacking. The aim of this study was to investigate the clinical utility of heart rhythm complexity in risk stratification for PH patients. We prospectively enrolled 54 PH patients, including 20 high-risk patients (group A; defined as WHO functional class IV or class III with severely compromised hemodynamics), and 34 low-risk patients (group B). Both linear and non-linear heart rate variability (HRV) variables, including detrended fluctuation analysis (DFA) and multiscale entropy (MSE), were analyzed. In linear and non-linear HRV analysis, low frequency and high frequency ratio, DFAα1, MSE slope 5, scale 5, and area 6-20 were significantly lower in group A. Among all HRV variables, MSE scale 5 (AUC: 0.758) had the best predictive power to discriminate the two groups. In multivariable analysis, MSE scale 5 (p = 0.010) was the only significantly predictor of severe PH in all HRV variables. In conclusion, the patients with severe PH had worse heart rhythm complexity. MSE parameters, especially scale 5, can help to identify high-risk PH patients.

14.
Magn Reson Med ; 84(3): 1113-1125, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32086845

RESUMEN

PURPOSE: The balanced steady-state free precession sequence has been previously explored to improve the efficient use of nonrecoverable hyperpolarized 13C magnetization, but suffers from poor spectral selectivity and long acquisition time. The purpose of this study was to develop a novel metabolite-specific 3D bSSFP ("MS-3DSSFP") sequence with stack-of-spiral readouts for improved lactate imaging in hyperpolarized [1-13 C]pyruvate studies on a clinical 3T scanner. METHODS: Simulations were performed to evaluate the spectral response of the MS-3DSSFP sequence. Thermal 13C phantom experiments were performed to validate the MS-3DSSFP sequence. In vivo hyperpolarized [1-13 C], pyruvate studies were performed to compare the MS-3DSSFP sequence with metabolite-specific gradient echo ("MS-GRE") sequences for lactate imaging. RESULTS: Simulations, phantom, and in vivo studies demonstrate that the MS-3DSSFP sequence achieved spectrally selective excitation on lactate while minimally perturbing other metabolites. Compared with MS-GRE sequences, the MS-3DSSFP sequence showed approximately a 2.5-fold SNR improvement for lactate imaging in rat kidneys, prostate tumors in a mouse model, and human kidneys. CONCLUSIONS: Improved lactate imaging using the MS-3DSSFP sequence in hyperpolarized [1-13 C]pyruvate studies was demonstrated in animals and humans. The MS-3DSSFP sequence could be applied for other clinical applications such as in the brain or adapted for imaging other metabolites such as pyruvate and bicarbonate.


Asunto(s)
Ácido Láctico , Ácido Pirúvico , Animales , Isótopos de Carbono , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Masculino , Fantasmas de Imagen
15.
Magn Reson Med ; 84(6): 2943-2952, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32697867

RESUMEN

PURPOSE: To ameliorate tradeoffs between a fixed spatial resolution and signal-to-noise ratio (SNR) for hyperpolarized 13 C MRI. METHODS: In MRI, SNR is proportional to voxel volume but retrospective downsampling or voxel averaging only improves SNR by the square root of voxel size. This can be exploited with a metabolite-selective imaging approach that independently encodes each compound, yielding high-resolution images for the injected substrate and coarser resolution images for downstream metabolites, while maintaining adequate SNR for each. To assess the efficacy of this approach, hyperpolarized [1-13 C]pyruvate data were acquired in healthy Sprague-Dawley rats (n = 4) and in two healthy human subjects. RESULTS: Compared with a constant resolution acquisition, variable-resolution data sets showed improved detectability of metabolites in pre-clinical renal studies with a 3.5-fold, 8.7-fold, and 6.0-fold increase in SNR for lactate, alanine, and bicarbonate data, respectively. Variable-resolution data sets from healthy human subjects showed cardiac structure and neuro-vasculature in the higher resolution pyruvate images (6.0 × 6.0 mm2 for cardiac and 7.5 × 7.5 mm2 for brain) that would otherwise be missed due to partial-volume effects and illustrates the level of detail that can be achieved with hyperpolarized substrates in a clinical setting. CONCLUSION: We developed a variable-resolution strategy for hyperpolarized 13 C MRI using metabolite-selective imaging and demonstrated that it mitigates tradeoffs between a fixed spatial resolution and SNR for hyperpolarized substrates, providing both high resolution pyruvate and coarse resolution metabolite data sets in a single exam. This technique shows promise to improve future studies by maximizing metabolite SNR while minimizing partial-volume effects from the injected substrate.


Asunto(s)
Imagen por Resonancia Magnética , Ácido Pirúvico , Animales , Isótopos de Carbono , Ratas , Ratas Sprague-Dawley , Estudios Retrospectivos , Relación Señal-Ruido
16.
Magn Reson Med ; 81(2): 839-851, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30277268

RESUMEN

PURPOSE: Acquisition timing and B1 calibration are two key factors that affect the quality and accuracy of hyperpolarized 13 C MRI. The goal of this project was to develop a new approach using regional bolus tracking to trigger Bloch-Siegert B1 mapping and real-time B1 calibration based on regional B1 measurements, followed by dynamic imaging of hyperpolarized 13 C metabolites in vivo. METHODS: The proposed approach was implemented on a system which allows real-time data processing and real-time control on the sequence. Real-time center frequency calibration upon the bolus arrival was also added. The feasibility of applying the proposed framework for in vivo hyperpolarized 13 C imaging was tested on healthy rats, tumor-bearing mice and a healthy volunteer on a clinical 3T scanner following hyperpolarized [1-13 C]pyruvate injection. Multichannel receive coils were used in the human study. RESULTS: Automatic acquisition timing based on either regional bolus peak or bolus arrival was achieved with the proposed framework. Reduced blurring artifacts in real-time reconstructed images were observed with real-time center frequency calibration. Real-time computed B1 scaling factors agreed with real-time acquired B1 maps. Flip angle correction using B1 maps results in a more consistent quantification of metabolic activity (i.e, pyruvate-to-lactate conversion, kPL ). Experiment recordings are provided to demonstrate the real-time actions during the experiment. CONCLUSIONS: The proposed method was successfully demonstrated on animals and a human volunteer, and is anticipated to improve the efficient use of the hyperpolarized signal as well as the accuracy and robustness of hyperpolarized 13 C imaging.


Asunto(s)
Isótopos de Carbono/química , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Adulto , Algoritmos , Animales , Mapeo Encefálico , Calibración , Modelos Animales de Enfermedad , Voluntarios Sanos , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Distribución Normal , Reconocimiento de Normas Patrones Automatizadas , Neoplasias de la Próstata/diagnóstico por imagen , Ácido Pirúvico , Ratas
17.
Magn Reson Med ; 79(1): 62-70, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29080236

RESUMEN

PURPOSE: To develop a novel acquisition and reconstruction method for magnetization-prepared 3-dimensional multicontrast rapid gradient-echo imaging, using Hankel matrix completion in combination with compressed sensing and parallel imaging. METHODS: A random k-space shuffling strategy was implemented in simulation and in vivo human experiments at 7 T for 3-dimensional inversion recovery, T2 /diffusion preparation, and magnetization transfer imaging. We combined compressed sensing, based on total variation and spatial-temporal low-rank regularizations, and parallel imaging with pixel-wise Hankel matrix completion, allowing the reconstruction of tens of multicontrast 3-dimensional images from 3- or 6-min scans. RESULTS: The simulation result showed that the proposed method can reconstruct signal-recovery curves in each voxel and was robust for typical in vivo signal-to-noise ratio with 16-times acceleration. In vivo studies achieved 4 to 24 times accelerations for inversion recovery, T2 /diffusion preparation, and magnetization transfer imaging. Furthermore, the contrast was improved by resolving pixel-wise signal-recovery curves after magnetization preparation. CONCLUSIONS: The proposed method can improve acquisition efficiencies for magnetization-prepared MRI and tens of multicontrast 3-dimensional images could be recovered from a single scan. Furthermore, it was robust against noise, applicable for recovering multi-exponential signals, and did not require any previous knowledge of model parameters. Magn Reson Med 79:62-70, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Encéfalo/diagnóstico por imagen , Medios de Contraste/química , Magnetismo , Algoritmos , Mapeo Encefálico/métodos , Simulación por Computador , Compresión de Datos/métodos , Difusión , Voluntarios Sanos , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional , Modelos Estadísticos , Estudios Prospectivos , Estudios Retrospectivos , Relación Señal-Ruido
18.
Magn Reson Med ; 80(2): 726-735, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29194734

RESUMEN

PURPOSE: Recent nuclear magnetic resonance and MRI studies have measured a fast-relaxing signal component with T2∗<1 ms in white matter and myelin extracts. In ex vivo studies, evidence suggests that a large fraction of this component directly arises from bound protons in the myelin phospholipid membranes. Based on these results, this ultrashort-T2 component in nervous tissue is a new potential imaging biomarker of myelination, which plays a critical role in neuronal signal conduction across the brain and loss or degradation of myelin is a key feature of many neurological disorders. The goal of this work was to characterize the relaxation times and frequency shifts of ultrashort-T2 components in the human brain. METHODS: This required development of an ultrashort echo time relaxometry acquisition strategy and fitting procedure for robust measurements in the presence of ultrashort T2∗ relaxation times and large frequency shifts. RESULTS: We measured an ultrashort-T2 component in healthy volunteers with a median T2∗ between 0.5-0.7 ms at 3T and 0.2-0.3 ms at 7T as well as an approximately -3 ppm frequency shift from water. CONCLUSION: To our knowledge, this is the first time a chemical shift of the ultrashort-T2 brain component has been measured in vivo. This chemical shift, at around 1.7 ppm, is similar to the primary resonance of most lipids, indicating that much of the ultrashort-T2 component observed in vivo arises from bound protons in the myelin phospholipid membranes. Magn Reson Med 80:726-735, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Humanos , Masculino , Vaina de Mielina/química , Fantasmas de Imagen , Protones , Adulto Joven
19.
NMR Biomed ; 31(11): e3997, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30230646

RESUMEN

MRI using hyperpolarized (HP) carbon-13 pyruvate is being investigated in clinical trials to provide non-invasive measurements of metabolism for cancer and cardiac imaging. In this project, we applied HP [1-13 C]pyruvate dynamic MRI in prostate cancer to measure the conversion from pyruvate to lactate, which is expected to increase in aggressive cancers. The goal of this work was to develop and test analysis methods for improved quantification of this metabolic conversion. In this work, we compared specialized kinetic modeling methods to estimate the pyruvate-to-lactate conversion rate, kPL , as well as the lactate-to-pyruvate area-under-curve (AUC) ratio. The kinetic modeling included an "inputless" method requiring no assumptions regarding the input function, as well as a method incorporating bolus characteristics in the fitting. These were first evaluated with simulated data designed to match human prostate data, where we examined the expected sensitivity of metabolism quantification to variations in kPL , signal-to-noise ratio (SNR), bolus characteristics, relaxation rates, and B1 variability. They were then applied to 17 prostate cancer patient datasets. The simulations indicated that the inputless method with fixed relaxation rates provided high expected accuracy with no sensitivity to bolus characteristics. The AUC ratio showed an undesired strong sensitivity to bolus variations. Fitting the input function as well did not improve accuracy over the inputless method. In vivo results showed qualitatively accurate kPL maps with inputless fitting. The AUC ratio was sensitive to bolus delivery variations. Fitting with the input function showed high variability in parameter maps. Overall, we found the inputless kPL fitting method to be a simple, robust approach for quantification of metabolic conversion following HP [1-13 C]pyruvate injection in human prostate cancer studies. This study also provided initial ranges of HP [1-13 C]pyruvate parameters (SNR, kPL , bolus characteristics) in the human prostate.


Asunto(s)
Isótopos de Carbono/química , Imagen por Resonancia Magnética , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Ácido Pirúvico/metabolismo , Área Bajo la Curva , Simulación por Computador , Humanos , Masculino , Persona de Mediana Edad
20.
Magn Reson Med ; 74(2): 506-12, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25154961

RESUMEN

PURPOSE: A novel application of two-dimensional (2D) spatially selective radiofrequency (2DRF) excitation pulses in hyperpolarized 13C imaging is proposed for monitoring the bolus injection with highly efficient sampling of the initially polarized substrate, thus leaving more polarization available for detection of the subsequently generated metabolic products. METHODS: A 2DRF pulse was designed with a spiral trajectory and conventional clinical gradient performance. To demonstrate the ability of our 2DRF bolus tracking pulse sequence, hyperpolarized [1-(13)ruvate in vivo imaging experiments were performed in normal rats, with a comparison to 1DRF excitation pulses. RESULTS: Our designed 2DRF pulse was able to rapidly and efficiently monitor the injected bolus dynamics in vivo, with an 8-fold enhanced time resolution in comparison with 1DRF in our experimental settings. When applied at the pyruvate frequency for bolus tracking, our 2DRF pulse demonstrated reduced saturation of the hyperpolarization for the substrate and metabolic products compared to a 1DRF pulse, while being immune to ±0.5 ppm magnetic field inhomogeneity at 3T. CONCLUSION: 2DRF pulses in hyperpolarized 13C imaging can be used to efficiently monitor the bolus injection with reduced hyperpolarization saturation compared to 1DRF pulses. The parameters of our design are based on clinical scanner limits, which allows for rapid translation to human studies.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Interpretación de Imagen Asistida por Computador/métodos , Riñón/metabolismo , Imagen por Resonancia Magnética/métodos , Imagen Molecular/métodos , Ácido Pirúvico/farmacocinética , Algoritmos , Animales , Isótopos de Carbono/farmacocinética , Estudios de Factibilidad , Aumento de la Imagen/métodos , Riñón/anatomía & histología , Radiofármacos/farmacocinética , Ratas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA