Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(21): 9102-9112, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38752859

RESUMEN

Cetaceans play a pivotal role in maintaining the ecological equilibrium of ocean ecosystems. However, their populations are under global threat from environmental contaminants. Various high levels of endocrine-disrupting chemicals (EDCs) have been detected in cetaceans from the South China Sea, such as the Indo-Pacific humpback dolphins in the Pearl River Estuary (PRE), suggesting potential health risks, while the impacts of endocrine disruptors on the dolphin population remain unclear. This study aims to synthesize the population dynamics of the humpback dolphins in the PRE and their profiles of EDC contaminants from 2005 to 2019, investigating the potential role of EDCs in the population dynamics of humpback dolphins. Our comprehensive analysis indicates a sustained decline in the PRE humpback dolphin population, posing a significant risk of extinction. Variations in sex hormones induced by EDC exposure could potentially impact birth rates, further contributing to the population decline. Anthropogenic activities consistently emerge as the most significant stressor, ranking highest in importance. Conventional EDCs demonstrate more pronounced impacts on the population compared to emerging compounds. Among the conventional pollutants, DDTs take precedence, followed by zinc and chromium. The most impactful emerging EDCs are identified as alkylphenols. Notably, as the profile of EDCs changes, the significance of conventional pollutants may give way to emerging EDCs, presenting a continued challenge to the viability of the humpback dolphin population.


Asunto(s)
Delfines , Disruptores Endocrinos , Dinámica Poblacional , Animales , Disruptores Endocrinos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Monitoreo del Ambiente
2.
Eur J Nucl Med Mol Imaging ; 47(12): 2742-2752, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32314026

RESUMEN

PURPOSE: In selective internal radiation therapy (SIRT), an accurate total liver segmentation is required for activity prescription and absorbed dose calculation. Our goal was to investigate the feasibility of using automatic liver segmentation based on a convolutional neural network (CNN) for CT imaging in SIRT, and the ability of CNN to reduce inter-observer variability of the segmentation. METHODS: A multi-scale CNN was modified for liver segmentation for SIRT patients. The CNN model was trained with 139 datasets from three liver segmentation challenges and 12 SIRT patient datasets from our hospital. Validation was performed on 13 SIRT datasets and 12 challenge datasets. The model was tested on 40 SIRT datasets. One expert manually delineated the livers and adjusted the liver segmentations from CNN for 40 test SIRT datasets. Another expert performed the same tasks for 20 datasets randomly selected from the 40 SIRT datasets. The CNN segmentations were compared with the manual and adjusted segmentations from the experts. The difference between the manual segmentations was compared with the difference between the adjusted segmentations to investigate the inter-observer variability. Segmentation difference was evaluated through dice similarity coefficient (DSC), volume ratio (RV), mean surface distance (MSD), and Hausdorff distance (HD). RESULTS: The CNN segmentation achieved a median DSC of 0.94 with the manual segmentation and of 0.98 with the manually corrected CNN segmentation, respectively. The DSC between the adjusted segmentations is 0.98, which is 0.04 higher than the DSC between the manual segmentations. CONCLUSION: The CNN model achieved good liver segmentations on CT images of good image quality, with relatively normal liver shapes and low tumor burden. 87.5% of the 40 CNN segmentations only needed slight adjustments for clinical use. However, the trained model failed on SIRT data with low dose or contrast, lesions with large density difference from their surroundings, and abnormal liver position and shape. The abovementioned scenarios were not adequately represented in the training data. Despite this limitation, the current CNN is already a useful clinical tool which improves inter-observer agreement and therefore contributes to the standardization of the dosimetry. A further improvement is expected when the CNN will be trained with more data from SIRT patients.


Asunto(s)
Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador , Hígado/diagnóstico por imagen , Redes Neurales de la Computación , Variaciones Dependientes del Observador , Carga Tumoral
3.
EJNMMI Phys ; 9(1): 3, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35076801

RESUMEN

PURPOSE: Selective internal radiation therapy (SIRT) requires a good liver registration of multi-modality images to obtain precise dose prediction and measurement. This study investigated the feasibility of liver registration of CT and MR images, guided by segmentation of the liver and its landmarks. The influence of the resulting lesion registration on dose estimation was evaluated. METHODS: The liver segmentation was done with a convolutional neural network (CNN), and the landmarks were segmented manually. Our image-based registration software and its liver-segmentation-guided extension (CNN-guided) were tuned and evaluated with 49 CT and 26 MR images from 20 SIRT patients. Each liver registration was evaluated by the root mean square distance (RMSD) of mean surface distance between manually delineated liver contours and mass center distance between manually delineated landmarks (lesions, clips, etc.). The root mean square of RMSDs (RRMSD) was used to evaluate all liver registrations. The CNN-guided registration was further extended by incorporating landmark segmentations (CNN&LM-guided) to assess the value of additional landmark guidance. To evaluate the influence of segmentation-guided registration on dose estimation, mean dose and volume percentages receiving at least 70 Gy (V70) estimated on the 99mTc-labeled macro-aggregated albumin (99mTc-MAA) SPECT were computed, either based on lesions from the reference 99mTc-MAA CT (reference lesions) or from the registered floating CT or MR images (registered lesions) using the CNN- or CNN&LM-guided algorithms. RESULTS: The RRMSD decreased for the floating CTs and MRs by 1.0 mm (11%) and 3.4 mm (34%) using CNN guidance for the image-based registration and by 2.1 mm (26%) and 1.4 mm (21%) using landmark guidance for the CNN-guided registration. The quartiles for the relative mean dose difference (the V70 difference) between the reference and registered lesions and their correlations [25th, 75th; r] are as follows: [- 5.5% (- 1.3%), 5.6% (3.4%); 0.97 (0.95)] and [- 12.3% (- 2.1%), 14.8% (2.9%); 0.96 (0.97)] for the CNN&LM- and CNN-guided CT to CT registrations, [- 7.7% (- 6.6%), 7.0% (3.1%); 0.97 (0.90)] and [- 15.1% (- 11.3%), 2.4% (2.5%); 0.91 (0.78)] for the CNN&LM- and CNN-guided MR to CT registrations. CONCLUSION: Guidance by CNN liver segmentations and landmarks markedly improves the performance of the image-based registration. The small mean dose change between the reference and registered lesions demonstrates the feasibility of applying the CNN&LM- or CNN-guided registration to volume-level dose prediction. The CNN&LM- and CNN-guided registrations for CTs can be applied to voxel-level dose prediction according to their small V70 change for most lesions. The CNN-guided MR to CT registration still needs to incorporate landmark guidance for smaller change of voxel-level dose estimation.

4.
EJNMMI Res ; 10(1): 94, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32797332

RESUMEN

BACKGROUND: Selective internal radiation therapy (SIRT) is a promising treatment for unresectable hepatic malignancies. Predictive dose calculation based on a simulation using 99mTc-labeled macro-aggregated albumin (99mTc-MAA) before the treatment is considered as a potential tool for patient-specific treatment planning. Post-treatment dose measurement is mainly performed to confirm the planned absorbed dose to the tumor and non-tumor liver volumes. This study compared the predicted and measured absorbed dose distributions. METHODS: Thirty-one patients (67 tumors) treated by SIRT with resin microspheres were analyzed. Predicted and delivered absorbed dose was calculated using 99mTc-MAA-SPECT and 90Y-TOF-PET imaging. The voxel-level dose distribution was derived using the local deposition model. Liver perfusion territories and tumors have been delineated on contrast-enhanced CBCT images, which have been acquired during the 99mTc-MAA work-up. Several dose-volume histogram (DVH) parameters together with the mean dose for liver perfusion territories and non-tumoral and tumoral compartments were evaluated. RESULTS: A strong correlation between the predicted and measured mean dose for non-tumoral volume was observed (r = 0.937). The ratio of measured and predicted mean dose to this volume has a first, second, and third interquartile range of 0.83, 1.05, and 1.25. The difference between the measured and predicted mean dose did not exceed 11 Gy. The correlation between predicted and measured mean dose to the tumor was moderate (r = 0.623) with a mean difference of - 9.3 Gy. The ratio of measured and predicted tumor mean dose had a median of 1.01 with the first and third interquartile ranges of 0.58 and 1.59, respectively. Our results suggest that 99mTc-MAA-based dosimetry could predict under or over dosing of the non-tumoral liver parenchyma for almost all cases. For more than two thirds of the tumors, a predictive absorbed dose correctly indicated either good tumor dose coverage or under-dosing of the tumor. CONCLUSION: Our results highlight the predictive value of 99mTc-MAA-based dose estimation to predict non-tumor liver irradiation, which can be applied to prescribe an optimized activity aiming at avoiding liver toxicity. Compared to non-tumoral tissue, a poorer agreement between predicted and measured absorbed dose is observed for tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA